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Abstract 
Directed acyclic graphs (DAGs) might yet transform the statistical modelling of observational data 

for causal inference. This is because they offer a principled approach to analytical design that draws 

on existing contextual, empirical and theoretical knowledge, but ultimately relies on temporality 

alone to objectively specify probabilistic causal relationships amongst measured (and unmeasured) 

covariates, and the associated exposure and outcome variables. While a working knowledge of 

phenomenology, critical realism and epistemology seem likely to be useful for mastering the 

application of DAGs, drawing a DAG appears to require limited technical expertise and might 

therefore be accessible to even inexperienced and novice analysts. The present study evaluated the 

inclusion of a novel four-task directed learning exercise for medical undergraduates, which 

culminated in temporality-driven covariate classification, followed by DAG specification itself. The 

exercise achieved high levels of student engagement, although the proportion of students completing 

each of the exercise’s four key tasks declined from close to 100% in tasks 1 and 2 (exposure and 

outcome specification; and covariate selection) to 83.5% and 77.6% in the third and fourth tasks, 

respectively. Fewer than 15% of the students successfully classified all of their covariates (as 

confounders, mediators or competing exposures) using temporality-driven classification, but this 

improved to more than 35% following DAG specification – an unexpected result given that all of 

the DAGs displayed at least one substantive technical error. These findings suggest that drawing a 

DAG, in and of itself, increases the utility of temporality-driven covariate classification for causal 

inference analysis; although further research is required to better understand: why even poorly 

specified DAGs might reduce covariate misclassification; how ‘wrong but useful’ DAGs might be 

identified; and how these marginal benefits might be enhanced with or without improvements in 

DAG specification. 
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“It's such a mistake, I always feel, to put one's trust in technique” 
(George Smiley in: The Looking Glass War by John Le Carre, 1965) 

 
Introduction 
 
Statistical skills at the heart of evidence-informed policy and practice 
 

Notwithstanding George Smiley’s caution and the fallibility of method, statistical expertise plays an 

increasingly important role in generating and interpreting quantitative evidence to inform policy and 

practice (Teater et al. 2017; Flyberg et al. 2019); and training in statistical skills has always needed 

to keep pace with ongoing developments in analytical practice (Tu and Greenwood 2012; Porta et 

al. 2015; Efron and Hastie 2016; Hokimoto 2017). Indeed, perhaps the most important contribution 

that statistics can make to evidence-based decision-making (and, by extension, the contribution that 

statistical skills training can make to professionals and the lay public, alike) is in revealing and 

dealing with the many different sources of bias that can occur when analysing and interpreting 

obvious, observable differences between ostensibly comparable phenomena (Flyberg et al. 2019). 

Regardless of whether such comparisons are an integral part of human nature or a conditioned 

response to our natural and social environments (Ross 2019), they manifest as compelling objects 

of enquiry and speculation even for those trained to recognise how method, context and perspective 

often determine the extent to which these comparisons actually provide precision, generalisation and 

causal/predictive insight, respectively (Asprem 2016).   

 

In the not so recent past, concern with selection bias (and, to some extent, with chance associations 

generated by underpowered sample sizes) led to a renewed focus on statistical training in: the use 

of research design (particularly experimentation and randomisation) to address potential sources of 

bias when estimating evidence of cause and effect; and on critical appraisal and research synthesis 

techniques (including meta-analysis) to deal with contradictory findings from different studies 

undertaken in different contexts using different techniques (Djulbegovic and Guyatt 2017). Over 

time, the limited utility of this approach has led to a resurgence of interest in the analysis of non-

experimental (observational) data and the synthesis of ‘real world evidence’ (e.g. Klonoff 2020; 

though see also: Losilla et al. 2018). Indeed, there is broad consensus that such analyses will remain 

far more common in many applied disciplines, not least in the era of ‘medical tech’ and ‘Big Data’ 

(Eustace 2018); and in contexts where intervention complexity, ethics, governance, safety, 

participation and cost make experimentation impossible or simply undesirable and undesired (Meyer 

et al. 2019).  

 
Why observational data, why causal inference and why directed acyclic graphs? 
 

Many of the same sources of bias that led to the earlier focus on experimentation and randomisation 

– particularly those relating to confounding and sampling bias – continue to threaten the validity of 

observational analyses, not least because design constraints mean such studies exert little control 

over the allocation of naturally occurring ‘exposures’ (be these physical, biological or social 

phenomena). Nonetheless, recent efforts to address confounding and sampling bias have made 

substantial progress; and the emergence of ‘causal inference’ as a novel interdisciplinary field 

spanning statistics, mathematics and computing (as well as the applied social and biomedical 

sciences), has helped in the translation of abstract theoretical techniques into accessible and practical 

applications (Porta et al. 2015).  
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One technique at the centre of these developments, which can help to guide and reveal the otherwise 

implicit nonparametric considerations that underpin the analysis of observational data, is the 

‘directed acyclic graph’ or DAG. This is a form of causal path diagram that seeks to represent what 

the analyst believes to be the underlying ‘data generating mechanism’ – a somewhat abstract and 

quasi-critical realist concept (Spanos 2010) that nonetheless encapsulates how mathematical and 

statistical analyses of the joint information provided by data from each of the measured variables 

(the so-called ‘known knowns’) might offer insights into the processes responsible for creating these 

(the ‘known unknowns’ and potential ‘unknown unknowns’ (Recker 2015). In practice, the data 

generating mechanism is rarely (if ever) understood with absolute certainty, not least for data sets 

in which complex social processes are at play (whether in the variables and contexts concerned, or 

simply in the cultural practices involved in their scientific conceptualisation, operationalisation and 

metricisation).  Yet while the speculative theoretical nature of DAGs may not necessarily reflect 

reality, their use helps to make explicit a critical step that is often only implicit within established 

analytical practices (Law et al. 2012), and makes it possible to separate out: the theory being tested; 

and the statistical analyses required to evaluate this.  

 

DAGs therefore offer an immediate and compelling contribution to improving the analysis of 

observational data because they aim to facilitate the elucidation of plausible (yet imperceptible) data 

generating processes and reveal many of its critical features so that these can inform the design of 

statistical models and ensure these are capable of providing robust effort for causal inference. In the 

process, DAGs enable analysts to summarise and share both: their theoretical understanding, beliefs 

and speculation regarding the true nature of the underlying data generating mechanism; and how 

this is reflected in the design of the statistical analyses intended to evaluate this. In effect, using 

DAGs to strengthen the design of such analyses requires analysts to up their game by thinking 

through their assumptions and taking greater care to prepare, double check and open these up for 

scrutiny, debate and challenge (Textor et al. 2016).  

 

These advantages are matched by the ease with which DAGs can help analysts seeking causal 

inference to identify which of their variables play important roles in the ‘focal relationship’ (or 

‘relationship of interest’ (Tennant et al. 2017): i.e. the extent to which a hypothesised cause (the 

‘specified exposure’) might genuinely affect a particular consequence (the ‘specified outcome’). 

Indeed, beyond the variables specified as the ‘exposure’ and ‘outcome’ in any given analysis, each 

of the other measured (and all of any other unmeasured or latent) variables can act as: ‘confounders’, 

‘mediators’, ‘competing exposures’ or ‘consequences of the outcome’ (see Figure 1). Confounders 

are covariates that cause both the specified exposure and the specified outcome and which, in the 

absence of adjustment, can reverse, enhance or mask the direction, strength and precision of the true 

relationship between exposure and outcome (as a result of ‘confounder bias’ (VanderWeele 2019). 

Mediators are covariates that are caused by the specified exposure and cause the specified outcome 

(i.e. they fall along one potential causal path between the specified exposure and outcome). Like 

confounders, mediators can reverse, enhance or mask the direction, strength and precision of the 

true relationship between exposure and outcome (as a result of inferential bias known as ‘mediator 

bias’ (Richiardi et al. 2013) – though, unlike confounders, mediator bias only occurs after mediator 

adjustment. Meanwhile, competing exposures are covariates that are causally unrelated to the 

specified exposure but which cause (and can therefore explain a proportion of the variance in) the 

specified outcome. Adjustment for genuine competing exposures has no effect on the strength of the 

relationship observed between the specified exposure and outcome, but can improve the precision 

of this relationship (Tennant et al. 2017). Finally, consequences of the (specified) outcome are 

covariates that do not necessarily have any causal relationship with the specified exposure but are 

caused by the specified outcome. Like mediators, adjustment for these variables can reverse, 

enhance or mask the direction, strength and precision of the true relationship between exposure and 
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outcome as a result of biases that are essentially the same as those generated through ‘conditioning 

on the outcome’ 

 

Figure 1. A stylised example of a directed acyclic graph (DAG) illustrating: (i) the four principal 

roles that covariates (represented as ‘nodes’) can play, namely: confounders; mediators; competing 

exposures; and consequences of the outcome; and (ii) the unidirectional probabilistic causal paths 

(represented as ‘arcs’ with arrows) between consequential nodes and all causal node(s) that 

temporally precede them.  

   

 
 

Clearly, by helping analysts better understand which covariates warrant adjustment in statistical 

models examining the direction and strength of potential causal relationships amongst measured 

variables in observational datasets, DAGs can not only transform their own analytical practices but 

can also enhance their ability to critique and learn from the theories and modelling practices of 

others. These improvements in analytical modelling to support causal inference from observational 

data have helped to transform what passed for accepted/acceptable practice where, until relatively 

recently: there was even little consensus on how to define or identify a true confounder 

(VanderWeele and Shpitser 2013); arbitrary and ostensibly haphazard techniques (including those 

based simply on the covariates for which data were available (Schelchter and Forsythe 1985) were 

commonplace; and even the more reputable parametric techniques were deeply flawed, such as:  

 

(i) selecting covariates for adjustment on the basis that they display strong univariate 

correlations with either the specified exposure and/or the specified outcome; and  

 

(ii) using step-wise techniques to select a group of covariates whose adjustment optimises 

the total amount of variance explained by the model.  

 

Indeed, since covariates acting as confounders, mediators, competing exposures and consequences 

of the outcome can display both strong and weak univariate correlations with specified exposures 
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and outcomes (i); and since adjustment for each type of covariate can both strengthen and weaken 

the total amount of variance explained by the model (ii), neither of these parametric techniques are 

capable of distinguishing which covariates might act as genuine confounders, and which are likely 

to act as mediators, competing exposures or consequences of the outcome. DAGs have addressed 

this impasse by providing a principled schema based on two key tenets of temporal logic, namely 

that: any cause must precede its consequences (hence ‘directed’); and no consequence can influence 

any of its own cause(s) (hence ‘acyclic’). 

 

DAGs greatly improve the ability of analysts to identify potential confounders and include these in 

the ‘covariate adjustment sets’ required to mitigate the effect of confounder bias in observational 

analyses which aim to support causal inference. DAGs have also provided the tools required to 

identify, better understand and explicate hitherto complex and challenging sources of bias in 

observational bias – perhaps the most famous of which is the ‘low birth weight paradox’ (the 

observation that low birth weight babies are more likely to survive if their mothers had smoked 

during pregnancy), which DAGs have revealed to be simply an example of ‘selection collider bias’ 

(Porta et al. 2015). Nonetheless, the utility of DAGs to improve the design of observational analyses 

for causal inference ultimately depends upon the analyst’s contextual understanding and the 

availability of measured covariates, and this will often require careful thought to correctly identify 

which of these covariates occur before the specified exposure (and can therefore be considered 

potential confounders as probabilistic causes of both the exposure and the outcome). These 

considerations aside, drawing a DAG appears deceptively simple and seems to require limited 

technical expertise. As such, might not DAG specification and its tangible benefits be accessible to 

even inexperienced and novice analysts?  

 

This then was the rationale behind including DAGs in the statistical training provided to 

undergraduate medical students at the University of Leeds (Ellison et al. 2014a), which since 2012 

has involved lectures explaining the theory behind DAGs and the rationale for using these in the 

analysis of observational data to support causal inference. It has subsequently included directed 

learning exercises to provide practical instruction in the DAG specification using a range of different 

techniques (including: graphical, cross-tabulation and relational; Ellison et al. 2014b) to critically 

appraise the covariate adjustment set used in a previous flawed analysis published by the author and 

former colleagues (Harris et al. 1999). Evaluations of this approach, and the different techniques 

involved, confirmed that the vast majority of students found the concept of DAGs intuitive, and 

soon learned to correctly identify potential confounders, likely mediators and competing exposures 

(and which of these to include, and exclude, in the covariate adjustment sets required to minimise 

the impact of bias from available/measured confounders; Ellison et al. 2014a). However, many 

students also found the use of a published example (on a topic about which they knew little) limited 

their contextual understanding; while others found the traditional (graphical) DAG specification 

technique challenging and time-consuming (particularly when large number of covariates were 

involved, and the DAGs concerned became cluttered with nodes and arcs). Efforts to simplify DAG 

specification using cross-tabulation and relational approaches to systematically examine every 

possible relationship between each pair of covariates appeared to have little impact on the difficulty 

and time involved; and rather than enabling students to focus on temporality as the basis on which 

to objectively and systematically assign likely (probabilistic) causal relationships between one 

covariate and another, many students fell back on their prior knowledge, experience, training and 

beliefs to postulate which of the possible relationships between measured covariates and the 

specified exposure and outcome were likely to be causal.  

 

To address concerns regarding contextual understanding, complexity and the amount of time 

required to complete the directed learning exercise, in subsequent years DAG specification was 
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incorporated into the course’s Project Protocol assignment. This enabled students to choose the 

context, topic and focus of a hypothetical clinical project designed to assess the potential causal 

relationship between a modifiable aspect of health care delivery (the exposure) and compliance with 

an established best practice guideline (the outcome). At the same time, to reduce the directed 

learning exercise’s complexity (and the amount of time required to complete this), students were 

directed to select just eight “potentially important variables… that are likely to cause the[ir selected] 

outcome” for subsequent consideration as potential confounders, likely mediators and competing 

exposures – far fewer than the 28 covariates included in the previous cross-tabulation and relational 

approaches used. Finally, an additional task was introduced into the directed learning exercise to 

ensure that students drew on temporality-related considerations to classify covariates as potential 

confounders, likely mediators or competing exposures before they attempting to specify their DAG 

in graphical form. The aim of the present study is therefore to evaluate the impact of these changes 

on: student engagement and task completion; the (mis)classification of covariates; the 

(mis)specification of DAGs; and the likely utility of each task for improving the design of 

observational analyses to support causal inference.  

 
Methods 
 
The Research, Evaluation and Special Studies Strand at Leeds Medical School 
 

Leeds Medical School introduced its novel Research, Evaluation and Special Studies (RESS) strand 

in 2010 in response to the 2009 update of Tomorrow’s Doctors by the UK’s General Medical 

Council (GMC 2009), which included a focus on “The Doctor as a scholar and a scientist” as the 

first of three overarching outcomes. The School’s response involved a radical refresh of the 

undergraduate curriculum (Roberts 2011), including a focus on involving undergraduate medical 

students in research (Murdoch-Eaton et al. 2010). RESS sought to deliver this vision through a spiral 

strand spanning years 1 through 5 involving successive modules in years 1, 2 and 3, and culminating 

in an 18-month Extended Student-selected Research & Evaluation Project (ESREP) in years 4 and 

5. Core research-relevant principles, practices and responsibilities are introduced in the first year 

RESS1 module (including hands-on research project experience), whilst the second year RESS2 

module focuses on core statistical and analytical skills and their application to open-source 

population health data. These skills are synthesised, consolidated and extended in the third year 

RESS3 module, with a particular focus on sources of bias in applied clinical and health services 

research, and on accessible techniques for addressing these through: randomisation; sample size 

estimation; standardised data collection/extraction; and confounder adjustment using multivariable 

statistical analysis. The last of these is where a directed learning exercise focussing on DAG 

specification was first introduced into the MBChB curriculum in 2012 (Ellison et al., 2014a; 2014b). 

 

In preparation for the Extended Student-selected Research & Evaluation Project (ESREP) in years 

4 and 5, the final assignment for the RESS3 module was designed in the form of a detailed Project 

Protocol. This involves students designing a hypothetical service evaluation project to examine the 

relationship between ostensibly modifiable health service characteristics (such as: the context of 

health care delivery; the equipment and facilities available; and the experience, expertise and 

training of the health care professionals involved) on a specified health service/healthcare outcome. 

This design sought to equip all students with the skills required to evaluate the potential impact of 

changes in health service delivery on subsequent health (and healthcare) outcomes – skills 

considered core to all qualified clinicians (GMC 2009). As a result, this design also provided a level 

of consistency sufficient to permit the evaluation of skills development while allowing students 
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substantial choice in the context, topic and focus of their chosen project; an important consideration 

given the impact of student engagement on high intensity skills acquisition (Miller et al. 2011).  

 
The RESS3 directed learning exercise on DAG specification 
 
The RESS3 module begins with a series of lectures explaining the distinction between clinical audit 

and service evaluation, and between biomedical and methodological research (‘discovery’) and 

applied health service research (‘translation’). These sessions also offer practical guidance on: expert 

and stakeholder involvement; institutional governance; and ethical approval procedures; and seek to 

emphasise and reinforce how these preparatory steps can offer tangible benefits in helping to 

establish: what mistakes to avoid; which questions to prioritise; what support might be required; and 

any necessary constraints to protect researchers and research participants alike. These lectures 

conclude with peer-led training in the use of NICE Evidence Search (a database developed by the 

National Institute for Clinical and Care Excellence to facilitate access to selected authoritative 

evidence on health and social care, including best practice guidelines), delivered with support from 

the NICE Evidence Search Champions Scheme (Rowley et al. 2015; Sbaffi et al. 2015).  

 

The students then focus their attention on developing their Project Protocol for a hypothetical audit-

cum-service evaluation study that aims to support robust causal inference for improving adherence 

to a selected best practice guideline. The design of this assignment aims to balance the consistency 

required for the assessment of learning, with opportunities for students to choose, innovate, succeed 

and excel. To this end, the RESS3 Project Protocol assignment requires students to specify, as their 

project’s ‘specified outcome’, a clinical practice guideline in any specialty or context of interest to 

them. Likewise, for their ‘specified exposure’, students can then choose any aspect of health service 

organisation/delivery that might feasibly affect adherence to their selected practice guideline.  

 

Over the weeks that follow subsequent lectures, large-group lectorials and small-group tutorials 

support the students to develop each of the five key skills required to design a detailed Project 

Protocol that is capable of generating the evidence required to support robust causal inference 

regarding the nature, direction and strength of any relationship between their specified exposure and 

specified outcome. These skills involve: selecting which additional variables (i.e. covariates) are 

likely to be (un)necessary to measure, collect or extract; developing standardised data measurement 

and/or extraction procedures to strengthen precision and internal validity; designing coherent 

inclusion and exclusion criteria to optimize both internal and external validity; conducting sample 

size estimation to generate a suitably powered sampling strategy; and selecting an appropriate 

covariate adjustment set to minimise bias from available/measured confounders and thereby inform 

the design of suitable multivariable statistical models to support causal inference and interpretation. 

 

The directed learning exercise developed to support the acquisition of the last of these skills draws 

together four successive tasks which are summarised on a two-side worksheet that students work 

through during the lectorial following their introductory lecture on causal inference and DAGs; and 

subsequently discuss in supervised small-group tutorials later that same day. These four tasks 

comprise:  

 

Task 1 – Exposure and Outcome Specification: In this task, students first choose an 

appropriate exposure variable which “aims to measure/record the variation in clinical 

practiced experienced by” service users receiving care within the clinical context(s) chosen 

by the student. Students then choose a suitable outcome variable which describes “whether 

each patient in your proposed study has received care that complied with the NICE 

guidance/standard” as chosen by the student. 
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Task 2 – Covariate Selection: This task involves the selection of what are described as 

“potentially important variables – excluding the ‘exposure’ – that are likely to cause the 

‘outcome’”, for which students are reminded that “such causes must precede the variable 

they cause – in this instance they must precede the ‘outcome’ and cannot be a subsequent 

‘consequence of the outcome’” 

 

Task 3 – Temporality-driven Covariate Classification: Students are once more reminded 

that “‘causes’ must temporally precede the variable they cause” before they are directed to 

identify: which of the covariates selected during task 2 are confounders (since they were 

“ALSO likely to cause the ‘exposure’”); which are mediators (because they were “ALSO 

likely to BE CAUSED BY the ‘exposure’”); and which must be competing exposures (on 

the basis that they are neither causes of, nor are they caused by, the specified exposure).  

 

Task 4 – DAG Specification: Finally, in the last of the four tasks the students are simply 

directed to “sketch a Directed Acyclic Graph that includes your… ‘exposure’, ‘outcome’ 

and each of the…” selected covariates as identified and classified during task 2 and 3 

(above), respectively. 

 
Engagement, completion, covariate (mis)classification and DAG (mis)specification 
 

To evaluate the directed learning exercise and each of its subsidiary tasks, lectorial worksheets were 

anonymised, photocopied and the original returned to the students concerned. The anonymised 

worksheets were then used to assess the proportion of students who had successfully completed each 

of the four tasks (as outlined above) as a primary indicator of student engagement. The medical 

(sub)specialities pertinent to the clinical contexts, topics and foci chosen by each student were then 

classified and enumerated to provide an assessment of the extent to which students had been able to 

exercise choice when selecting these. Similar summaries of the guideline-related outcomes, 

‘modifiable’ health service exposures and speculative causes of each student-selected outcomes (i.e. 

the covariates selected in the second task) offered an assessment of the extent to which students 

explored different healthcare pathways and the factors that might influence these. Subsequent, in-

depth assessment of the temporality-driven covariate classifications completed during the third task 

(and those reflected by the DAGs specified in the fourth task) permitted the estimation of covariate 

misclassification rates in each of these tasks, disaggregated by the type of covariate concerned (i.e. 

by confounder, mediator and competing exposure). Finally, each of the specified DAGs were 

subjected to detailed examination to calculate the average number of variables (nodes) and causal 

paths (arcs) these contained, and to enumerate the frequency of unorthodox features and technical 

errors (such as the use of ‘super-nodes’, the unwarranted omission of arcs, the use of undirected or 

bidirectional arcs, and the presence of cyclical paths). Together, these analyses aimed to evaluate 

the potential utility of the directed learning exercise for strengthening the analytical knowledge, 

skills and competencies of undergraduate medical students in the development of statistical models 

to support causal inference from observational data (such as routinely collected health service data 

on which many of their exposures, outcomes and covariates were likely to rely).  

 
Results and discussion 
 
Completion of the four successive tasks in the directed learning exercise 
 

A total of 85 anonymised worksheets were available for analysis in the present study. Most of the 

students involved (58; 68.2%) had successfully completed all four of the tasks in the directed 
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learning exercise, although completion rates declined with each successive task from: close to 100% 

for the first and second task (exposure and outcome specification, and covariate selection, 

respectively); to 83.5% (71/85) for the third task (temporality-driven covariate classification); and 

77.6% (66/85) for the fourth and final task (DAG specification). Thus, all but one of the students 

(98.8%) identified both: a suitable outcome (relevant to an established clinical guideline; 

with/without an associated health service target); and an appropriate exposure (comprising a discrete 

component or characteristic of clinical care that temporally preceded, and was a plausibly modifiable 

cause of, their specified outcome). Indeed, the single student who failed to complete this task simply 

appeared to have mis-labelled their outcome and exposure, since their subsequent DAG correctly 

positioned these variables in their most likely temporal sequence (i.e. the listed exposure had become 

the outcome and vice versa). 

 

All 85 of the students also went on to generate a list of “potentially important variables… that are 

likely to cause the[ir specified] outcome”; the median number of such covariates being 8 with a 

range of 5 to 14. However, only 71 of the students (83.5%) disaggregated these lists of covariates 

into those they considered potential confounders (median number: 3; range: 1-8), likely mediators 

(median number: 2; range: 0-6) and/or competing exposures (median number: 2; range: 0-6); and an 

even smaller proportion of students (68; 80.0%) completed a sketch of their DAG based on their 

specified exposure and outcome, and on the list covariates they felt likely to cause their selected 

outcome.  

 

These findings suggest that, while most of the students were able to complete all four tasks, a 

growing proportion found the last two tasks (temporality-driven covariate classification, and DAG 

specification) more challenging and difficult to complete within the time available. Indeed, since a 

small proportion of the students who completed the fourth task (DAG specification: 8/66; 12.1%) 

did so without completing the third task (temporality-driven covariate classification), it seems likely 

that the latter was experienced as the most difficult, time-consuming and, perhaps, least important 

for completing the final (DAG specification) task. This last possibility is worth exploring further if, 

as seems plausible, the conceptual challenge involved when classifying covariates on the basis of 

their temporal relationship with the specified exposure (while ignoring any potentially erroneous 

prior knowledge or belief regarding their causal/functional relationships therewith), meant it was 

possible to complete the third task but not always the fourth as well; while, in contrast, the fourth 

task could be completed without completing the third. Further insight into this possibility is explored 

later in the analyses that follow (see below). 

 
Student-selected clinical contexts, outcomes, exposures and covariates 
 

The practice guideline-related outcomes chosen by students during the first task (exposure and 

outcome specification) in the present study spanned a wide range of clinical specialties; and the only 

notable omissions were public health, oncology, radiology, intensive care, pathology, anaesthesia 

and surgery (see Table 1). The guidelines themselves likewise covered every stage of the healthcare 

pathway, the commonest being: assessment and diagnosis (17); referral, monitoring and follow-up 

(20); and the provision of advice, medication, therapy and/or care (30). Somewhat unsurprisingly, 

given these outcomes were derived from practice guidelines that commonly serve as performance 

criteria, most (58; 68.2%) had associated delivery/waiting time targets.  

 

Meanwhile, the preceding health service characteristics considered amenable to ‘modification’ (and 

possible subsequent intervention) included: the location of health care delivery; the staff involved 

in delivering this care; and the expertise and equipment required/available. Of these, the most 

common involved consideration of which professions were available to/involved in the delivery of 
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Table 1. Clinical specialties, ‘modifiable’ health service exposures, and guideline-related outcomes selected by 85 third year MBChB students receiving instruction in the use of 

DAGs to inform analytical modelling for causal inference. Students were also invited to speculate what additional covariates might act as likely causes of their selected outcome 

(in addition to their specified exposure), and these have been classified under four headings: patient/practitioner characteristics; healthcare facilities; and catchment. 

 

Clinical (sub)specialties (n) ‘Modifiable’ health service 

exposures (n) 

Guideline-related outcomes 

(n; †time targets) 

Speculative causes of student-

selected outcome (n/71; %) 

 

Community sexual/reproductive health (1) 

Emergency medicine (10) 

General practice (17) 

Medicine  

- Cardiology (2) 

- Clinical genetics (3) 

- Endocrinology and diabetes (7) 

- General internal medicine (3) 

- Genitourinary medicine (1) 

- Geriatric medicine (4) 

- Infectious disease medicine (6) 

- Respiratory medicine (3) 

- Stroke medicine (8) 

Obstetrics and gynaecology (8) 

Paediatrics (6) 

Psychiatry 

- Forensic psychiatry (2) 

- General psychiatry (3) 

- Liaison psychiatry (1) 

 

Appointment availability (5) 

Clinical practice (2) 

Consultation context (5) 

Equipment/facilities availability (8) 

HCP expertise/experience (5) 

HCP profession (16) 

HCP training (7) 

History taking (7) 

Service availability (1) 

Specialist clinic (4) 

Specialist expertise availability (5) 

Staffing levels (12) 

Staffing levels - expertise (6) 

Tailored resources (2) 

 

Admission (2)† 

Advice alone (4) 

Advice and information (2) 

Advice and Medication (5) 

Advice and Referral (1)† 

Assessment (14)† 

Care (4)† 

Clinical outcome (1) 

Diagnosis (3)† 

Discharge (2) 

Medication (10)† 

Monitoring and follow-up (11)† 

Provision of equipment (6) 

Referral (4)† 

Specialist care (7) 

Specialist referral (5)† 

Therapy (4)† 

 

Patient characteristics (65; 95.1%) 

- Demographic 

- Sociocultural 

- Economic 

- Morbidity/severity 

- Behaviour 

- Attitudes/preferences 

- Healthcare uptake 

Practitioner characteristics (44; 62.0%) 

- Profession/specialty 

- Training/knowledge 

- Experience/expertise 

Healthcare facility (64; 90.1%) 

- Primary, secondary 

or community 

- Public/private 

- Clinic capacity/complexity 

- Service accessibility 

- Staffing levels/expertise 

- Opening hours  

- Equipment and facilities 

- Service availability 

Service catchment area (26; 36.6%) 

- Healthcare funding  

- Service integration 

- Patient numbers 

- Deprivation 

- Amenities    
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care (16); the training, experience and expertise of the health care practitioners involved (17); and 

associated staffing levels and staff-to-patient ratios (18). These features also predominate amongst 

the various patient-, practitioner-, facility- and catchment-specific parameters which students 

speculated might act as potential causes of their selected outcomes during the second, covariate 

selection task; although a far greater proportion of students included those covariates specific to 

patients (95.1%) or health care facilities (90.1%) than to either practitioners (62.0%) or health 

service catchments (36.6%; see Table 1). 

 

Clearly, despite the tightly structured design of the directed learning exercise, students were able to 

exert substantial choice when selecting the clinical specialties and contexts in which to situate their 

hypothetical Project Protocols. This is likely to have enhanced their engagement with, and 

completion of, the exercise; and should also have strengthened its impact on the successful 

acquisition of the skills required to design appropriate statistical analyses for causal inference. 

However it is also plausible that students were more likely to choose contexts and pathways about 

which they already had strong causal understanding or beliefs, and that these would have made it 

harder to preference temporality during the subsequent task (covariate classification). This would 

explain the clinical specialties that were not included in the contexts students chose for their Project 

Protocol assignments (see Table 1), a number of which only offer placements to medical 

undergraduates at Leeds Medical School in year 4 or 5 of the MBChB course (Murdoch-Eaton and 

Roberts, 2009). 

 
Covariate misclassification prior to DAG specification 
 

Amongst the 71 students who completed the temporality-driven covariate classification task: all (71; 

100%) classified at least one covariate as a confounder; fewer (64; 90.1%) classified one or more 

covariate as a mediator; and fewer still (57; 80.2) classified any covariates as competing exposures. 

While this is likely to reflect the primary objective of the directed learning exercise – which focused 

on the identification of potential confounders and likely mediators for obligatory inclusion in 

(confounders) and exclusion from (mediators) covariate adjustment sets – it is also possible that 

students felt prompted, or indeed obliged, to specify at least some covariates as mediators and 

competing exposures, even though these are essentially secondary considerations when compiling 

appropriate covariate adjustment sets containing (only) confounders. 

 

Indeed, through careful assessment of the covariates classified as confounders, mediators and 

competing exposures it was possible to identify a substantial proportion that had been misclassified 

(see Table 2). These included 2 covariates that were assessed as equivalent/identical to the specified 

exposure (one of which had been misclassified as a likely mediator; the other as a competing 

exposure); and 3 covariates that were assessed as being consequences of the specified outcome (all 

3 of which had been misclassified as likely mediators). These errors aside, misclassification rates 

were lowest (at 4.8%) amongst the 252 covariates classified as potential confounders, although these 

misclassifications involved a larger proportion of the 71 students who completed this task (at 

15.5%). Misclassification was substantially higher amongst the 123 covariates classified as 

mediators (at 56.9%) and amongst the 137 classified as competing exposures (at 67.9%); and once 

again these proportions were higher still amongst the tasks completed by the 64 and 57 students who 

classified one or more of their selected covariates as likely mediators (70.3%) and competing 

exposures (78.9%), respectively.  

 

As a result of these errors, only 9 (12.7%) of the students were assessed as having correctly classified 

all of their selected covariates as confounders, mediators and/or competing exposures; although 8 

of these students achieved this after classifying their selected covariates either as confounders and 
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Table 2. A comparison of student-reported and assessor-validated covariate classifications. 

  
 Student-reported covariate classification: 

 

Assessor- 

validated 

covariate 

classification: 

Confounder  

(n=71/252) 
Mediator  

(n=64/123) 
Competing exposure 

(n=57/137) 

per student 

n (%) 

per covariate 

n (%) 

per student 

n (%) 

per covariate 

n (%) 

per student 

n (%) 

per covariate 

n (%) 

Exposure 0 (0%) 0 (0%) 1 (1.6%) 1 (0.8%) 1 (1.8%) 1 (0.7%) 
Outcome 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

Confounder 60 (84.5%) 241 (95.6%) 40 (62.5%) 55 (44.7%) 37 (64.9%) 75 (54.7%) 

Mediator 11 (15.5%) 11 (4.4%) 19 (29.7%) 53 (43.1%) 15 (26.3%) 17 (12.4%) 
Competing  

Exposure 

0 (0%) 0 (0%) 10 (15.6%) 11 (8.9%) 12 (21.1%) 

 

44 (32.1%) 

Consequence of the 

outcome 

0 (0%) 0 (0%) 3 (4.7%) 3 (2.4%) 0 (0%) 0 (0%) 

 

mediators, or as confounders and competing exposures. This left just one student who had correctly 

classified one or more of their selected covariates as confounder, mediator and competing exposure. 

These findings suggest that while most of the students (71/85; 83.5%) successfully completed the 

third of the four tasks in the directed learning exercise, very few (9/71; 12.7%) were assessed to 

have done so correctly; and the vast majority of those that achieved this (8/9; 88/9%) did so without 

including (and therefore needing to successfully classify) any covariates as likely mediators and/or 

competing exposures. Clearly, the very modest level of success achieved in covariate classification 

during the temporality-driven covariate classification task (i.e. the third of the directed learning 

exercise tasks) suggests that the instructions and embedded prompts to privilege temporality over 

prior causal knowledge/belief were either ineffectual or very difficult for students to apply. Indeed, 

as mentioned earlier, this may have proved particularly challenging against the backdrop of their 

existing knowledge, training, beliefs and/or interests in the healthcare contexts and pathways that 

they themselves had chosen as the basis for their hypothetical Project Protocol assignments. 

 

Covariate misclassification during DAG specification 
 

Similar types of errors in the misclassification of covariates as potential confounders, likely 

mediators and competing exposures were also evident in the DAGs dawn by the 66 (77.6%) students 

who went on to complete the final task of the directed learning exercise. However, it is clear that a 

substantial proportion of the 58 (68.2%) students who completed both this and the preceding task 

(temporality-driven covariate classification) altered the classification of their selected covariates 

when they came to specify their DAGs. Indeed, half (29; 50.0%) of these DAGs contained the same 

number of covariates classified as potential confounders as those classified as such in the preceding 

task; while 19 (32.8%) contained more and 10 (17.2%) contained fewer. The equivalent proportions 

for mediators were: 34 (58.6%) the same; 10 (17.2%) more; and 14 (24.1%) fewer; while for 

competing exposures: 36 (62.1%) DAGs contained the same number as those specified in the third 

task; 15 (25.9%) more; and 7 (12.1%) fewer.  

 

While, the total number of covariates classified as likely mediators in the third task (100) was 

essentially the same as the number included in these 58 DAGs (99); the total number of potential 

confounders and competing exposures included in the DAGs were around 10% higher than those 

classified as such in the third task (confounders: 235 vs. 213; competing exposures: 123 vs. 112). 

These findings indicate that students altered not only the classification of their selected covariates 

between the third and fourth task of the directed learning exercise, but also the total number of 

covariates involved. As such, it is clear that DAG specification did not simply involve the placement 
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of covariates within the DAG in line with the classifications made in the preceding task, but that 

drawing a DAG had prompted students to reconsider both the covariates they had chosen (in the 

second task of the exercise: covariate selection) and how these covariates had been classified (in the 

third task of the exercise: temporality-driven covariate classification). It also seems clear that DAG 

specification had led the students to re-evaluate the role(s) that (other) potential covariates might 

play in relation to any potential causal relationship between the exposure and outcome they had 

chosen in the very first task (exposure and outcome specification). Clearly DAG specification, in 

and of itself, proved to be a task that invoked and involved considerations other than temporality 

when students decided which covariates were relevant for consideration/inclusion, and what role(s) 

each of these might play within their DAG.  

 

Further evidence to this effect is available from an assessment of the small number of DAGs (8/66; 

12.1%) drawn by students who had completed this task without classifying their covariates in the 

preceding task (temporality-driven covariate classification). This revealed a far smaller proportion 

of misclassified covariates (just 3/56 or 5.4%), comprising just one covariate in each of the 3/8 

(37.5%) DAGs concerned. All three of these covariates had been misclassified as competing 

exposures, one of which was assessed as being a likely mediator, and the other two as potential 

confounders. Unfortunately, a subsample of just 8 DAGs offers scant evidence on which to draw 

firm conclusions, not least because 3 of these DAGs (all of which were assessed as having no 

misclassified covariates) had only included covariates classified as potential confounders and either 

likely mediators (2) or competing exposures (1); and here, as before, it is likely that misclassification 

rates were lower simply because there were fewer opportunities for error. Nonetheless, the lower 

proportion of misclassified covariates in this small sample of DAGs is consistent with the view that 

the thoughts and actions required when specifying a DAG might help to reduce the misclassification 

of covariates.  

 

Additional support for this proposition can be found in the lower proportion of misclassified 

covariates amongst the remaining 58 DAGs, each of which had been specified by students who had 

previously completed the preceding task (temporality-driven covariate classification). Indeed, 

notwithstanding the inclusion of additional and alternative covariates in these DAGs, the proportion 

of DAGs with one or more misclassified covariate (37; 63.8%) was substantially lower than that 

observed from the classification of covariates in the third task of the directed learning exercise 

(87.3% see Table 2, above), although neither approached the low levels of covariate 

misclassification achieved by the 8 students who specified their DAGs without completing the third 

task beforehand.  

 

Further research is therefore warranted to confirm (rather than infer) the reasons and reasoning 

involved in DAG specification and in the use of DAG specification vs. temporality in covariate 

classification. Such research will be necessary to establish:  

 

(i) the extent to which it is possible to base covariate classification decisions solely on 

careful and nuanced consideration of the temporal sequence of known covariates that 

have been conceptualised as characteristics of entities, phenomena and processes, but 

have been operationalised as either time invariant or time variant measurements; and 

 

(ii) whether social conditioning, experiential knowledge and training create such strong 

cognitive and heuristic prejudices that it can prove impossible to consistently 

preference temporality over prior causal understanding or belief (Wilson 1983).  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.02.20166900doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.02.20166900
http://creativecommons.org/licenses/by-nc-nd/4.0/


Such research might generate important insights simply by conducting in-depth interviews with 

established analysts who have used temporality-driven covariate classification and/or DAG 

specification to inform the design of appropriate statistical models that can support causal inference 

from observational analyses. Experimental psychological techniques might also assist in elucidating 

the substantial challenges that conceptualisation, operationalisation and cognitive heuristics pose in 

achieving the phenomenological and critical realist perspectives and insights that are likely to be 

required to accurately and consistently interpret covariates (and their measurements) as markers of 

temporally anchored and relational ‘events’ which can then be used to inform the design of statistical 

analyses capable of informing causal inference.  

 

DAG specification errors and their likely consequences 
 

Meanwhile, across all of the DAGs specified by the 66 (77.6%) students who completed this final 

task, the median total number of nodes included was 10 and ranged from 4 to 14 (these numbers 

comprising all included covariates, as well as the specified exposure and specified outcome). All of 

these DAGs included at least one covariate assessed as representing a potential confounder, and the 

median number of such nodes was 4 (range: 1-10). In contrast, 17 (25.8%) DAGs contained no likely 

mediators, and the median number of mediators was just 1 (range: 0-6). Likewise, 9 (13.6%) DAGs 

contained no competing exposures, and the median number of competing exposures was 2 (range: 

0-5).  

 

Interestingly, one student also included two nodes in their DAG that were assessed as being 

consequences of the outcome, though none of the three students who had previously selected (and 

misclassified) such covariates during the second and third tasks (see Table 2, above) then went on 

to represent these as such in their DAGs (i.e. with arcs leading to them from the outcome, with or 

without additional arcs from the specified exposure and all of the other included covariates). 

Elsewhere, 16 (24.2%) DAGs used composite ‘super-nodes’ (i.e. a single node with which two or 

more covariates were associated; Tennant et al. 2020), and in these 16 DAGs the median number of 

arcs drawn was just 6 (range: 3-9), while for the remaining 50 (75.8%) DAGs – all of which had 

separate nodes for each of the selected covariates – the median number of arcs was 12 (4-22). Neither 

approach to DAG specification (using super-nodes or separate nodes) generated DAGs that were 

assessed as being ‘forward saturated’ (i.e. included all possible arcs between temporally separated 

nodes); and all but one had missing arcs between covariates specified as potential confounders and 

those specified as likely mediators. There were also a substantial number of DAGs missing arcs: 

between confounders and the specified outcome (32; 48.5%); from the specified exposure to any 

mediators (21; 31.8%); and from any mediators to the specified outcome (23; 34.8%). Indeed, there 

were even 9 (13.6%) DAGs in which the arc between the specified exposure and the specified 

outcome was missing.  

 

While a strict interpretation of these missing arcs would have made it challenging to assess which 

of the DAGs had correctly classified covariates as potential confounders, likely mediators or 

competing exposures, this was achieved by interpreting: covariates with arcs leading into the 

exposure as confounders; those with arcs leading out of the exposure as mediators; and those with 

only a single arc leading into the outcome as competing exposures – an approach that was validated 

by reference to the classificatory labels which 27 (40.9%) students had included next to individual 

covariates or clusters of covariates in their DAGs. Thus, despite the fact that almost all of the DAGs 

contained missing arcs (a serious issue given the strong assumption ‘absent arcs’ imply), only a 

handful of DAGs contained errors suggesting a fundamental lack of understanding: only one 

contained a cyclical causal path; only one had used ‘directionless arcs’ (i.e. arcs that lacked arrows); 

and only one had arcs that ended in the middle of another arc (in this instance the arc between the 
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specified exposure and outcome) rather than ending at one of the nodes at either end of that arc. Yet 

together with the large number missing arcs and the associated failure to apply or achieve ‘forward 

saturation’, all of the specified DAGs contained at least one technical error, and none of the students 

succeeded in applying the DAG specification instructions correctly.  

 

Since the principal utility of specifying DAGs in full (i.e. with every temporally plausible arc 

included) is to facilitate the identification of covariate adjustment sets for relationships between any 

specified exposure and outcome, the DAGs drawn by students in the present study would have added 

little value to the classification of covariates undertaken in the preceding task (temporality-driven 

covariate classification) had this task not incurred extensive misclassification. However, all but a 

handful (6; 9%) of the specified DAGs provided a sufficiently clear indication of which covariates 

were considered potential confounders, likely mediators and competing exposures to support the 

identification of a covariate adjustment set for mitigating the effect of measured confounding when 

estimating any causal effect between their specified exposure and specified outcome. That said, as 

was evident from the assessment of the results of the previous task (temporality-driven covariate 

classification; see Table 2, above), clearly indicating which covariates are considered confounders, 

mediators or competing exposures offers little benefit to subsequent analytical modelling if these 

have been incorrectly classified; and although the fourth task (DAG specification) involved lower 

rates of covariate misclassification to that achieved during the preceding task (temporality-driven 

covariate classification), misclassification rates were still high enough (at 63.8%) to introduce 

substantial avoidable bias in any subsequent analyses aiming to estimate the causal relationship 

between the specified exposure and specified outcome if these had relied upon covariate adjustment 

sets derived using the covariates as classified in these DAGs.  

 
Conclusion 
 

The present study extends our understanding of the ease with which directed learning in causal 

inference techniques might be integrated within undergraduate courses that aim to equip students 

with practical analytical and statistical skills. Using an exercise designed to provide directed learning 

in each of the four successive tasks involved in temporality-driven covariate classification and DAG 

specification, as well as substantial scope for student choice regarding the contexts and topics in 

which these tasks were applied, the present study demonstrated that high levels of student 

engagement and task completion can be achieved. However, completion rates declined with each 

successive task, and a large number of errors were made in the last two tasks (temporality-driven 

covariate classification; and DAG specification) which would have substantively undermined their 

analytical utility. Taken together, these findings suggest that some students struggled to complete 

the exercise in the time available, and that those who completed all four tasks may have only been 

able to do so at the expense of the diligence required to follow instructions, consolidate their learning 

and attain a degree of proficiency.  

 

Nonetheless, the additional and alternative covariates selected, together with the improvements in 

covariate classification, that occurred as a result of completing the final task (DAG specification) 

confirms the important contribution that drawing causal path diagrams can make in elucidating the 

covariate adjustment sets required to mitigate bias from measured confounders in analyses of 

observational data that aim to support causal inference. This was an unexpected finding, not least 

because temporality is arguably the only objective basis upon which probabilistic causal 

relationships can be determined or defined in observational studies. Indeed, temporality-driven 

covariate classification (the third task) had been deliberately introduced into the directed learning 
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exercise to address the subjectivity (and lack of consensus) that can arise from reliance on prior 

knowledge, experience or beliefs regarding causal and functional relationships (Ellison et al. 2014b).  

 

Of course it is possible that the apparent improvements in covariate classification observed following 

DAG specification in the present study simply reflected the tougher conceptual challenge involved 

in the application of temporality during the preceding task (temporality-driven covariate 

classification), particularly since the undergraduates involved had limited expertise in the 

conceptualisation and operationalisation of quantitative variables and the impact thereof on the 

opacity of temporal relationships amongst and between these. Indeed, these are also exacting 

challenges for competent analysts with advanced training and substantial experience (Tennant et al. 

2020); and there are well-established (if contentious and contested) concerns that drawing DAGs 

might actually obfuscate rather than elucidate the critical insights and associated thinking required 

to design analytical models capable of supporting causal inference with observational data (e.g. 

Krieger and Davey Smith 2016). Clearly, further research is warranted to strengthen our 

understanding of whether, and how, training in DAG specification (and related techniques) might 

actually improve the selection of appropriate covariate adjustment sets for use in the analysis of 

observational data to support causal inference. 
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