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2 

 

Abstract 35 

 36 

Bioactive metabolites are central to numerous pathways and disease pathophysiology, yet 37 

many bioactive metabolites are still uncharacterized. Here, we quantified bioactive 38 

metabolites using untargeted LC-MS plasma metabolomics in two large cohorts (combined 39 

N≈9,300) and utilized genome-wide association analysis and Mendelian randomization to 40 

uncover genetic loci with roles in bioactive metabolism and prioritize metabolite features for 41 

more in-depth characterization. We identified 118 loci associated with levels of 2,319 distinct 42 

metabolite features which replicated across cohorts and reached study-wide significance in 43 

meta-analysis. Of these loci, 39 were previously not known to be associated with blood 44 

metabolites. Loci harboring SLCO1B1 and UGT1A were highly pleiotropic, accounting for 45 

>40% of all associations. Two-sample Mendelian randomization found 46 causal effects of 46 

31 metabolite features on at least one of five common diseases. Of these, 15, including 47 

leukotriene D4, had protective effects on both coronary heart disease and primary sclerosing 48 

cholangitis. We further assessed the association between baseline metabolite features and 49 

incident coronary heart disease using 16 years of follow-up health records. This study 50 

characterizes the genetic landscape of bioactive metabolite features and their putative causal 51 

effects on disease. 52 

  53 
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Introduction 54 

 55 

The circulating metabolome reflects the compendium of metabolic compounds which operate 56 

as inputs, intermediaries and/or outputs for the molecular pathways in blood which sustain or 57 

detract from an individual's health1. While many important metabolites have been identified 58 

and their role(s) in human diseases characterized, there are thousands, potentially millions, of 59 

as yet unidentified metabolites which may be causal or predictive of future health status. 60 

Since metabolite identification, the defining of molecular composition and structure, typically 61 

requires multiple costly technologies run on valuable biospecimens, there is a need for 62 

principled and efficient prioritization of metabolites for targeted, resource-intensive follow-63 

up.  64 

 65 

Genome-wide association studies (GWAS) have uncovered hundreds of genetic variants 66 

associated with levels of circulating metabolites2-10, the vast majority of which are chemically 67 

identified. The genes implicated by metabolite-associated genetic variants also show 68 

evidence of a functional link between metabolite levels and complex diseases4. For instance, 69 

the associations between fibrinogen A-α phosphorylation (FAαP) and three genetic loci 70 

(ABO, ALPL and FUT2) support the role of FAαP as a biomarker for acute myocardial 71 

infarction, as ABO and ALPL are also associated with coronary artery disease4. Furthermore, 72 

Mendelian randomization (MR)11 techniques have identified metabolites with evidence of 73 

causal effects on disease risk7. 74 

 75 

Recent advances in untargeted metabolomic profiling, especially liquid chromatography 76 

mass-spectrometry (LC-MS), have opened the possibility of detecting and quantifying tens of 77 

thousands of discrete chemical features from human blood samples12. Our group has 78 

pioneered chemical profiling of human plasma using an LC-MS/MS approach specifically 79 

developed for profiling of small, polar lipophilic bioactive metabolites in human plasma13. 80 

These approaches enable detection and relative quantitation of bile acids, sterols, free fatty 81 

acids, polyunsaturated fatty acids and oxylipins (e.g. eicosanoids, docosanoids, resolvins, 82 

etc), as well as thousands of related metabolites13,14. These metabolites are sensed through 83 

cell surface and nuclear hormone receptors and serve as critical signaling agents among 84 

cellular pathways and systems, mediating a wide variety of processes including host 85 

inflammatory response15-17, cellular development18,19, and nutrient absorption20,21. A number 86 

of these metabolites have been implicated in the pathobiology of human diseases, including 87 

autoimmune disease, cancer, metabolic disease / diabetes, and cardiovascular disease22-24. 88 

Given their placement in key biological pathways, monitoring of bioactive lipids yields 89 

unique insight into the current and future health of monitored individuals and, with likely 90 

many yet undiscovered functions of these compounds, will allow for expansion of known 91 

biology and discovery of new therapeutic strategies.  92 

 93 

While only a minority of bioactive metabolites are chemically identified, their prioritization 94 

via biological and clinical utility is under intense investigation. The integration of GWAS, 95 

MR and untargeted metabolomics allows for an unbiased, wide-angle approach to prioritize 96 

identified and unidentified metabolites, metabolite fragments and metabolic compounds (here 97 

termed ‘metabolite features’) for chemical characterization. In the context of common 98 

diseases, such an approach may highlight predictive biomarkers and causal metabolic factors 99 

which have therapeutic potential.  100 

 101 

In this study, we used untargeted high-throughput LC-MS metabolomics to quantify ~11,000 102 

metabolite features in blood plasma samples of nearly 10,000 individuals with matched 103 
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genome-wide genotype data. We conducted a discovery GWAS, replication and meta-104 

analysis, then evaluated an extensive set of genetic loci with known and previously unknown 105 

roles in metabolism. An ensemble two-sample MR approach was used to assess the predicted 106 

causal effects of both identified and unidentified bioactive metabolites on 45 common 107 

diseases. We then evaluated the effect of lifetime exposure of bioactive metabolite levels to 108 

disease-free survival from baseline using ~16 years of electronic health record follow-up. 109 

Taken together, this study presents a series of findings, including genome-wide maps of 110 

bioactive metabolite associations and pleiotropy as well as an unbiased MR-based 111 

prioritization of identified and unidentified metabolites with putative causal effects on 112 

disease. 113 

 114 

 115 

Results 116 

 117 

Genetic variants in 118 loci associate with levels of 2,319 circulating metabolite features  118 

 119 

We first performed a discovery genome-wide association scan on the abundances of 11,067 120 

circulating bioactive metabolite features and 7,979,834 genotyped or imputed genetic 121 

variants from 7,013 individuals in the population-based FINRISK02 cohort (Figure 1A; 122 

Methods). Of these metabolite features, 818 were chemically identified metabolites (414 123 

confirmed or putative eicosanoids11, 100 free fatty acids (FFA), 66 polar compounds, 47 124 

very-long-chain dicarboxylic acids (VLCDCA), 47 fatty acids esters of hydroxy fatty acids 125 

(FAHFA), 35 bile acids, 14 docosanoids, 14 endocannabinoids and 4 sterols). A further 126 

10,249 metabolite features were, as yet, unidentified (Table S1). Stringent quality control 127 

and normalization procedures were applied to both LC-MS and genetic data (Methods). 128 

After the univariate genome-wide scan for each bioactive metabolite feature, a joint model 129 

was fitted to all genome-wide significant genetic variants to identify a final set of 130 

conditionally independent variants reaching significance together with their conditional effect 131 

size estimates (Methods). 132 

 133 

A majority of metabolite features (5,874, 57%) had at least one genetic variant reaching 134 

genome-wide significance (p<5×10-8) and were taken forward for replication in the 135 

Framingham Heart Study (FHS, N=2,886). Of these associations, the vast majority (4,799) 136 

were replicated in FHS at statistical significance (p<0.01; Table S2 & S3). At a stringent 137 

study-wide significance threshold accounting for the number of independent metabolite 138 

features (p<1.45×10-11; Methods), 3,602 SNP-metabolite associations were detected in 139 

FINRISK02, replicated in FHS at p<0.01, and maintained study-wide significance in meta-140 

analysis (Table S2). A set of suggestive associations reaching genome-wide but not study-141 

wide significance is given in Table S3. 142 

 143 

This final set of 3,602 SNP-metabolite associations passing study-wide significance 144 

(p<1.45×10-11) comprised 2,319 metabolite features (161 chemically identified) and 118 145 

genetic loci, of which 39 loci had no previously reported association with blood metabolites 146 

(Figure 1B, Table S4). Of the 118 genetic loci, 75% were associated with multiple 147 

metabolite features, and 31% of metabolite features were associated with multiple genetic 148 

loci (Table S5 & S6). 149 

 150 

Of the 265 associations with chemically identified metabolites, 152 involved eicosanoids 151 

(Table S2). The strongest associations were between levels of dihydrotestosterone (putative 152 

5α-androstan-17β-ol-3-one) and a variant proximal to SLC22A8 and SLC22A24 (rs17713514; 153 
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meta-analysis p<1×10-300). SLC22A24 encodes a solute carrier that has recently been linked 154 

to the transport of steroid conjugates25, and SLC22A8 (encoding OAT3) is a recently 155 

identified metabolite QTL9 that has also been reported in functional experiments to be 156 

associated with a wide range of metabolites, including bile acids, flavonoids, nutrients, amino 157 

acids and lipids26. In addition, levels of dihydrotestosterone were independently associated 158 

with variants mapping to SLC22A9 (rs147394024, meta-analysis p=1.2 ×10-48) and SRD5A2 159 

(rs2208532, meta-analysis p=7.2 ×10-26), which itself encodes 3-oxo-5α-steroid 4-160 

dehydrogenase-2. Furthermore, tetrahydrocortisol levels were associated with variant 161 

(rs9994887, meta-analysis p=1.2×10-28) proximal to UGT2B15, encoding UDP-162 

glucuronosyltransferase 2B15, an enzyme involved in the catabolism of xenobiotic 163 

compounds and the metabolism of androgens27.  164 

 165 

Loci previously reported to be associated with blood metabolites showed diverse associations 166 

with chemically identified and unidentified metabolite features, and were enriched for 167 

pleiotropy as compared to loci without a previous reported metabolite association (p<0.0001, 168 

Wilcoxon rank-sum test) (Figure 1C & 1D, Table S5). Novel loci were associated with 13 169 

identified (including 5 eicosanoids) and 305 unidentified metabolite features (Table S6), 170 

indicating a sizable component of uncharacterized but genetically controlled metabolism. 171 

These findings raised a series of hypotheses.  172 

 173 

Previously unreported loci associated with bioactive metabolites  174 

 175 

Two loci GLYATL2 (11q12.1) and GLYATL3 (6p12.3) encode glycine N-acyltransferases 176 

which showed the strongest associations with 3 chemically unidentified metabolite features 177 

(Figure 1B, Table S6). Importantly, the ABCC3 (17q21.33) locus harbored the greatest 178 

number of associations with 111 chemically unidentified metabolite features, as well as four 179 

identified metabolites (leukotriene D4, putative tauroursodeoxycholic acid, putative 11a-180 

Hydroxyprogesterone b-D-glucuronide, and putative 1,3,5(10)-Estratrien-3,17b-diol 181 

diglucosiduronate). ABCC3 encodes an ATP-binding cassette transporter, multidrug 182 

resistance-associated protein 3 (MRP3), known to interact with metabolites through its role as 183 

a multidrug exporter, in particular via efflux of potentially toxic endogenous and exogenous 184 

compounds from the cell28,29. Leukotriene D4 is an endogenous compound derived 185 

extracellularly from leukotriene C4, whose cellular release is mediated by MRP330,31. 186 

Tauroursodeoxycholic acid is a taurine conjugated compound converted from 187 

ursodeoxycholic acid, a secondary bile acid synthesized in liver. Previous studies have 188 

revealed that MRP3 is involved in the liver regeneration by pumping out excessive bile 189 

acids32,33. In addition, mouse study revealed that MRP3 involved in the transport of 190 

glucuronidated compounds34. 1,3,5(10)-Estratrien-3,17b-diol is a major form of estrogen in 191 

human. It has been reported that 17β-Glucuronosyl estradiol is a substrate of MRP327,35 and 192 

ethynylestradiol (a synthetic estrogen) increases expression of MRP3 in a rat model36. Taken 193 

together, our findings support the diverse roles of MRP3 in influencing the systemic 194 

metabolism and human health.  195 

 196 

Furthermore, UGT2B7 (UDP-Glucuronosyltransferase-2B7, 4q13.2) was associated with 26 197 

metabolite features, including three identified metabolites (bilirubin, palmitoleic acid, and a 198 

putative eicosanoid). These findings consistent with previous studies showing that UDP-199 

glucuronosyltransferase has a diverse set of unrelated endogenous substrates and regulates 200 

metabolism37,38. This locus was reported to be suggestively associated with plasma 201 

metabolites39; however the signal in our study was very strong (meta-analysis p=1.43×10-213).  202 

 203 
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SLCO1B1 and UGT1A loci are highly pleiotropic  204 

 205 

UGT1A (2q37.1) and SLCO1B1 (12p12.1) showed extensive pleiotropy, with the two loci 206 

accounting for a combined 1,495 of the 3,602 total SNP-metabolite associations, and 207 

covering 1,211 of the 2,319 metabolite features (Figure 1D, Table S5 & S6). Interestingly, 208 

only 30 metabolite features (including one eicosanoid) showed associations with both loci. 209 

SLCO1B1 encodes the solute carrier organic anion transporter family member 1B1 210 

(OATP1B1), which is specific to the liver and involved in the transport of various 211 

compounds and drugs, including both statins and antibiotics, from the blood into the liver. 212 

SLCO1B1 has been linked to the circulation of several fatty acids as well as statin-induced 213 

myopathy40, where SLCO1B1 variants (such as rs4149056) have been linked to statin 214 

response and risk of heart failure41. Notably, we found that levels of leukotriene D4, a 215 

vasoconstrictor eicosanoid, were strongly independently associated with two SNPs at the 216 

SLCO1B1 locus (rs4149056, meta-analysis p=5.4×10-193; rs11045856, meta-analysis 217 

p=7.15×10-108; Table S2). Rs4149056 showed diverse associations with other eicosanoids, 218 

palmitoleic acid, and unidentified metabolite features (Table S2). UGT1A, encoding UDP 219 

glucuronosyltransferase 1 family polypeptide A cluster, is a complex locus of several UDP-220 

glucuronosyltransferases involved in glucuronidation and metabolism. This family of UDP-221 

glucuronosyltransferases are assembled via differential splicing of numerous exons42,43. In 222 

previous GWASs, variants in UGT1A have been shown to be associated with multiple 223 

circulating metabolites, including bile pigments3,4,6,10. Our findings were consistent with this 224 

and indicated a systemic metabolite role for UGT1A. 225 

 226 

Cytochrome P450 loci  227 

 228 

Cytochrome P450 (CYP) enzymes are known to have diverse roles in the metabolism of both 229 

endogenous and exogenous compounds, including drugs, eicosanoids, bile acids etc44. In 230 

total, 12 loci encoding seven CYP families were associated with 316 metabolite features in 231 

meta-analysis, collectively accounting for 12% (433/3602) of total SNP-metabolite 232 

associations (Table S5 & S6). Notably, the CYP3A subfamily locus (7q22.1) was associated 233 

with the largest number of metabolite features, including 6 identified and 114 chemically 234 

unidentified. The CYP3A subfamily is expressed in liver and gut and is known to metabolize 235 

>120 commonly prescribed drugs44. In addition, two loci CYP2C19 and CYP2C9 (10q23.33) 236 

encoding the CYP2C enzyme family were together associated with over 113 metabolite 237 

features (including 5 identified metabolites) (Table S6).  238 

 239 

Putative causal effects of metabolite features on disease  240 

 241 

To prioritize metabolite features using their evidence for causal effects on disease, we 242 

utilized two-sample MR together with GWAS summary statistics for 45 common diseases 243 

(Table S7). An ensemble of five different MR methods were used, and directionally-244 

consistent statistical significance from at least three methods was necessary to infer causality 245 

(Methods). Given the frequency of pleiotropic effects, we also used a second step correction 246 

using MR-PRESSO45 to control for horizontal pleiotropic outliers. At least five genetic 247 

instruments were required for a metabolite feature to be considered for causal inference 248 

(Methods, Table S8). Of the 70 metabolite features meeting these criteria, 31 showed 249 

evidence of causal effect on at least one disease (Figure 2, Table S9), and 30 of these were 250 

robust after further correction with MR-PRESSO. The majority of metabolite features with 251 

causal effects were for coronary heart disease (CHD) and primary sclerosing cholangitis 252 

(PSC), with one metabolite feature each affecting risk of schizophrenia, bipolar disorder or 253 
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rheumatoid arthritis. Amongst the 31 metabolite feature levels, there were a wide range of 254 

correlations with most exhibiting weak positive correlations as well as ~5 clusters of features 255 

whose levels were in moderate-high correlation.  256 

 257 

Of the 15 metabolite features with putative causal effects on both PSC and CHD, all were 258 

inverse associations: lifetime exposure to low metabolite feature levels increased risk of CHD 259 

and PSC, with the latter exhibiting a somewhat greater effect size (Figure 2A). Lifetime 260 

exposure to elevated leukotriene D4, a basophil-secreted metabolite known to be involved in 261 

the induction of smooth muscle contraction, vasoconstriction and vascular permeability46, 262 

was predicted to reduce risk of both PSC and CHD (Figure 2B). While evidence of a 263 

pleiotropic effect (MR-Egger intercept=0.07, p=0.02) for PSC was observed, the causal 264 

estimates were consistent across all testing methods. Leukotriene D4 was only weakly 265 

correlated with other unidentified metabolite features (Figure S2), with metabolite IDs 266 

627.3755_2.19225 (m/z ratio 627.3755), 480.2732_1.924, and 612.3843_2.670166 showing 267 

similar or stronger causal effect sizes on risks of CHD and PSC (Figure 2A).  268 

 269 

Association of metabolite features with incident coronary heart disease 270 

 271 

Using the baseline bioactive metabolite features, we next assessed CHD-free survival for 272 

incident CHD via the linked EHR data available in both cohorts (Methods). While PSC is 273 

relatively rare in the population (with only 9 incident cases in FINRISK02), we were 274 

powered to detect baseline metabolite feature associations with CHD (541 and 97 incident 275 

CHD cases in FINRISK02 and FHS, respectively). Time-to-event Cox proportional hazards 276 

models were used in both cohorts and then meta-analyzed (Methods). 277 

 278 

Of the 19 metabolite features with putative causal effects on CHD, six were associated with 279 

incident CHD at FDR-adjusted significance (Table S10, Figure 3), with an additional 280 

metabolite feature associated at nominal significance (p<0.05). For these seven metabolite 281 

features, there was opposing direction of effect for the MR-based lifetime exposure estimate 282 

and time-to-event Cox model estimate, with the former being negative and the latter being 283 

positive (Figure 3). The corresponding hazards ratios from the Cox models of each 284 

metabolite feature in FINRISK02 and FHS were consistently positive in both cohorts (Table 285 

S10).  286 

 287 

 288 

Discussion  289 

 290 

In this study, we investigated the genetic associations of over 10,000 bioactive metabolite 291 

features and their relationships with common diseases. We identified 118 genetic loci 292 

harboring variants robustly associated with the levels of 2,319 metabolite features, 91% of 293 

which were chemically unidentified compounds, suggesting a largely unexplored reservoir of 294 

genetic control of the circulating metabolome. We identified 39 genetic loci previously 295 

unlinked to blood metabolites and highlighted loci with extensive pleiotropy for bioactive 296 

metabolites. We found causal effects for multiple identified and unidentified bioactive 297 

metabolites on diverse common diseases, and investigated the baseline relationship of 298 

putatively causal metabolite features with incident coronary heart disease. 299 

 300 

Our findings were consistent with known metabolic pathways and indicate potentially new 301 

gene functions. First, membrane transporters play important role in homeostasis by regulating 302 

the transcellular movement of solutes between body fluid compartments. The communication 303 
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of small-molecule substrates between cells requires the activity of both SLC (generally 304 

influx) and ABC (efflux) transporters47, of which SLC22A8 and SLCO1B1 are two major 305 

transporters with particular relevance to drug compounds47. Loci encoding SLC22A8 and 306 

SLCO1B1 were associated with diverse metabolite features, indicating broad substrate 307 

specificity. Second, although the role of ABCC3 (MRP3) in metabolism has been 308 

established28,47, to our knowledge genetic associations have not been previously reported. 309 

ABCC3, a hepatocyte efflux pump for bilirubin, was associated with four identified bioactive 310 

metabolites with previously known relationships to MRP3 as well as over 100 unidentified 311 

metabolite features which may be part of these pathways or lead to novel metabolic roles for 312 

MRP3. Third, our findings suggest the UGT1A and SLCO1B1 loci have central roles in 313 

bioactive metabolic pathways, accounting for ~40% of our study-wide significant 314 

associations. Given the splicing complexity of the UGT1A locus and its propensity to encode 315 

a diversity of UDP-glucuronosyltransferases, this may indicate genetic control of exon usage 316 

and downstream enzymatic functions.  317 

 318 

The combination of untargeted metabolomics, GWAS and MR detected a set of 31 319 

metabolite features, most of which as yet are unidentified, which showed causal effects on 320 

disease risk and which now may be prioritized for further investigation. These included 15 321 

bioactive metabolite features with shared causal effects on both CHD and PSC. While there 322 

has been little to link between CHD and PSC in the existing literature. Our findings indicate 323 

that bioactive metabolites, including leukotriene D4, may comprise previously unknown 324 

causal metabolic pathways modulating risk of both diseases. As a chronic autoimmune 325 

disease, PSC is a progressive disease mainly associated with the hepatic system and 326 

inflammation of the bile ducts, consistent with putative causal effects of leukotriene D4, an 327 

inflammatory mediator known to be released by basophils48. We would speculate that other 328 

bioactive metabolites amongst the 15 affecting CHD and PSC risk are also mediators of 329 

inflammation, a broad but recognized causal process underlying both diseases. 330 

 331 

Notably, for bioactive metabolites associated with CHD, we found directional inconsistency 332 

between baseline risk prediction models and risk conferred by lifetime exposure (derived 333 

from MR). This adds to previous evidence for significant but directionally opposed 334 

biomolecular associations with cardiovascular diseases in MR and observational analyses. A 335 

recent proteome analysis found that genetic predisposition to higher plasma MMP-12 levels 336 

was predicted to reduce risk of coronary disease and atherosclerotic stroke, despite 337 

observational studies finding a positive association with cardiovascular disease risk49. A 338 

separate study found levels of PON1, a major anti-atherosclerotic component of high-density 339 

lipoprotein (HDL), to be negatively associated with CHD in observational analyses but with 340 

MR results predicting higher PON1 to increase risk of CHD50. Authors hypothesized that the 341 

CHD condition may be linked to a downregulation of PON1 resulting in lower plasma 342 

proteins.  343 

 344 

These findings appear to be robust yet puzzling. We hypothesize several scenarios which 345 

may explain these data. First, the causal effect estimated using MR is thought to indicate a 346 

lifetime average effect51,52; however, biological pathways are highly dynamic and 347 

biomolecules may have age or time-varying effects. Second, sub-clinical atherosclerosis or 348 

other relevant disease states may rewire biochemical and metabolic pathways such that 349 

disease risk is increased but normal biological functions (as estimated by MR) are 350 

compromised. Third, MR approaches assume linearity for the examined causal effect and for 351 

the genetic effects on the exposure and the outcome53. However, biological risk factors may 352 

have non-linear effects on the outcome, For example, high body mass index (BMI) is a risk 353 
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factor for type 2 diabetes (T2D) in adults; however, high BMI can be protective in infants54 354 

and early childhood famine is associated with higher T2D risk in later life55.  355 

 356 

In conclusion, this study shows the efficiency of coupling untargeted metabolomics, GWAS 357 

and MR to prioritize the bioactive molecular features with causal effects on disease. In doing 358 

so, it highlights loci harboring potentially key enzymes, uncovers new insights into bioactive 359 

molecular pathways, and raises salient questions of observational effects and MR-based 360 

lifetime effects of molecular exposures which may have important therapeutic implications. 361 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2020. ; https://doi.org/10.1101/2020.08.01.20166413doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.01.20166413
http://creativecommons.org/licenses/by/4.0/


10 

 

Materials and Methods 362 

 363 

Study cohorts  364 

 365 

FINRISK is a nation-wide population-based study of Finland periodically recruiting 366 

participants every 5 years since 197256. Participants included in this study were randomly 367 

recruited from six defined geographical areas across Finland in 200257. Blood samples were 368 

taken during their visits. The follow-up data until 2018 were extracted from Finnish national 369 

hospital discharge registries, drug reimbursement registries and causes-of-death registries. In 370 

summary, there were 8,738 individuals, 4,688 (54%) females and 4,050 (46%) males, with 371 

baseline age between 24 to 75 years.  372 

 373 

The Framingham Heart Study (FHS) is a multi-generational population-based study. The data 374 

used in this study was from the FHS offspring exam 8 participants58. This subset of the FHS 375 

cohort included 2,886 individuals, with average age of 66.4 (SD=9.0) years old, average BMI 376 

of 28.3 (SD=5.4) kg/m2, and 54% were female. 377 

 378 

The FINRISK 2002 survey has been approved by the Ethical Committee on Epidemiology 379 

and Public Health of the Helsinki and Uusimaa Hospital District (decision number 87/2001) 380 

and the participants have provided an informed consent. The study is conducted according to 381 

the World Medical Association’s Declaration of Helsinki on ethical principles. The FHS 382 

study data was accessed via dbGaP (approved study 2014.2023).  383 

 384 

Metabolomic profiling with liquid chromatography mass spectrometry 385 

 386 

Plasma samples were randomly assigned to 90 plates and measured by LC-MS (Thermo 387 

Vanquish UPLC coupled to a Thermo Q Exactive Orbitrap mass spectrometer) in a 388 

randomized order. Batch effects and machinery/chemical variance were assessed by 19 spike-389 

in internal standards in each measured sample and three pooled plasma control samples per 390 

96-well plate. In-house R scripts were used to process the data including initial bulk feature 391 

alignment, MS1-MS3 data parsing, pseudo DIA-to-DDA MS2 deconvolution, and CSV-to-392 

MGF file generation. Subsequently, mzMine 2.2159 was employed for feature extraction, 393 

secondary alignment and compound identification.  394 

 395 

Metabolite features were filtered if they met any of the conditions: (1) less than 5 396 

observations per plate, (2) a difference in observation missingness of 50% or greater from the 397 

median plate missingness, (3) a plate standard deviation that differed from the median plate 398 

standard deviation by a factor of 2.5 or greater, (4) a relative median offset of 4 or greater, 399 

and (5) overall missingness >50%.  This filtering resulted in an intensity profile of 11,067 400 

measured metabolite features across 8,291 samples. 401 

 402 

For FINRISK02, a two-step normalization was applied to the intensity data to control for 403 

technical variation. The first step was to remove variation observed in external bracket 404 

pooled plasma with RUV60, a tool implemented in R package MetNorm to remove unwanted 405 

variation of metabolomics data. The second step was to remove variation observed in internal 406 

standards with RUV. There were two components for each RUV process, RUV-random 407 

(function NormalizeRUVRand) and RUV-Kmeans (function NormalizeRUVRandClust). 408 

RUV-random was to remove k technical factors estimated from external pooled plasma or 409 

internal standards, where k was set to the number of principal components explaining >97.5% 410 

of variation. RUV-Kmeans was used to refine the k technical factors to better represent the 411 
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biological variation. Following RUV, the plate median was subtracted from the resulted 412 

matrix to get normalized matrix. Samples which exhibited excessive missing data of >10% 413 

were removed (N=449), and K-nearest neighbors (R package impute)61 was used to impute 414 

missing data into the remaining samples. Post-QC normalized metabolite feature data was 415 

standardized to mean 0 and standard deviation of 1. The final intensity matrix consisted of 416 

11,067 metabolite features and 7,842 samples.  417 

 418 

For FHS, normalization of the metabolite intensity values included a four-step process: (1) 419 

shift to positive values, (2) cap outliers, (3) log transformation, and (4) scale to a normal 420 

distribution. Metabolite features presented in >20% individuals were kept for the analysis. 421 

 422 

Genotyping, imputation and quality control 423 

 424 

For FINRISK02, genotyping was performed on Illumina genome-wide SNP arrays (the 425 

HumanCoreExome BeadChip, the Human610-Quad BeadChip and the HumanOmniExpress) 426 

and has been described previously62,63. Stringent criteria were applied to remove samples and 427 

variants of low quality. Samples with call rate <95%, sex discrepancies, excess 428 

heterozygosity and non-European ancestry were excluded. Variants with call rate <98%, 429 

deviation from Hardy-Weinberg Equilibrium (p<1×10-6), and minor allele count < 3 were 430 

filtered. Data was pre-phased by using Eagle2 v2.364. Imputation was performed using 431 

IMPUTE2 v2.3.065 with two Finnish-population-specific reference panels: 2,690 high-432 

coverage whole-genome sequencing and 5,092 whole-exome sequencing samples. To 433 

evaluate the imputation quality, we compared the sample allele frequencies with reference 434 

populations and examined imputation quality (INFO scores) distributions. Imputed SNPs 435 

with INFO >0.7 were kept for analysis.  436 

 437 

Post imputation quality control was carried out by using plink v2.066. Samples with >10% 438 

missing rate were removed. Individuals with extreme height or BMI values were further 439 

excluded (31 individuals with height<1.47m; 5 with BMI >50 were removed). We also 440 

removed 42 pregnant women since pregnancy is known to have dramatic changes to body 441 

metabolism. Both genotyped and imputed SNPs were kept for analysis if they met the 442 

following criteria: call rate >90%, no significant deviation from Hardy-Weinberg Equilibrium 443 

(p>1.0×10-6), and minor allele frequency >1%. The post-QC dataset comprised 7,013 444 

individuals and 7,980,477 SNPs. SNPs with ambiguous A/T or C/G alleles were removed in 445 

meta-analysis. 446 

 447 

FHS genotyping was performed using "Affymetrix Nsp, Sty and 50K gene centric" arrays. To 448 

impute genotypes for SNPs, short insertions and deletions (indels), and larger deletions that 449 

were not genotyped directly but are available from the 1000 Genomes Project, imputation of 450 

8,493,311 genetic variants was performed with Minimac3 using the 1000 Genomes Project 451 

Phase I Integrated Release Version 3 Haplotypes (2010-11 data freeze, 2012-03-14 452 

haplotypes). 453 

 454 

Genome-wide association analysis 455 

 456 

Univariate testing was performed using BOLT-LMM (v2.3.2)67, a Bayesian mixed model. 457 

The kinship matrix was constructed using 106,201 SNPs selected by pruning the hard-called 458 

SNPs with r2 < 0.1 (plink2 command --indep-pairwise 1000 80 0.1). Genetic principal 459 

components were calculated using FlashPCA268 on the pruned SNPs. Leave-one-460 

chromosome-out (LOCO) analysis within BOLT-LMM was used to avoid proximal 461 
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contamination. The linear mixed model included the following covariates for FINRISK02: 462 

genotyping batch, age, gender and top 10 genetic principal components; for FHS, the 463 

covariates were age and sex. The average genomic inflation factor was 1.0067 (range 0.9776 464 

to 1.0389) and a positive correlation (Pearson correlation coefficient was 0.57) was observed 465 

between the genomic inflation factor and SNP-heritability (Figure S1). For those SNPs 466 

reaching genome-wide significance (p<5×10-8), to obtain conditionally independent SNP-467 

metabolite associations GCTA-COJO69 was used to conduct step-wise conditional and joint 468 

analysis on individual genotype data. Given the large number of metabolite features, the 469 

number of effective tests was based on eigenvalue variance and estimated using 470 

matSpDlite70,71. For all 11,067 metabolite features, the number of effective tests was 3,450 471 

thus the study-wide significant threshold for SNP-metabolite associations was p<1.45×10-11. 472 

 473 

Associations passing genome-wide significance in FINRISK02 were taken forward for 474 

validation and meta-analysis in FHS, with the mapping of metabolite features between the 475 

two cohorts being based on MS1 and MS2 spectra alignment of metabolites with similar 476 

mass charge ratio and retention time in principle72. Of the metabolite features, 76% 477 

(4474/5874) were matched to at least one feature present in >20% people in the FHS cohort. 478 

For metabolites with multiple matches, the strongest associations (lowest p values) were kept. 479 

Meta-analysis was performed using the inverse variance weighted method for fixed effects (R 480 

package meta). Only SNP-metabolite associations reached p<5×10-8 in discovery cohort and 481 

p<0.01 in replication cohort were meta-analyzed.  482 

 483 

ANNOVAR73 was used to annotate significant SNPs. SNPs were assigned to genetic loci 484 

using the 200kb region flanking the top SNPs (i.e. lowest p value)74. This aggregation process 485 

started from the overall top SNP, followed by the second top SNP of the remaining SNPs and 486 

so on, until there was no SNP left. Loci names were determined from the nearest genes to the 487 

associated top SNPs. No merging was performed for neighboring loci, a particular SNP could 488 

be assigned to two different loci if those were both located within 200kb of the SNP position. 489 

As such, 41 SNPs in total were assigned to more than one locus; in these cases, we reported 490 

both loci in Table S4 but do not count them twice when summarizing results. A locus was 491 

defined as novel if it was not located within 200kb of any previously reported variants 492 

associated with blood metabolites in the GWAS Catalog repository (release 2020-01-27), or 493 

in the latest table from Kastenmüller et al.75 (http://www.metabolomix.com/list-of-all-494 

published-gwas-with-metabolomics; last accessed 02/2020).   495 

 496 

Mendelian randomization 497 

 498 

For genetic instruments, we utilized SNPs reaching genome-wide significance in meta-499 

analysis. Summary statistics of SNP-disease associations were extracted from MR-base 500 

database using R package TwoSampleMR76. If an index SNP was not present, the strongest 501 

proxy SNP was used or set to missing if r2<0.8). GWAS summary statistics were required to 502 

include European ancestries and be based on at least 1,000 individuals (Table S7). For each 503 

metabolite-disease analysis, SNPs were clumped using a linkage-disequilibrium threshold of 504 

r2<0.05 in a 500kb window to minimize the impact of correlated SNPs on causal estimates. 505 

As MR analysis with multiple instruments is more reliable, five or more genetic instruments 506 

were required for a metabolite to be taken forward for MR analysis. The effect allele was 507 

taken to be the effect-increasing allele of metabolite in FINRISK02. We estimated causal 508 

effects using an ensemble of five widely utilized methods: inverse variance weighted 509 

(IVW)77, simple mode78, weighted mode78, weighted median79, and MR-Egger80. As these 510 

methods have different assumptions, agreement among multiple methods would indicate a 511 
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robust estimate of causal effects81. We defined a significant causal effect as p<0.05 in three of 512 

the five selected methods. For significant causal estimates, details of genetic instruments are 513 

provided in Table S8. As a second step, for putative causal associations passing three of the 514 

five methods in the ensemble, we then used MR-PRESSO45 to detect and correct for 515 

horizontal pleiotropic outliers. 516 

 517 

Cox proportional hazards models 518 

 519 

To test the association between metabolite feature and incident CHD in both FINRISK02 (16 520 

years follow-up; 541 incident events) and FHS (6 years follow-up; 97 incident events), Cox 521 

proportional hazards regression (coxph function in the survival R package) was utilized to 522 

predict the CHD event for metabolite feature. Metabolite levels were at log10 scale. 523 

Covariates included age, sex, and log-transformed BMI. Participants with prevalent CHD at 524 

baseline were excluded. Cox models were sex-stratified with time-on-study as the time scale. 525 

Fixed effect meta-analysis was conducted to combine the summary statistics from both 526 

cohorts. Sensitivity analysis was conducted to ensure associations were robust to LDL-527 

cholesterol, smoking status, hypertension, diabetes as well as medications for lipid-lowering, 528 

anti-hypertension and diabetes. 529 

 530 

 531 
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Figure legends 767 

 768 

Figure 1: Genome-wide association analysis of circulating metabolite features. (A) 769 

Summary of the workflow for this study, (B) Manhattan plot of associations between genetic 770 

variants and circulating metabolite features. Novel loci are highlighted in green and annotated 771 

with locus name. The red dashed line indicates study-wide significance (p=1.45×10-11). For 772 

SNPs with multiple associations, only the lowest p value is shown. The y-axis is truncated at 773 

-log10(p)=300 for improved visualization, and SNPs with p>10-4 are omitted. (C) Novel and 774 

(D) previously reported loci associated with chemically identified (red bars) and chemically 775 

unidentified (blue bars) metabolite features. (FHS: Framingham Heart study; FR02: 776 

FINRISK02; GWAS: genome-wide association studies; MR: Mendelian randomization.)  777 

 778 

Figure 2. Causal effects of circulating metabolite features on common diseases. (A) 779 

Predicted causal (red) and protective (blue) effects reaching statistical significance in three of 780 

the five MR methods tested. Causal effect estimates are from the weighted median method. 781 

Asterisk (*) indicates causal effect which was not significant in MR-PRESSO outlier-782 

corrected test. (B) Dose-response plots of leukotriene D4 (LTD4) levels on coronary heart 783 

disease and primary sclerosing cholangitis. Causal estimates of the five MR methods are 784 

shown with confidence intervals indicated by shaded area in corresponding color.  785 

 786 

Figure 3. Comparison of MR-based causal effects and association of baseline metabolite 787 

feature levels with incident coronary heart disease risk. A forest plot of MR-based effect 788 

sizes (weighted median method) and hazard ratios were meta-analysis of Cox regression in 789 

FINRISK02 and FHS. Effect sizes are per SD of metabolite feature. 790 
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Figure 1: Genome-wide associations of circulating metabolite feature levels with known 792 

and previously unreported loci 793 
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Figure 2: Causal effects of circulating metabolite features on common diseases 798 
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Figure 3: Comparison of MR-based causal effects and association of baseline metabolic 802 

feature levels with incident coronary heart disease risk. 803 
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