Computing the daily reproduction number of COVID-19 by inverting the renewal equation

 $\mathsf{Luis\text{}\text{}\text{}\text{Alvarez}^{a,1}}$, Miguel Colom $^{\rm b}$, Jean-David Morel $^{\rm c}$, and Jean-Michel Morel $^{\rm b}$

^aCTIM. Departamento de Informática y Sistemas, Universidad de Las Palmas de Gran Canaria. Spain; ^bUniversité Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli, F-94235, Cachan, France.; ^c , Laboratoire de Physiologie Intégrative et Systémique Ecole Polytechnique Fédérale de Lausanne, AI 1144 Station 15 CH-1015 Lausanne **Switzerland**

The COVID-19 pandemic has undergone frequent and rapid changes in its local and global infection rates, driven by governmental measures, or the emergence of new viral variants. The reproduction number *Rt* **indicates the average number of cases generated by an infected person at time** *t* **and is a key indicator of the spread of an epidemic. A timely estimation of** *Rt* **is a crucial tool to enable governmental organizations to adapt quickly to these changes and assess the consequences of their policies. The EpiEstim method is the most widely accepted method for estimating** *Rt***. But it estimates** *Rt* **with a delay of several days. Here, we propose a new method,** *EpiInvert***, that shows good agreement with EpiEstim, but that pro**vides estimates of R_t up to 9 days in advance. We show that R_t **can be estimated by inverting the renewal equation linking** *Rt* **with the observed incidence curve of new cases,** *it***. Our signal processing approach to this problem yields both** *Rt* **and a restored** *it* **corrected for the "weekend effect" by applying a deconvolution + denoising procedure. The implementations of the EpiInvert and EpiEstim methods are fully open-source and can be run in real-time on every country in the world, and every US state through a web interface at [www.ipol.im/ern.](www.ipol.im/ern)** 1 $\overline{2}$ 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

COVID-19 | Renewal equation | Reproduction number | Integral equations

The reproduction number R_t is a key epidemiological pa-² rameter evaluating transmission rate of a disease over time. It is defined as the average number of new infections caused by ⁴ a single infected individual at time *t* in a partially susceptible population (1) . R_t can be computed from the daily observation of the incidence curve i_t , but requires empirical knowledge of the probability distribution Φ_s of the delay between two infections $(2, 3)$ $(2, 3)$ $(2, 3)$.

There are two different models for the incidence curve and 10 its corresponding infection delay Φ . In a theoretical model, i_t ¹¹ would represent the real daily number of new infections, and ¹² Φ*^s* is sometimes called *generation time* [\(4,](#page-6-3) [5\)](#page-6-4) and represents ¹³ the probability distribution of the time between infection of a ¹⁴ primary case and infections in secondary cases. In practice, ¹⁵ neither parameter is easily observable because the infected are ¹⁶ rarely detected before the appearance of symptoms and tests ¹⁷ will be negative until the virus has multiplied over several ¹⁸ days. What is routinely recorded by health organizations is ¹⁹ the number of *new detected, incident cases*. When dealing ²⁰ with this real incidence curve, Φ*^s* is called *serial interval* [\(4,](#page-6-3) [5\)](#page-6-4). 21 22 23 The serial interval is defined a s the delay b etween the onset of symptoms in a primary case and the onset of symptoms in secondary cases [\(5\).](#page-6-4)

24 25 R_t is linked to i_t and Φ through the *renewal equation*, first formulated for birth-death processes in a 1907 note of Alfred Lotka (6) . We adopt the Nishiura et al. formulation $(7, 8)$ $(7, 8)$ $(7, 8)$,

$$
i_t = \sum_{s=f_0}^{f} R_{t-s} i_{t-s} \Phi_s \quad \text{for} \ \ t = 0,..,t_c, \tag{1}
$$

where t_c represents the current time (the last time at which i_t 28 was available), f_0 and f are the maximal and minimal observed 29 times between a primary and a secondary case. $\frac{30}{2}$

It is important to note that secondary infections are some- ³¹ times detected before primary ones, and therefore the minimum delay f_0 is generally negative (see Fig. [2\)](#page-2-0). Equation \sim 33 [1] does not yield an explicit expression for R_t . Yet, an easy $\frac{34}{4}$ solution can be found for a simplified version of the renewal 35 equation proposed in Cori et al in (5) .

$$
i_t = R_t \sum_{s=f_0}^f i_{t-s} \Phi_s, \qquad [2] \qquad \text{as}
$$

by this equation, R_t is derived at time t from the past incidence \qquad 38 values i_{t-s} by a simple division, with the assumption that 39 $f_0 \geq 0$: 40

$$
R_t = \frac{i_t}{\sum_{s=f_0}^f i_{t-s} \Phi_s}.
$$
 [3] 41

This method, implemented by the EpiEstim software, is highly 42 recommended in a very recent review [\(10\)](#page-6-8) signed by repre- ⁴³ sentatives from ten different epidemiological labs from several 44

Significance Statement

Based on a signal processing approach we propose a method to compute the reproduction number *Rt*, the transmission rate of an epidemic over time. *R^t* is estimated by minimizing a functional that enforces: (i) the ability to produce an incidence curve *i^t* corrected of the weekly periodic bias produced by the "weekend effect", obtained from *R^t* through a renewal equation ; (ii) the regularity of *Rt*. A good agreement is found between our *R^t* estimate and the one provided by the currently accepted method, EpiEstim, except our method predicts *R^t* almost nine days closer to the present. We provide the mathematical arguments for this shift. Both methods, applied every day on each country, can be compared at [www.ipol.im/ern.](www.ipol.im/ern)

L. Alvarez and J-M. Morel designed and performed research and experiments and wrote the pa-
per. L. Alvarez implemented the method. M. Colom built the online interface and collected and mented the method. M. Colom built the online interface and collected and processed data. J.D. Morel rewrote parts and designed the statistical analysis and presentation of the results.

The authors declare no competing interests

¹ Luis Alvarez. E-mail: lalvarez@ulpgc.es

Fig. 1. Illustration of the Epilnvert method on the France incidence curve of new cases. On the left: in green, the raw oscillating curve of incident cases up to March 26, 2021. In blue, the incidence curve after correction of the "week-end bias". In red, the incidence curve simulated from *R^t* after the inversion of the renewal equation. On the right: in black, R_t , the reproduction number estimated by the current EpiEstim method, adopted by most health experts [\(9\)](#page-6-9). Estimating its value every day guides the health policy of each country. Having R_t larger than 1, as it is the case for France on March 26, 2021 means that the pandemic is expanding. In red, the estimation of R_t by the Epilnvert method. This estimate, obtained by compensating the week-end bias and inverting the integral equation, predicts *R^t* nearly nine days closer to the present than EpiEstim.

 continents. A detailed description of EpiEstim can be found in the supporting information. Equation [\[2\]](#page-0-0) is the standard method, and of widespread use. In its stochastic formulation, 48 the first member i_t of Equation $[2]$ is assumed to be a Poisson variable, and the second member of this equation is interpreted as the expectation of this Poisson variable. This leads to a maximum likelihood estimation strategy to compute *R^t* (see $52 \quad (5, 11-14)$ $52 \quad (5, 11-14)$ $52 \quad (5, 11-14)$ $52 \quad (5, 11-14)$ $52 \quad (5, 11-14)$.

 Comparing Equations [\[2\]](#page-0-0) and [\[1\]](#page-0-1) shows that the second equation is derived from the first by assuming R_t constant 55 on the serial interval $[t - f, t - f_0]$. Replacing R_{t-s} by R_t in Equation [\[1\]](#page-0-1) indeed yields Equation [2]. A more accurate interpretation of the quotient on the right of Equation [3] ⁵⁸ would be

59
$$
R_{t-\mu} = \frac{i_t}{\sum_{f_0}^{f} i_{t-s} \Phi_s},
$$
 [4]

60 61 62 63 64 65 where μ is a central value of the probability distribution of the serial interval Φ that could be, for instance, the median or the mean. In the Ma et al. [\(15\)](#page-6-12) estimate of the serial interval for Covid-19, we have $\mu \approx 5.5$ for the median and $\mu \approx 6.7$ for the mean. This supports that EpiEstim estimates R_t with an average delay of more than 5 days.

66 67 68 69 70 71 72 73 74 75 In practice, the delay is even longer, due to the way the sliding average of the incidence is calculated. Indeed, as illustrated in Figure [1](#page-1-0) the raw data of the incidence curve i_t can oscillate strongly with a seven-day period. This oscillation has little to do with the Poisson noise used in most aforementioned publications. Government statistics are affected by changes of testing and polling policies and by week-end reporting delays. These recording delays and subsequent rash corrections result in impulse noise, and a strong weekly periodic bias observable on the incidence curve (in green) on the left of the figure [1.](#page-1-0)

76 77 78 79 80 81 82 To reliably estimate the reproduction number, a regularity constraint on R_t is needed. Cori et al., initiators of the EpiEstim method [\(5\)](#page-6-4) use as regularity constraint the assumption that R_t is locally constant in a time window of size τ ending at time *t* (usually $\tau = 7$ days). This results in smoothing the incidence curve with a sliding mean over 7 days. This assumption has two limitations: it causes a significant resolution loss,

and an additional $\frac{\tau}{2} = 3.5$ backward shift in the estimation of 83 *R*_t, given that *R*_t is assumed constant in $[t - \tau, t]$.

- In summary, the computation of R_t raises three challenges: \approx
- 1. The renewal equation for incident cases involves future set values of i_t , those for $t + 1, \dots, t - f_0$.
- 2. A simplification of the renewal equation $[1]$ leads the set standard method to estimate R_t with a backward shift of \qquad more than 5 days.
- 3. Smoothing of the week-end effect causes a further 3*.*5 ⁹¹ $\frac{days}{92}$ shift.

These cumulative backward shifts cause a time delay of more 93 than 8.5 days. In other terms, the value of R_t computed at 94 time *t* refers approximately to R_{t-9} . 95

Here, we address these three issues by proposing a method 96 that inverts Equation $[1]$ without simplifying it. The result of $\qquad \circ$ EpiInvert, the inversion method developed here, is illustrated \bullet in Figure [1](#page-1-0) (right), where the EpiEstim result (in black) is $\frac{99}{2}$ superposed with the estimate (in red) of R_t by EpiInvert. 100 After registering both, the black EpiEstim curve stops nine 101 days before EpiInvert, the red curve (our estimate). We found, 102 using the incidence curve of 70 countries, that the optimal 103 shift between the EpiEstim and EpiInvert R_t estimates is 104 about 8.3 ± 0.5 days and that the RMSE approximation error 105 between both estimates is just about $3.6\% \pm 1.9\%$.

Indeed, the general integral equation $[1]$ is a functional 107 equation in R . Integral equations have been previously used $\frac{1}{108}$ to estimate R_t : in [\(16\)](#page-6-13), the authors estimate R_t as the direct deconvolution of a simplified integral equation where i_t 110 is expressed in terms of R_t and i_t in the past, without using 111 the serial interval. Such inverse problems involving noise and 112 a reproducing kernel can be resolved through the Tikhonov- 113 Arsenin (17) variational approach involving a regularization 114 term. This method is widely used to solve integral equations 115 and convolutional equations (18) . The solution of the equation 116 is estimated by an energy minimization. The regularity of the $_{117}$ solution is obtained by penalizing high values of the derivative $\frac{1}{18}$

Fig. 2. Serial intervals used in our experiments: the discrete one proposed by Du et al. in [\(19\)](#page-6-16) (solid bars in blue), the serial interval proposed by Ma et al. [\(15\)](#page-6-12) (solid bars in orange) and its shifted log-normal approximation (in green), finally a log-normal approximation of the serial interval proposed by Nishiura et al. in [\(20\)](#page-6-17) (in red).

 of the solution. Our variational formulation includes the cor- rection of the weekly periodic bias, or "weekend effect". The standard way to deal with a weekly periodic bias is to smooth the incidence curve by a seven days sliding mean. This implic- itly assumes that the periodic bias is additive. The present study supports the idea that this bias is better dealt with as multiplicative. In the variational framework, the periodic bias is therefore corrected by estimating multiplicative periodic correction factors. This is illustrated on the left graphic of Fig. [1](#page-1-0) where the green oscillatory curve is transformed into the blue filtered curve by the same energy minimization process that also computes R_t (on the right in red) and reconstructs the incidence curve up to present (on the left, in red).

¹³² **1. Available serial interval functions for SARS-CoV-2**

 As we saw, the *serial interval* in epidemiology refers to the time between successive observed cases in a chain of transmission. Du et al. in [\(19\)](#page-6-16) define it as "the time duration between a primary case (infector) developing symptoms and secondary case (infectee) developing symptoms."

 Du et al. in [\(19\)](#page-6-16) obtained the distribution of the serial interval by a careful inquiry on 468 pairs of patients where one was the probable cause of the infection of the other. The 141 serial distribution Φ obtained in [\(19\)](#page-6-16) has a significant number of cases on negative days, meaning that the infectee had 143 developed symptoms up to $f_0 = 10$ days before the infector. In addition to this first serial interval, we test a serial interval obtained by Nishiura et al. in [\(20\)](#page-6-17) using 28 cases, which is approximated by a log-normal distribution, and a serial interval obtained by Ma et al. in [\(15\)](#page-6-12) using 689 cases. As proposed by the authors this serial interval has been approximated by a shifted log-normal to take into account the cases in the negative days. In Fig. [2](#page-2-0) we show the profile of the three serial intervals. There is good agreement of the serial intervals obtained by Du et al. [\(19\)](#page-6-16) and Ma et al. [\(15\)](#page-6-12)^{*}. Note that ¹⁵³ $f_0 = -4$ for the Ma et al. serial interval, $f_0 = 0$ for Nishiura 154 et al. and $f_0 = -10$ for Du et al. The discrete support of Φ is 155 therefore contained in the interval $[f_0, f]$.

2. Computing *R^t* **by a variational method** ¹⁵⁶

We consider two versions of the general renewal equation $[1]$ 157 given by the set of $\frac{158}{158}$

$$
i_t = F(R, i, \Phi, t)
$$
 for $t = 0, ..., t_c$, [5] 159

where 160

$$
F = F_1 \equiv R_t \sum_{s=f_0}^{f} i_{t-s} \Phi_s; \qquad F = F_2 \equiv \sum_{s=f_0}^{f} i_{t-s} R_{t-s} \Phi_s. \quad [6] \quad \text{161}
$$

 F_2 corresponds to the general renewal equation and F_1 to the 162 simplifed Cori et al. (5) version. The very same formula can 163 also be derived for the classic Wallinga Teunis method (4) , 164 as shown in the supporting information. This last method is ¹⁶⁵ widely used to compute R_t retrospectively.

Correcting the week-end effect We must first formulate a compensation for the weekend effect, which in most countries is ¹⁶⁸ stationary, strong, and the main cause of discrepancy between 169 i_t and its expected value $F(i, R, \Phi, t)$. To remove the weekend 170 effect we estimate periodic multiplicative factors defined by a 171 vector **q** = $(q_0, q_1, q_2, q_3, q_4, q_5, q_6)$.

The variational framework we propose to estimate R_t is 173 therefore given by the minimization of the energy 174

$$
E({Rt}; \mathbf{q}) = \sum_{t=0}^{t_c} \left(\frac{q_t \cdot \gamma_t i - F({q_t \cdot \gamma_t i}, R, \Phi, t)}{p_{50}(i)} \right)^2 + \quad [7]
$$

$$
w \sum_{t=1}^{t_c} (R_t - R_{t-1})^2
$$

where $t\%$ 7 denotes the remainder of the Euclidean division of 175 *t* by 7, $t = 0$ represents the beginning of the epidemic spread 176 and t_c the current day. 177

The weekend effect has varied over the course of the pan- ¹⁷⁸ demic. Hence, for the estimate of **q** it is better to use a time ¹⁷⁹ interval $[t_c - T + 1, T]$ where *T* is fixed in the experiments 180 to $T = 56$ (8 weeks). This two months time interval is long 181 enough to avoid overfitting and small enough to ensure that 182 the testing policy has not changed too much. The optimization 183 of R_t is instead performed through the whole time interval 184 $[0, t_c]$. The corrected value $\hat{i}_t = q_t \otimes z_i i_t$ amounts to a deterministic attenuation of the weekend effect on i_t . An obvious 186 objection is that this correction might not be mean-preserving. ¹⁸⁷ To preserve the number of accumulated cases in the period of ¹⁸⁸ estimation, we therefore add the constraint 189

$$
\sum_{t=t_c-T+1}^{t_c} i_t = \sum_{t=t_c-T+1}^{t_c} \hat{i}_t = \sum_{t=t_c-T+1}^{t_c} q_{t\%7} i_t, \qquad [8] \quad 190
$$

to the minimization problem $[7]$.

In that way, the multiplication by the factor $q_{t\%7}$ produces 192 a redistribution of the cases i_t during the period of estimation, but it does not change the global amount of cases. In ¹⁹⁴ Equation $[7]$, $p_{50}(i)$ is the 50th percentile (the median) of 195 ${i_t}_{t=t_c-T+1,..,t_c}$ used to normalize the energy with respect 196 to the size of i_t . The first term of E is a data fidelity term 197 which forces the renewal equation $[5]$ to be satisfied as much 198 as possible. The second term is a classic Tikhonov-Arsenin ¹⁹⁹ regularizer of R_t .

[∗] In the online interface [\(www.ipol.im/ern\)](www.ipol.im/ern) the users can, optionally, upload their own distribution for the serial interval.

201 **The regularization weight.** The regularization weight $w > 0$ is ²⁰² a dimensionless constant weight fixing the balance between

²⁰³ the data adjustment term and the regularization term.

Boundary conditions of the variational model. Since $t = 0$ is ²⁰⁵ the beginning of the epidemic spread where the virus runs free, 206 one is led to use an estimate of $R_0 = R_0$ based on the basic ²⁰⁷ reproduction number *R*0. (In the supporting information we ²⁰⁸ present a basic estimation of *R*0 from the initial exponential 209 growth rate of the epidemic obtained as in (21)), therefore, ²¹⁰ to solve Equation [\[7\]](#page-2-1), we add the boundary condition $R_0 =$ ²¹¹ *R*0. The proposed inversion model provides an estimation of 212 *R_t* up to the current day t_c . Yet if $f_0 < 0$, the functional 213 [\[7\]](#page-2-1) involves a few future values of R_t and i_t for $t_c \leq t \leq$ $t_c - f_0$. These values are unknown at present time t_c . We ²¹⁵ use a basic linear regression using the last seven values of *i^t* 216 to extrapolate the values of i_t beyond t_c . We prove in the ²¹⁷ supporting information, that the boundary conditions and the ²¹⁸ choice of the extrapolation procedure have a minor influence 219 in the estimation of R_t in the last days when minimizing [\[7\]](#page-2-1).

 All of the experiments described here can be reproduced with the online interface available at <www.ipol.im/ern>. This online interface allows one to assess the performance of the method applied to the total world population and to any coun- try and any state in the USA, with the last date updated to the current date. We detail our daily sources in the supporting information.

 An empirical confidence interval for R_t . In absence of a statis- tical model on the distribution of *Rt*, no theoretical *a priori* confidence interval for this estimate can be given. Neverthe- less, a realistic confidence interval is obtained by the following procedure:

- 232 1. Compute ${R^k(t)}_{t \in [0, t_c k]}$ by minimizing [7] for $k =$ 233 1*,* 2*,* 3*,* using the data sequence up to $t_c - k$.
- 234 2. Compute for each $t \in [0, t_c]$ a confidence bound of R_t with respect to its value $R^1(t)$, $R^2(t)$ and $R^3(t)$ in the ²³⁶ three preceding days given by

$$
\sigma(t) = \sqrt{\frac{\sum_{k=1}^{3} (R_t - R^k(t))^2}{3}},
$$
\n[9]

where $R^k(t)$ in $(t_c - k, t_c]$ are obtained by linear extrapo-²³⁹ lation.

 We then define a conservative empirical confidence interval ²⁴¹ as $[R_t - 2 \cdot \sigma(t), R_t + 2 \cdot \sigma(t)]$. This interval is displayed for each *t* in the online algorithm <www.ipol.im/ern> and has the aspect of a fattened curve above and below *Rt*.

²⁴⁴ **Efficiency measure of the weekly bias correction.** We esti-²⁴⁵ mate the correction of the weekly periodic bias by the efficiency ²⁴⁶ measure

$$
\mathcal{I} = \sqrt{\frac{\sum_{t=t_c-T+1}^{t_c} (\hat{i}_t - F(\hat{i}, R, \Phi, t))^{2}}{\sum_{t=t_c-T+1}^{t_c} (i_t - F(i, R1, \Phi, t))^{2}}}.
$$
 [10]

 248 I represents the reduction factor of the RMSE between the 249 250 251 incidence curve and its estimate using the renewal equation after correcting the week-end bias. $\hat{i}_t = i_t q_t s_7$ and R are the optimal values for the energy [\[7\]](#page-2-1) and *R*1 denotes the *R*

estimate without correction of the weekly bias. The value 252 of $\mathcal I$ can be used to assess whether it is worth applying the 253 correction of the weekly periodic bias to a given country in a ²⁵⁴ given time interval.

Estimation of the temporal shift between EpiEstim and Epi- ²⁵⁶ **Invert.** In what follows, we will denote by R_t^i the EpiEstim 257 estimation of the reproduction number by Cori et al. in (5) , 258 detailed in the supporting information. As we have argued 259 above, we expect a significant temporal shift between R_t and 260 R_t^i , of the order of 9 days. This expectation is strongly confirmed by the experimental results, and can be checked by 262 applying the proposed method to any country using the online 263 interface available at <www.ipol.im/ern>. In summary, the time 264 shift between both methods should be a half-week (3.5 days) 265 for $F \equiv F_1$ and by Equation [\[4\]](#page-1-1) of about $\mu + 3.5 \simeq 9$ for 266 $F \equiv F_2$. This will be verified experimentally by computing 267 the shift \tilde{t} between R_t^i and R_t yielding the best RMSE between 268 both estimates: 269

$$
\tilde{t} = \arg\min_{t \in [0,12]} S(t) \equiv \sqrt{\frac{\sum_{k=t_c-T+1}^{t_c} (R_{k-t} - R_k^i)^2}{T}}
$$
 [11] ₂₇₀

where $T = 56$ (8 weeks) and where we evaluate R_{k-t} for 271 non-integer values of $k - t$ by linear interpolation. 272

Summary of the algorithm parameters and options. 273

- choice of the serial interval : the default options are the 274 serial intervals obtained by Ma et al. (we use the shifted 275 log-normal approximation), Nishiura et al. and Du et al.. ²⁷⁶ The users can also upload their own serial interval; 277
- choice of the renewal equation used, $F \equiv F_1$ or $F \equiv F_2$; 278
- *w*: regularization weight, with default values $w = 5$ for 279 $F \equiv F_1$ and $w = 5.5$ for $F \equiv F_2$; 280
- Correction of the weekly periodic bias (option by default) 281

Note that the regularization weight w is the only numerical 282 mandatory parameter. 283

Summary of the output displayed at [www.ipol.im/ern.](www.ipol.im/ern) First we 284 draw two charts. In the first one we draw R_t and R_t^i shifted 285 back \tilde{t} days where \tilde{t} is defined in [\[11\]](#page-3-0). R_t is surrounded by 286 a shaded area that represents the above defined empirical ²⁸⁷ confidence interval. In the second chart, we draw the initial 288 incidence curve i_t in green, the incidence curve after the correction of the weekly periodic bias $\hat{i}_t = i_t q_t \otimes z$ in blue, and the 290 evaluation of the renewal equation given by $t \to F(\hat{i}, R, \Phi, t)$ 291 in red. For each experiment we also compute : ²⁹²

- 1. R_{t_c} : last available value of the EpiInvert R_t estimate. 293
- 2. $R_{t_c}^i$: last available value of the EpiEstim estimate R_t^i . ²⁹⁴
- 3. \tilde{t} : optimal shift (in days) between *R* and R^i defined in 295 $[11]$. 296
- 4. $S(\tilde{t})$: RMSE between *R* and R^i shifted back \tilde{t} days 297 $(\text{defined in } [11]).$ $(\text{defined in } [11]).$ $(\text{defined in } [11]).$
- 5. $V(i)$: variability of the original incidence curve, i_t , given 299 $\mathrm{by:}\quad$ 300

$$
\mathcal{V}(i) \equiv \frac{\|i'\|_{L^1[t_c - T, t_c]}}{\|i\|_{L^1[t_c - T, t_c]}} \approx \frac{\sum_{t = t_c - T + 1}^{t_c} |i_t - i_{t-1}|}{\sum_{t = t_c - T + 1}^{t_c} i_t} \qquad [12] \qquad \text{and} \qquad [13]
$$

6. $V(\hat{i})$: variability of the filtered incidence \hat{i}_t after the 302 correction of the weekly periodic bias.

Fig. 3. Distribution of w for F_1 and F_2 when the regularization weight w and the delay \tilde{t} are optimized independently for each country to minimize the average error $S(\tilde{t})$ between the EpiEstim and the Epilnvert methods on a time lapse of 56 days. France in blue, Japan in green, Peru in cyan, South Africa in magenta, USA in red.

Fig. 4. Average error $S(\tilde{t})$ over 56 consecutive days of the error between the EpiEstim and the EpiInvert estimates of *R^t* for each country. France in blue, Japan in green, Peru in cyan, South Africa in magenta, USA in red.

308 8. $\mathbf{q} = (q_0, ..., q_6)$: the correction coefficients of the weekly ³⁰⁹ periodic bias (*q*⁶ corresponds to the current time *tc*).

³¹⁰ **3. Results**

³¹¹ To estimate a reference value for the regularization parameter ³¹² *w* we used the incidence data up to Saturday March 18, 2021 ³¹³ for the 70 countries showing the larger number of cases. For each country, we optimized the RMSE $\mathcal{S}(\tilde{t})$ between R and R^i 314 $_{315}$ shifted back \tilde{t} days (defined in [\[11\]](#page-3-0)). This optimization was 316 performed with respect to *w* and \tilde{t} . The goal was to fix *w*, the 317 only parameter of the method so that the result of EpiInvert ³¹⁸ is as close as possible to EpiEstim in the days where both 319 methods predict R_t . The second goal of this optimization was 320 to estimate the effective time shift \tilde{t} between both methods.

 In Fig. [3](#page-4-0) we show the box plot of the distribution of *w* for F_1 and F_2 when *w* was optimized independently for each country to minimize the average error over 56 days between the EpiEstim and the EpiInvert methods. The mean *w* was $325 \div 5.5 \pm 2.4\%$ for F_1 and $5.9 \pm 2.9\%$ for F_2 which indicated that a common value of *w* could be fixed for all countries. Here and in all figures to follow, each dot represents a country.

 $\frac{1}{228}$ In Fig [4,](#page-4-1) we show, for the versions F_1 and F_2 of the renewal ³²⁹ equation, the average error $\mathcal{S}(t)$ over 56 consecutive days of the

Fig. 5. Optimal time shift \tilde{t} obtained by minimizing the mean error $\tilde{S}(t)$ over 56 days between the EpiEstim and the EpiInvert estimates of R_t for each country. The time shift is as predicted by our theoretical analysis close to 3 days for F_1 and slightly above 8 days for F_2 . On the left w is fixed and on the right it is the optimal weight per country. France in blue, Japan in green, Peru in cyan, South Africa in magenta, USA in red.

Fig. 6. Relative error between the Epilnvert and EpiEstim estimations, depending on the anticipation day. Epilnvert anticipates the value of R_t by 0 to 3 days in the F_1 formulation and by 0 to 8 days in the F_2 formulation. Each dot represents one country. France in blue, Japan in green, Peru in black, South Africa in magenta, USA in red.

error between the EpiEstim and the EpiInvert estimates of R_t 330 for each country. The overall average error is $2.9\% \pm 1.7\%$ for F_1 331 and $3.6\% \pm 1.9\%$ for F_2 . As is apparent by comparing the box 332 plots on the left and right, the increase of the error $\mathcal{S}(\tilde{t})$ was 333 insignificant when fixing *w* for all countries ("fixed weight") 334 instead of optimizing jointly on *w* and \tilde{t} for all countries 335 ("variable weight"). In all experiments, we therefore fixed the ³³⁶ value of *w* to its median for all countries namely $w = 5$ for 337 $F \equiv F_1$, and $w = 5.5$ for $F \equiv F_2$. Once fixed, we optimized 338 again $S(t)$ with respect to \tilde{t} . 339

In the box plot of Fig. [5](#page-4-2) we show, for the versions F_1 and 340 F_2 of the renewal equation, the optimal time shift \tilde{t} obtained 341 by minimizing the mean error $\tilde{S}(t)$ over 56 days between the 342 EpiEstim and the EpiInvert estimates of R_t for each country. 343 As is apparent by comparing the box plots on the left and $\frac{344}{2}$ right, there is almost no change on t when fixing w for all $\frac{345}{2}$ countries ("fixed weight") instead of optimizing jointly on *w* ³⁴⁶ and \tilde{t} for all countries. We obtain respectively $\tilde{t} = 2.96 \pm 0.42$ 347 for variable *w* and $\tilde{t} = 2.86 \pm 0.43$ for F_1 with fixed *w*, and 348 similarly for F_2 : $\tilde{t} = 8.33 \pm 0.55$ and $\tilde{t} = 8.38 \pm 0.52$.

As shown in Fig. [4,](#page-4-1) the agreement between R_t and R_t^i 350 shifted back by the optimal delay \tilde{t} is overwhelming. Indeed, for \sim 351 $F \equiv F_1$, we obtain that the median of their relative difference 352 $\mathcal{S}(\tilde{t})$ is just 2.43%. For $F \equiv F_2$, it is 3.3%. The median of the 353

Fig. 7. Internal relative error between the EpiInvert estimations depending on the anticipation day. Each dot represents one country. The mean difference for each prediction day is marked by a horizontal bar. The standard deviation of the relative error is half the height of each box. France in blue, Japan in green, Peru in black, South Africa in magenta, USA in red.

 \sum_{354} shift \tilde{t} is given by 2.89 (for $F \equiv F_1$) and 8.33 (for $F \equiv F_2$). ³⁵⁵ These results are in good agreement with the discussion about ³⁵⁶ the EpiEstim method we have presented above, which led 357 to predict a time delay of 3.5 days for $F \equiv F_1$ and about 358 9 days for $F \equiv F_2$. The difference between the predicted ³⁵⁹ time delay and the observed one therefore is 0*.*5 days. This ³⁶⁰ is easily explained by the regularization term in Equation 361 [\[7\]](#page-2-1), which forces R_t to resemble R_{t-1} . In summary, these $\sum_{t=1}^{362}$ experiments show that EpiEstim predicts at time *t* a value R_t 363 which corresponds to day $t - 8.5$ or $t - 3.5$, and that EpiInvert 364 predicts at time *t* a value R_t which corresponds to day $t - 0.5$.

³⁶⁵ We now explore the reliability of the EpiInvert estimate, 366 which as we saw can anticipate an estimate of R_t by more than 8 days with respect to EpiEstim. Let us denote by $R_t(t)$ ³⁶⁸ the EpiInvert estimate at time *t* using the incidence curve up 369 to the date $t' \geq t$. According to the estimated shift between R_t and R_t^i , for $F \equiv F_1$, $R_t(t-3)$ should be similar to R_t^i . The 371 first estimation of $R_t(t-3)$ is obtained 3 days before when 372 we compute $R_{t-3}(t-3)$.

373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 In Fig. [6](#page-4-3) we show a box plot of the relative error between the EpiInvert and EpiEstim estimations, depending on the anticipation day. EpiInvert anticipates the value of R_t by 0 to 3 days in the F_1 formulation and by 0 to 8 days in the F_2 formulation. Each dot represents one country. On the left of Fig. [6,](#page-4-3) for $F \equiv F_1$, we compare for $k = -3, -2, -1, 0$ the means of the relative errors $|R_{t+k}(t-3) - R^i(t)|$ for $t \in [t_c - T + 1, t_c]$ $(T = 56)$ and for the 70 countries selected as the ones with higher incidence. On the right of Fig. [6,](#page-4-3) for $F \equiv F_2$, we compare, in the same way, $|R_{t+k}(t-8) - R^{i}(t)|$ for $k = -8, -7, ..., 0$. Notice that the difference between the EpiInvert and EpiEstim estimates cannot be considered as an approximation error. A good agreement is expected between both estimates but the method underlying both estimations is different. Our goal was not to approximate the EspiEstim method, but to solve the renewal equation in a more exact formulation. Nevertheless, it was important to verify that EpiInvert finds very similar values to EpiEstim on their common interval of definition. These values are predicted by EpiInvert more than 8 days in advance. As expected, this relative error grows for the early predictions. Nevertheless, for the renewal equation *F*2, one observes a plateau of this error between days -4 and 0 with a mean difference of about 5*.*5%. Even with an 8 days

Fig. 8. Linear regression of the internal relative error between the Epilnvert estimation as a function of the mean incidence. The regression lines are clearly decreasing, which means that a higher incidence favor a better estimate of *Rt*.

anticipation, the average relative error on R_t stays below 12%. 396

Finally, we are obviously interested in the internal coherence 398 of the EpiInvert predictions. Indeed, contrarily to EpiEstim, ³⁹⁹ the EpiInvert estimate $R_{t'}(t)$ at time *t* evolves for $t' \geq t$ and 400 becomes more accurate at later dates. Fig. [7](#page-5-0) gives a box plot ⁴⁰¹ of the internal relative error between the EpiInvert estimations ⁴⁰² depending on the anticipation day. On the left, for $F \equiv F_1$, 403 we compare for $k = -3, -2, -1$ the means of the relative $\overline{40}$ errors $|R_{t+k}(t-3) - R_t(t-3)|$. On the right, for $F \equiv F_2$, 405 we compare, in the same way, $|R_{t+k}(t-8) - R_t(t-8)|$ for 406 $k = -8, ..., -1$. Since the estimate of EpiInvert at each day 407 evolves with the knowledge of the incidence in later days, we 408 can see how this estimate evolves as time passes. Each dot 409 represents one country. We see that the relative error on R 410 at a given date t goes down almost linearly from 14% in an 411 early prediction (8 days ahead) to 4.4% (1 day ahead). The $\frac{412}{2}$ robustness of the prediction is positively affected by incidence ⁴¹³ numbers. 414

Fig. [8](#page-5-1) indeed shows, for each anticipation day $k = 415$ $-1, -2, \ldots$, the linear regression of the internal relative error 416 between the EpiInvert estimations at days 0 and k , viewed 417 as a function of the mean incidence of the country. These ⁴¹⁸ eight regression lines are clearly decreasing, which means that 419 a higher incidence favors a better estimate of R_t . Last but $\frac{420}{5}$ not least, we evaluate the reduction obtained on the "week- ⁴²¹ end effect". Fig. [9](#page-6-19) shows a regression plot of the reduction 422 factor of the oscillation of i_t obtained by applying correcting 423 coefficients to reduce the "week-end effect". This reduction ⁴²⁴ decreases from about 0.5 to less than 0.25, the plots being ⁴²⁵ ordered in increasing order of average incidence. This indicates ⁴²⁶ that higher incidences lead to a more regular 7 days periodicity 427 of the week-end effect. In <https://ctim.ulpgc.es/covid19/BoxPlots/> ⁴²⁸ Fig. [6](#page-4-3) and [7](#page-5-0) are presented in interactive mode with tooltip 429 detailed statistics on each country.

4. CONCLUSION 431

The reproduction number R_t can be estimated by solving a \sim 432 renewal equation linking R_t , i_t and Φ_s . We considered the 433 formulations of the renewal equation providing the named ⁴³⁴ instantaneous reproduction number $(F \equiv F_1)$ and the named 435

397

Fig. 9. Reduction factor $\mathcal I$ (see [\[10\]](#page-3-1)) obtained by applying correcting coefficients to reduce the "weed end effect". This reduction decreases from about 0.5 to less than 0.25. The plots are ordered in increasing order of average incidence.

436 effective reproduction number $(F \equiv F_2)$. The daily incidence data i_t recorded by health administrations show a strong non- Poisson quasi-periodic behavior. In order to get an estimate of R_t we introduced a classic regularity constraint on R_t and we corrected the weekly periodic bias observed in the incidence curve i_t by a simple variational formulation. Our proposed variational model, EpiInvert, also computes an empirical con- fidence interval. In contrast to former methods, EpiInvert can use serial intervals with distributions containing negative days (as it is the case for the COVID-19). Thus, it avoids an artificial truncation of the distribution. EpiInvert shows excellent agreement with EpiEstim. Its main improvement 448 is to anticipate by several days the estimate of R_t : about 3 days for the F_1 formulation of the renewal equation, and more than 8 days for its F_2 formulation. This last fact is extremely relevant, given that the control of social distancing policies requires a timely estimate of R_t .

- 1. P Rodpothong, P Auewarakul, Viral evolution and transmission effectiveness. *World J. Virol*. **1**, 131 (2012).
- 2. X He, et al., Temporal dynamics in viral shedding and transmissibility of covid-19. *Nat. medicine* **26**, 672–675 (2020).
- 3. P Ashcroft, et al., Covid-19 infectivity profile correction. *arXiv preprint arXiv:2007.06602* (2020).
- 4. J Wallinga, P Teunis, Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. *Am. J. epidemiology* **160**, 509–516 (2004).
- 5. A Cori, NM Ferguson, C Fraser, S Cauchemez, A new framework and software to estimate time-varying reproduction numbers during epidemics. *Am. journal epidemiology* **178**, 1505– 1512 (2013).
- 6. AJ Lotka, Relation between birth rates and death rates. *Science* **26**, 21–22 (1907).
- 7. H Nishiura, Time variations in the transmissibility of pandemic influenza in Prussia, Germany,
- from 1918–19. *Theor. Biol. Med. Model*. **4**, 20 (2007). 8. H Nishiura, G Chowell, *The Effective Reproduction Number as a Prelude to Statistical Esti- mation of Time-Dependent Epidemic Trends*, eds. G Chowell, JM Hyman, LMA Bettencourt, C Castillo-Chavez. (Springer Netherlands, Dordrecht), pp. 103–121 (2009).
- 9. K Gostic, et al., Practical considerations for measuring the effective reproductive number, Rt. *MedRxiv* (2020).
- 10. KM Gostic, et al., Practical considerations for measuring the effective reproductive number, r t. *PLoS computational biology* **16**, e1008409 (2020).
- 11. R Thompson, et al., Improved inference of time-varying reproduction numbers during infec-tious disease outbreaks. *Epidemics* **29**, 100356 (2019).
- 12. QH Liu, et al., Measurability of the epidemic reproduction number in data-driven contact networks. *Proc. Natl. Acad. Sci*. **115**, 12680–12685 (2018).
- 13. T Obadia, R Haneef, PY Boëlle, The r0 package: a toolbox to estimate reproduction numbers for epidemic outbreaks. *BMC medical informatics decision making* **12**, 147 (2012).
- 14. TZ Boulmezaoud, L Alvarez, M Colom, JM Morel, A Daily Measure of the SARS-CoV-2 Effec- tive Reproduction Number for all Countries. *Image Processing On Line* **10**, 191–210 (2020) [https://doi.org/10.5201/ipol.2020.304.](https://doi.org/10.5201/ipol.2020.304)
- 15. S Ma, et al., Epidemiological parameters of coronavirus disease 2019: a pooled analysis of publicly reported individual data of 1155 cases from seven countries. *Medrxiv* (2020).
- 16. J Demongeot, K Oshinubi, H Seligmann, F Thuderoz, Estimation of daily reproduction rates in covid-19 outbreak. *medRxiv* (2021).
- 17. AN Tikhonov, VY Arsenin, Solutions of ill-posed problems. *New York* **1**, 30 (1977).
- 18. M Benning, M Burger, Modern regularization methods for inverse problems. *Acta Numer*. **27**, 1–111 (2018).
- 19. Z Du, et al., The serial interval of COVID-19 from publicly reported confirmed cases. *medRxiv* 490 (2020). 491
- 20. H Nishiura, NM Linton, AR Akhmetzhanov, Serial interval of novel coronavirus (COVID-19) 492 infections. *Int. journal infectious diseases* (2020). 493
- 21. L Alvarez, Comparative analysis of the first wave of the COVID-19 pandemic in South Ko- 494 rea, Italy, Spain, France, Germany, the United Kingdom, the USA and the New-York state. 495 MedRxiv (2020). 496

⁴⁹⁷ **Supporting Information**

 In this section we describe and analyze the EpiEstim method and its parameters (Section A). We prove in Section B that $\frac{1}{500}$ the Wallinga-Teunis method is actually computing R_t by the *F*¹ form of the renewal equation. Section C presents imple- mentation details of EpiInvert. Section D makes a case study of Cuba, France, Spain and the USA. Section E contains a thorough presentation of 86 results for a collection of countries and US states in alphabetic order.

⁵⁰⁶ **A. The EpiEstim method.** One of the most widely used meth-⁵⁰⁷ ods to estimate the instantaneous reproduction number is the ⁵⁰⁸ EpiEstim method proposed by Cori et al. [\(5\)](#page-6-4). In what follows, we will denote by R_t^i the EpiEstim estimation. The authors 510 show that if i_t follows a Poisson distribution with expectation $\mathbf{B} = \mathbf{E}[i_t] = R_t^i \sum_{s=1}^t i_{t-s} \Phi_s$ and R_t^i is assumed to follow a ⁵¹² gamma prior distribution $\Gamma(a, b)$, then the following analytical ⁵¹³ expression can be obtained for the posterior distribution of 514 R_t^i :

$$
R_{t,\tau}^{i} = \frac{a + \sum_{s=t-\tau+1}^{t} i_{s}}{b^{-1} + \sum_{s=t-\tau+1}^{t} \sum_{k=1}^{f} i_{s-k} \Phi_{k}},
$$
 [A]

 \mathbb{R}^i where R_t^i is assumed to be locally constant in a time window 517 of size τ ending at time *t*. However, i_t does not follow a Poisson distribution as its local variance in most states much higher than its mean, being dominated by the weekend effect. In this method, implemented in the EpiEstim R package, a regularization of the estimation is introduced by assuming that R_t^i is constant in a time window of size τ ending at time *t*. We found that the parameters *a* and *b* of the prior Gamma distribution $\Gamma(a, b)$, have very little influence on the current estimation of R_t^i . Cori et al. in [\(5\)](#page-6-4) proposed to use $a = 1$ and $b = 5$. Taking into account the magnitude of the current number of daily cases in countries affected by Covid-19, the contribution of *a* and *b* to the expression [A] can be neglected. As shown in [\(14\)](#page-6-11), assuming that the mean *ab* of the prior Gamma distribution Γ(*a, b*) satisfies

$$
ab = \frac{\sum_{s=t-\tau+1}^{t} i_s}{\sum_{s=t-\tau+1}^{t} \sum_{k=1}^{f} i_{s-k} \Phi_k},
$$
 [B]

 $_{532}$ equation $[A]$ becomes

$$
R_{t,\tau}^i = \frac{\overline{i}_{t,\tau}}{\sum_{k=1}^f \overline{i}_{t-k,\tau} \Phi_k} \tag{C}
$$

 $\frac{1}{534}$ which corresponds to the usual R_t^i estimate obtained directly 535 from equation [\[2\]](#page-0-0) applied to \bar{i}_t , where \bar{i}_t is the average of i_t in 536 the interval $[t-\tau, t]$. Therefore, if we remove the parameters *a* \int and *b* from the estimation of R_t^i , the main difference between 538 the EpiEstim estimation and the one proposed here for $F \equiv F_1$ ⁵³⁹ is that in EpiEstim, a serial interval with non-positive values ⁵⁴⁰ is not allowed and that the regularity is forced by a backward ⁵⁴¹ seven day average of the incidence curve. This is replaced ⁵⁴² by a regularity term in the proposed variational formulation. ⁵⁴³ Notice that due to the backward averaging of the incidence ⁵⁴⁴ curve, we can expect a time shift between both estimations.

B. The Wallinga and Teunis computation of *R^t* **.** The Wallinga-Teunis [\(4\)](#page-6-3) method is also implemented in the EpiEstim package and widely considered as a reliable method to compute R_t retrospectively [\(10\)](#page-6-8). Its formulas to estimate R_t at time t require the knowledge of i_t for $t = 0, \dots, t + f$. Starting from the original definitions of the authors, we give a mathematical proof that their method is actually computing R_t by the F_1 form of the renewal equation. The method is based on the following estimation of the "relative likelihood, $p_{k,l}$, that a case *k* has been infected by case *l*",

$$
p_{k,l} = \frac{\Phi(t_k - t_l)}{\sum_{m=1, m \neq k}^{n} \Phi(t_k - t_m)}
$$

where *n* represents the reported cases and t_k is the time of \sim 545 infection for the case *k*. Wallinga and Teunis define the *case* ⁵⁴⁶ *reproduction number* by 547

$$
R_l = \sum_k p_{k,l}.
$$
 [D] 548

Since R_l only depends on the time of infection t_l , it is actually 549 an estimation of the reproduction number at time $t = t_l$, so \sim 550 the Wallinga and Teunis estimate, R_t^{WT} , of the reproduction \sim 551 number can be expressed as: 552

$$
R^{WT}(t) = \sum_{k} \frac{\Phi(t_k - t)}{\sum_{m=1, m \neq k}^{n} \Phi(t_k - t_m)}
$$
 [E] 553

It remains to establish a relation of $R^{WT}(t)$ with the solution 554 \tilde{R}_t obtained by the renewal equation with $F \equiv F_1$, ⁵⁵⁵

$$
\tilde{R}_t = \frac{i_t}{\sum_{s>0} i_{t-s} \Phi_s}.
$$
 [F] 556

Grouping in the sum in [\[E\]](#page-7-1) the cases *k* such that $t_k = \bar{t}$ and 557 taking into account that there are $i_{\bar{t}}$ such cases, R_t^{WT} can be 558 $rewritten as$ 559

$$
R_t^{WT} = \sum_{\bar{t}} \frac{\Phi(\bar{t} - t) i_{\bar{t}}}{\sum_{s>0} i_{\bar{t}-s} \Phi_s} = \sum_{\bar{t}} \Phi(\bar{t} - t) \tilde{R}_{\bar{t}}.
$$
 [G] 560

We can therefore interpret R_t^{WT} as the forward convolution \sim 561 of the initial estimate \tilde{R}_t with the kernel given by Φ_s . On 562 the other hand, as explained above, the EpiEstim estimate R_t^i 563 can be interpreted (if we neglect the parameters a and b of $=$ 564 the Gamma distribution) as the application of Equation $\boxed{\mathrm{F}}$ to 565 the incidence curve filtered by sliding average on $[t - \tau + 1, t]$. 566 In conclusion the Cori et al. and the Wallinga and Teunis 567 methods use the renewal equation $F \equiv F_1$. Note, however, that 568 the Wallinga and Teunis method computes the reproduction 569 number only retrospectively. Indeed, the computation of R_t^{WT} 570 requires the values of $i_{\tilde{t}}$ for any $\tilde{t} > t$ such that $\Phi(\tilde{t} - t) > 0$. 571 This fact was observed in Cori et al.: (in the WT approach), σ "estimates are right censored, because the estimate of R at \sim 573 time *t* requires incidence data from times later than *t*." 574

C. Implementation details of EpiInvert. 675

Alternate minimization of the energy [\[7\]](#page-2-1). To minimize the energy ⁵⁷⁶ $[7]$, we use an alternate minimization algorithm with respect 577 to R_t and **q**. Indeed, if **q** is fixed, then the optimization of σ the energy $[7]$ with respect to R_t leads to a linear system of \sim 579 equations that is easily solved. In what follows, we will denote 580 by $R(t, i, \mathbf{q})$ the result of this minimization. On the other \mathfrak{so} hand, when R_t is fixed, the minimization of $[7]$ with respect see

⁵⁸³ to **q** also leads to a linear system of equations. The constraint ⁵⁸⁴ [\[8\]](#page-2-3) is expressed as an additional linear equation,

$$
\mu_0 q_0 + \mu_1 q_1 + \mu_2 q_2 + \mu_3 q_3 + \mu_4 q_4 + \mu_5 q_5 + \mu_6 q_6 = \sum_{t=t_c-T+1}^{t_c} i_t, \text{ [H]}
$$

⁵⁸⁶ where $\mu_k = \sum_{t=t_c-T+1}^{k+7t \leq t_c} i_{k+7t}$. This linear constraint is easily included in the minimization procedure using, for instance, ⁵⁸⁸ Lagrange multipliers. So **q** is computed as the unique solution ⁵⁸⁹ of the associated linear system. In what follows we will denote by $\mathbf{q}(R)$ the result of this minimization. Let us denote by R_t^n 590 \mathbf{a} ⁿ and \mathbf{q}^n the estimation of R_t and \mathbf{q} in the iteration *n* of the alternate minimization algorithm. We also denote by $i_t^n =$ 593 $i_t \cdot q_{t\%7}^n$ the filtered incidence curve at iteration *n*. We initialize $n = 0, i^0 \equiv i, \mathbf{q}^0 \equiv 1$ and we compute $R_t^0 = R(t, i^0, \mathbf{q}^0)$ as the minimizer of the energy [\[7\]](#page-2-1) with respect to R_t for $\mathbf{q} \equiv \mathbf{q}^0$.

⁵⁹⁶ The whole method is summarized in Algorithm 1, where 597 the maximum number of iterations is fixed to $MaxIter = 100$.

Algorithm 1 Estimation of \hat{i} , R , **q** from i and Φ . $\textbf{Initialization:} \quad i^0 \equiv i, \ \mathcal{I}^0 \, = \, 1, \ \mathbf{q}^0 \, \equiv \, 1. \quad \text{compute} \ \ R_t^0 \, = \, 1.$ $R(t, i^0, \mathbf{q}^0)$ minimizing [\[7\]](#page-2-1) with respect to R_t . for $n = 1, 2, \ldots, \text{MaxIter do}$ compute $\mathbf{q}^n = \mathbf{q}(R^{n-1})$ minimizing [\[7\]](#page-2-1) with respect to **q**. compute $i_t^n = q_{t\%}^n i_t$. compute \mathcal{I}^n using [\[10\]](#page-3-1). $\textbf{if} \,\, \mathcal{I}^n > \mathcal{I}^{n-1} \,\, \textbf{then}$ stop the iteration **else** $\hat{i} \equiv i^n$. $q \equiv q^n$. compute $R_t^n = R(t, i^n, \mathbf{q}^n)$ minimizing [7] with respect to R_t . $R = R^n$. **end end** $\mathbf{return} \, \hat{i}, R, \mathbf{q}.$

598 **Initial boundary condition, for** $t = 0$. The evaluation of $F_2(i, R, \Phi, t)$ requires values of R_t and i_t beyond the inter- α val $[0, t_c]$. Given the boundary conditions established, we assume that $R_t = R0$ for $t < 0$ and $R_t = R_t$ for $t > t_c$. 602 Concerning i_t , for $t < 0$ we will assume, as usual, that at the ⁶⁰³ beginning of the epidemic spread the virus is in free circulation and the cumulative number of infected detected $I_t \equiv \sum_{k=0}^t i_k$ ϵ_{05} follows an exponential growth for $t < 0$, that is $I_t = I_0 e^{at}$, ϵ_{06} where *a* represents the initial exponential growth rate of I_t ⁶⁰⁷ at the beginning of the infection spread. We now naturally ⁶⁰⁸ estimate *a* by

$$
a = median({log \left(\frac{I_{t+1}}{I_t}\right) : t = 0, ..., 14}).
$$
 [I]

 $I_t = I_0 e^{at}$ follows initially an exponential $_{611}$ growth and that $R_t = R0$ is initially constant, then we can ⁶¹² compute *R*0 from the exponential growth *a* and the renewal ⁶¹³ equation taking into account that

$$
i_0 = I_0(1 - e^{-a}) = I_0 R 0 \sum_{k=f_0}^{f} (e^{-ka} - e^{-(k+1)a}) \Phi_k.
$$
 [J]

Hence, we can compute an approximation of R0 as 615

$$
R0 = \frac{1 - e^{-a}}{\sum_{k=f_0}^{f} (e^{-ka} - e^{-(k+1)a})\Phi_k}.
$$
 [K] 616

Note that this estimation strongly depends on the serial inter- 617 val used. For instance, if we assume that $a = 0.250737$ (the 618 exponential growth rate obtained in (21) when the coronavirus 619 is in free circulation), we obtain that $R0 = 2.700635$ for the ϵ Nishiura et al. serial interval, $R0 = 3.084528$ for the Ma et 621 al. serial interval and $R0 = 1.839132$ for the Du et al. serial 622 interval. 623

Boundary condition for $[t > t_c]$. The proposed inversion model 624 provides an estimation of R_t up to the current day t_c . An 625 obvious objection is that if $f_0 < 0$, the functional [\[7\]](#page-2-1) involves 626 a few future values of R_t and i_t for $t_c \leq t \leq t_c - f_0$. These 627 values are unknown at present time t_c . We use a basic linear regression to extrapolate the values of i_t beyond t_c . To 629 compute the regression line $(i = m_7 \cdot t + n_7)$ we use the last 630 seven values of i_t . In summary, the extension of i_t beyond the 631 observed interval $[0, t_c]$ is defined by 632

$$
i_{t} = \begin{cases} I_{0}e^{at} - I_{0}e^{a(t-1)} & if \quad t < 0; \\ m_{7} \cdot t + n_{7} & if \quad t > t_{c}. \end{cases}
$$
 [L] 633

The above defined boundary conditions has a very minor influence in the final estimation of R_t in the last days when minimizing [7]. Indeed, the extension of i_t for $t < 0$ is only relevant at the beginning of the epidemic spread. On the other hand, the extension of i_t for $t > t_c$ is only required when the serial interval has negative values. For instance, to evaluate the renewal equation in the energy at the current time t_c using this approach for $F \equiv F_2$ we use the expression

$$
i_{t_c} = \sum_{s=0}^{f} i_{t_c-s} R_{t_c-s} \Phi_s + \sum_{s=f_0}^{-1} i_{t_c-s} R_{t_c} \Phi_s,
$$

and the extension of i_t for $t > t_c$ is only used in the last term 634 of the above expression where the values of Φ_s are usually 635 very small. Hence the influence of this extension procedure 636 for i_t is also almost negligible. To confirm this claim, we ϵ ₃₇ compared, using the shifted log-normal approximation of the 638 serial interval proposed by Ma et al., the estimate of R_{t_c} 639 using the extrapolation based on a linear regression of the ⁶⁴⁰ last 7 days, with the basic extrapolation given by $i_t = i_{t_c}$ for 641 $t > t_c$. Computing the absolute value of the difference of both 642 estimates for 81 countries we obtain that the quartiles of such 643 distribution of values are $Q_0 = 6.6 \cdot 10^{-6}$, $Q_1 = 1.3 \cdot 10^{-4}$, ⁶⁴⁴ $Q_2 = 3.1 \cdot 10^{-4}, Q_3 = 5.7 \cdot 10^{-4}$ and $Q_4 = 4.9 \cdot 10^{-3}$. We 645 conclude that extrapolation of i_t beyond t_c is a valid strategy 646 to estimate R_t up to $t = t_c$. ⁶⁴⁷

Pre-processing the incidence curve. Some countries do not provide data on holidays or weekends and only provide the cumulative total of cases on the next working day. To avoid the 650 strong discontinuity in the data sequence produced by the lack 651 of data, we automatically divide the case numbers of the first 652 non-missing day, between the number of days affected. We do 653 not allow negative numbers in the incidence curve. By default, 654 we replace by zero any negative value of the incidence curve. 655

 D. Case studies: Cuba, France, Spain, USA and World . The country data about the registered daily infected are taken from <https://ourworldindata.org>. In the particular cases of France, Spain and Germany we use the official data reported by the countries. For the US states, the data are obtained from the New York Times report avail- [a](https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv)ble at [https://raw.githubusercontent.com/nytimes/covid-19-data/](https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv) [master/us-states.csv](https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv).

⁶⁶⁴ In Fig. [S1](#page-10-0) we show the charts obtained for the world 665 population with $F \equiv F_1$ and $F \equiv F_2$. Table [S1](#page-10-1) contains a ⁶⁶⁶ summary of the values computed for each experiment. To ⁶⁶⁷ compute the EpiEstim estimation R_t^i , we used $\tau = 7$, that is, 668 we assumed that R_t is constant in $[t - 7, t]$. As proposed by 669 Cori et al. in [\(5\)](#page-6-4) we used $a = 1$ and $b = 5$ for the parameters of ⁶⁷⁰ the Γ(*a, b*) prior distribution for R_t . Yet, as explained above, ⁶⁷¹ these values could be neglected in the EpiEstim estimation, ⁶⁷² given the magnitude of the incidence data in these regions.

⁶⁷³ The total world population shows a clear weekly periodic ⁶⁷⁴ bias. The correction of this bias works quite well, as the RMSE 675 reduction reaches $\mathcal{I} = 0.337$ for $F \equiv F_1$ and $\mathcal{I} = 0.380$ for 676 $F \equiv F_2$. The oscillation of the incidence curve is strongly ϵ ₆₇₇ reduced, passing from $V(i) = 0.115$ to $V(i) = 0.063$. The 678 agreement with EpiEstim is also excellent as $S(\tilde{t}) = 0.01$ 679 for $F \equiv F_1$ and $S(\tilde{t}) = 0.014$ for $F \equiv F_2$. The daily bias 680 correction factors are similar for $F \equiv F_1$ and $F \equiv F_2$. On ⁶⁸¹ Sundays and Mondays the number of cases is underestimated ⁶⁸² and overestimated on Wednesdays, Thursdays and Fridays.

⁶⁸³ France also displays a clear weekly periodic bias: on Mon-⁶⁸⁴ days the number of cases is strongly underestimated, and ⁶⁸⁵ on Wednesdays it is strongly overestimated. The correction 686 of the periodic bias works well, as $\mathcal{I} = 0.481$ for $F \equiv F_1$ 687 and $\mathcal{I} = 0.513$ for $F \equiv F_2$. The oscillation of the incidence 688 curve is therefore reduced, passing from $V(i) = 0.329$ to 689 $V(\hat{i}) = 0.202$. The agreement with the EpiEstim method 690 is good, with $\mathcal{S}(\tilde{t}) = 0.026$ for $F \equiv F_1$ and $\mathcal{S}(\tilde{t}) = 0.025$ for 691 $F \equiv F_2$.

⁶⁹² Spain is special: it does not provide data on weekends or ⁶⁹³ holidays. In that case a constant value is being assigned to i_t in the affected days. Despite this, the correction of the 695 weekly periodic bias works again well and yields $\mathcal{I} = 0.171$ for $F \equiv F_1$ and $\mathcal{I} = 0.290$ for $F \equiv F_2$. The oscillation of the 697 incidence curve reduces from $V(i) = 0.135$ to $V(i) = 0.087$. 698 The agreement with the EpiEstim method is good, with $\mathcal{S}(\tilde{t}) =$ 699 0.025 for $F \equiv F_1$ and $\mathcal{S}(\tilde{t}) = 0.046$ for $F \equiv F_2$. Observe how ⁷⁰⁰ the incidence curve is underestimated on Sundays, Mondays ⁷⁰¹ and Tuesdays, and overestimated on Thursdays, Fridays and ⁷⁰² Saturdays.

703 In the USA we obtain $\mathcal{I} = 0.450$ for $F \equiv F_1$ and $\mathcal{I} = 0.569$ 704 for $F \equiv F_2$. The oscillation of the incidence curve is reduced γ_{05} from $V(i) = 0.130$ to $V(i) = 0.085$. The agreement with 706 EpiEstim is again very good with $\mathcal{S}(\tilde{t}) = 0.014$ for $F \equiv F_1$ and $707 \text{ } S(\tilde{t}) = 0.023 \text{ for } F \equiv F_2.$ On Sundays the number of cases is ⁷⁰⁸ underestimated, and overestimated on Fridays.

⁷⁰⁹ Although in general countries present a clear weekly pe-⁷¹⁰ riodic pattern in the incidence curve this is not the case for 711 Cuba. In this country we obtain $\mathcal{I} = 0.890$ for $F \equiv F_1$ and $712 \quad \mathcal{I} = 0.928$ for $F \equiv F_2$. The incidence curve oscillation is ⁷¹³ slightly reduced after the correction of the periodic bias. Fi-⁷¹⁴ nally, the agreement with the EpiEstim method is good, with 7_{15} $S(\tilde{t}) = 0.034$ for $F \equiv F_1$ and $S(\tilde{t}) = 0.041$ for $F \equiv F_2$.

 716 The values of the bias correction coefficients q_k obtained

for $F \equiv F_1$ and $F \equiv F_2$ are quite similar. So it seems that the 717 choice of the renewal equation has no significant influence on $\frac{718}{2}$ the estimation of the bias correction coefficients. $\frac{719}{200}$

The optimal shift \tilde{t} between R_t is R_t^i fits in the range 720 obtained by a joint analysis of the 70 countries. Indeed, for 721 $F \equiv F_1 \tilde{t}$ ranges from 2.72 to 3.50 and for $F \equiv F_2 \tilde{t}$ ranges 722 from 8*.*00 to 9*.*7. ⁷²³

E. Additional experiments. We can start this large set of exper- ⁷²⁴ iments with a recent example in France showing how EpiInvert 725 gives a valuable extension to EpiEstim. In Fig. $S2$ we observe τ_{26} a very good agreement between the EpiEstim estimate of $R(t)$ *r*₂₇ by March 26 ($R(t) = 1.239$) and the EpiInvert estimate 8 days τ_{28} in advance $(R(t) = 1.221)$. But the EpiInvert estimate is more τ_{29} regular and it does not produce the singularity observed in ⁷³⁰ the EpiEstim estimate by March 15. 731

Next, for $F \equiv F_2$, using the data of incidence curve up to 732 March 26, 2021, we present a collection of 64 experiments on π 33 different countries and separately 24 experiments on some US 734 states. The regions are sorted in alphabetic order. For each ⁷³⁵ experiment we show the charts and the following selection of 736 numerical values: $\frac{737}{200}$

1. \mathcal{I} : reduction factor of the RMSE error between i_t and 738 $F(i, R, \Phi, t)$ before and after the correction of the weekly 739 periodic bias defined as: $\frac{740}{2}$

$$
\mathcal{I} = \sqrt{\frac{\sum_{t=t_c-T+1}^{t_c} (\hat{i}_t - F(\hat{i}, R, \Phi, t))^{2}}{\sum_{t=t_c-T+1}^{t_c} (i_t - F(i, R1, \Phi, t))^{2}}}.
$$
 [M] ₇₄₁

where \hat{i} represents the incidence curve after correction τ_{42} and $R_1(.)$ represents the initial R_t estimate without correcting the periodic bias. In the case we do not apply the ⁷⁴⁴ correction of the periodic bias, this value does not appear 745 in the experiment.

- 2. \tilde{t} : optimal shift (in days) between our estimate of *R* and 747 the one obtained by EpiEstim.
- 3. $S(\tilde{t})$: RMSE between our estimate of *R* and the one 749 obtained by EpiEstim shifted back \tilde{t} days. $\frac{750}{250}$

4. $R_{t_c}^i$: last available value of the EpiEstim estimate R_t^i

5. R_{t_c} : last available value of our R_t estimate. 752

The default value for the regularization parameter is $w = 5$ 753 for $F \equiv F_1$ and $w = 5.5$ for $F \equiv F_2$, otherwise it is explicitly 754 written in the experiment. 755

In general the correction of the weekly periodic bias works 756 quite well. We can highlight the following regions where 757 such correction works extremely well: Germany $(\mathcal{I} = 0.166)$, 758 Croatia ($\mathcal{I} = 0.174$), Sweden ($\mathcal{I} = 0.192$), Switzerland ($\mathcal{I} = 759$ 0.206), Poland ($\mathcal{I} = 0.227$), Portugal ($\mathcal{I} = 0.23$), and Utah 760 $(\mathcal{I} = 0.292)$. On the other side, there is also a number of τ_{61} regions where the correction of the weekly bias does not work ⁷⁶² well as Uruguay ($\mathcal{I} = 0.822$), China ($\mathcal{I} = 0.826$), Peru ($\mathcal{I} = 763$ 0.83), Ethiopia ($\mathcal{I} = 0.831$), Indonesia ($\mathcal{I} = 0.89$), Cuba 764 $(\mathcal{I} = 0.928)$, Cyprus $(\mathcal{I} = 0.94)$, Washington $(\mathcal{I} = 0.816)$, New 765 York $(\mathcal{I} = 0.86)$ and Connecticut $(\mathcal{I} = 0.936)$.

For some regions where the value of $\mathcal{S}(\tilde{t})$ is high, we repeat 767 the experiment without correcting the weekly periodic bias. In 768 general, in such cases we observe that profile of the R_t estimate τ_{69} is similar in both cases and the experimental variability is lower τ (or similar) in the case of using the bias correction. That is the π

. ⁷⁵¹

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . medRxiv preprint doi: [https://doi.org/10.1101/2020.08.01.20165142;](https://doi.org/10.1101/2020.08.01.20165142) this version posted June 14, 2021. The copyright holder for this preprint
(**which was not certified by peer review)** is the author/funder, who has granted

Fig. S1. Results obtained for the world population up to March 26, 2021 using: (top) $F \equiv F_1$ and (down) $F \equiv F_2$.

	World	World	France	France	Spain	Spain	USA	USA	Cuba	Cuba
F	F_1	F_2	F_1	F_2	$F_{\rm 1}$	F_2	F_1	F_2	F_1	F_2
\tilde{t}	2.72	8.94	3.50	9.05	3.38	9.70	2.72	8.76	3.09	8.00
$\overline{\mathcal{S}(\tilde{t})}$	0.010	0.014	0.026	0.025	0.025	0.046	0.014	0.023	0.034	0.041
T	0.337	0.380	0.481	0.513	0.171	0.290	0.450	0.569	0.890	0.928
q_1	1.011	1.012	0.931	0.932	1.263	1.266	1.008	1.005	1.005	1.006
q_2	1.204	1.204	1.073	1.078	1.227	1.208	1.262	1.250	0.945	0.945
q_3	1.260	1.259	3.201	3.180	1.177	1.149	1.095	1.083	1.049	1.049
q_4	1.027	1.026	1.062	1.062	1.031	1.009	1.053	1.057	0.923	0.921
q_5	0.887	0.888	0.698	0.691	0.857	0.858	0.925	0.936	1.025	1.025
96	0.888	0.889	0.889	0.886	0.802	0.817	0.909	0.915	1.037	1.037
q_7	0.881	0.881	0.944	0.955	0.834	0.863	0.867	0.869	1.026	1.027

Table S1. Numerical results obtained by EpiInvert for the world population, France, Spain, the USA and Cuba using the data up to March 26, 2021 and the renewal equations $F = F_1$ and $F = F_2$.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . medRxiv preprint doi: [https://doi.org/10.1101/2020.08.01.20165142;](https://doi.org/10.1101/2020.08.01.20165142) this version posted June 14, 2021. The copyright holder for this preprint
(**which was not certified by peer review)** is the author/funder, who has granted

Fig. S2. Comparison of the EpiEstim estimate of $R(t)$ in France by March 26 ($R(t) = 1.239$) and the EpiInvert estimate 8 days in advance ($R(t) = 1.221$). Notice the singularity observed in the EpiEstim estimate by March 15.

 case of Canada, China, Cuba, Cyprus, Ethiopia, Peru, New York or Washington. In the case of Denmark, both estimations of R_t are quite different and the experimental variability are very high due to some high oscillations of the incidence curve in the last days of the sequence.

 A very special case is Kansas. As can be observed in Fig. [S21,](#page-31-0) although the correction of the weekly periodic bias is not bad ($\mathcal{I} = 0.595$) the obtained R_t estimate is very inaccurate. The reason is that the incidence curve of Kansas is extremely γ_{81} oscillating $(V(i) = 1.728$ (notice that in the USA $V(i) = 0.130$)) but the oscillations are not 7-day periodic and the correction of the weekly periodic bias produces high distortions of the incidence curve when we approach the last day of the sequence. In this very particular case it is clearly better to do not use the correction of the weekly bias. Moreover, due to the extremely oscillating behaviour of the incidence curve, as shown in the experiments of Fig. [S21](#page-31-0) a high value of the regularization parameter $(w = 40)$ is required in order to properly regularize the estimate of R_t .

 Concerning the agreement with EpiEstim we observe that countries with small oscillations in the incidence curve like Iran 793 ($V(i) = 0.023$) or Russia ($V(i) = 0.031$) show excellent agree-794 ment with EspiEstim $(S(\tilde{t}) = 0.006$ for Iran and $S(\tilde{t}) = 0.01$ for Russia). On the other hand, countries with small number of cases like China have no good agreement with EpiEstim $797 \left(\mathcal{S}(\tilde{t}) = 0.142 \right)$ with the default value of the regularization 798 parameter w . In such cases our R_t estimate is much more regular than the one of EpiEstim.

Fig. S3. From top to down: Argentina ($\mathcal{I}=0.451, \, \tilde{t}=8.11, \, \mathcal{S}(\tilde{t})=0.033, \, R^i(t_c)=1.137, \, R(t_c)=1.181),$ Austria ($\mathcal{I}=0.464, \, \tilde{t}=9.37, \, \mathcal{S}(\tilde{t})=0.014,$ $R^i(t_c) = 1.101, R(t_c) = 1.060$), Belgium ($\mathcal{I} = 0.293, \tilde{t} = 8.49, \mathcal{S}(\tilde{t}) = 0.031, R^i(t_c) = 1.242, R(t_c) = 1.166$) and Brazil ($\mathcal{I} = 0.560, \tilde{t} = 8.21, \mathcal{S}(\tilde{t}) = 0.027,$ $R^i(t_c) = 1.051, R(t_c) = 1.064.$

Fig. S4. From top to down: Bulgaria ($\mathcal{I}=0.245, \, \tilde{t}=7.23, \, \mathcal{S}(\tilde{t})=0.041, \, R^i(t_c)=1.105, \, R(t_c)=0.894),$ Canada ($\mathcal{I}=0.780, \, \tilde{t}=9.10, \, \mathcal{S}(\tilde{t})=0.019,$ $R^i(t_c) = 1.187$, $R(t_c) = 1.262$), Canada ($\tilde{t} = 9.07$, $S(\tilde{t}) = 0.019$, $R^i(t_c) = 1.187$, $R(t_c) = 1.311$) and Chile ($\mathcal{I} = 0.385$, $\tilde{t} = 8.95$, $S(\tilde{t}) = 0.017$, $R^{i}(t_c) = 1.127, R(t_c) = 1.093$.

Fig. S5. From top to down: China ($\mathcal{I} = 0.826$, $\tilde{t} = 9.30$, $\mathcal{S}(\tilde{t}) = 0.142$, $R^i(t_c) = 0.805$, $R(t_c) = 0.833$), China ($\tilde{t} = 9.11$, $\mathcal{S}(\tilde{t}) = 0.131$, $R^i(t_c) = 0.805$, $R(t_c) = 0.773$), Costa Rica ($\mathcal{I} = 0.499$, $\tilde{t} = 8.97$, $\mathcal{S}(\tilde{t}) = 0.018$, $R^i(t_c) = 1.154$, $R(t_c) = 1.172$) and Croatia ($\mathcal{I} = 0.174$, $\tilde{t} = 8.88$, $\mathcal{S}(\tilde{t}) = 0.033$, $R^i(t_c) = 1.393, R(t_c) = 1.469.$

Fig. S6. From top to down: Cuba (Z $=0.928$, $\tilde{t}=8.00,$ $\mathcal{S}(\tilde{t})=0.041,$ $R^i(t_c)=1.016,$ $R(t_c)=1.060),$ Cuba ($\tilde{t}=8.00,$ $\mathcal{S}(\tilde{t})=0.040,$ $R^i(t_c)=1.016,$ $R(t_c) = 1.042$), Cyprus ($\mathcal{I} = 0.940$, $\tilde{t} = 8.77$, $\mathcal{S}(\tilde{t}) = 0.074$, $R^i(t_c) = 0.965$, $R(t_c) = 0.861$) and Cyprus ($\tilde{t} = 8.77$, $\mathcal{S}(\tilde{t}) = 0.074$, $R^i(t_c) = 0.965$, $R(t_c) = 0.878$.

Fig. S7. From top to down: Czechia ($\mathcal{I}=0.433$, $\tilde{t}=9.39$, $\mathcal{S}(\tilde{t})=0.026$, $R^i(t_c)=0.795$, $R(t_c)=0.709$), Denmark ($\mathcal{I}=0.717$, $\tilde{t}=7.42$, $\mathcal{S}(\tilde{t})=0.080$, $R^i(t_c) = 1.029,\, R(t_c) = 0.788)$ and Denmark $(\tilde{t}=8.00,\,\mathcal{S}(\tilde{t})=0.074,\, R^i(t_c)=1.029,\, R(t_c)=0.967),$ Estonia ($\mathcal{I}=0.661,\, \tilde{t}=8.81,\, \mathcal{S}(\tilde{t})=0.029,$ $R^i(t_c) = 0.883, R(t_c) = 0.790$.

Fig. S8. From top to down: Ethiopia ($\mathcal{I}=0.831, \tilde{t}=7.43,$ $\mathcal{S}(\tilde{t})=0.049,$ $R^i(t_c)=1.146,$ $R(t_c)=1.084),$ Ethiopia ($\tilde{t}=7.50,$ $\mathcal{S}(\tilde{t})=0.050,$ $R^i(t_c)=1.146,$ $R(t_c) = 1.162$), Finland ($\mathcal{I} = 0.630$, $\tilde{t} = 8.00$, $\mathcal{S}(\tilde{t}) = 0.038$, $R^i(t_c) = 0.941$, $R(t_c) = 0.838$) and France ($\mathcal{I} = 0.513$, $\tilde{t} = 9.05$, $\mathcal{S}(\tilde{t}) = 0.025$, $R^i(t_c) = 1.236$, $R(t_c) = 1.251$.

Fig. S9. From top to down: Germany ($\mathcal{I}=0.166, \tilde{t}=9.00,$ $\mathcal{S}(\tilde{t})=0.018,$ $R^i(t_c)=1.251,$ $R(t_c)=1.249),$ Greece ($\mathcal{I}=0.507,$ $\tilde{t}=8.00,$ $\mathcal{S}(\tilde{t})=0.061,$ $R^i(t_c) = 1.007, R(t_c) = 0.752$), Hungary ($\mathcal{I} = 0.644, \tilde{t} = 8.15, \mathcal{S}(\tilde{t}) = 0.052, R^i(t_c) = 1.198, R(t_c) = 1.155$) and India ($\mathcal{I} = 0.434, \tilde{t} = 8.59, \mathcal{S}(\tilde{t}) = 0.022,$ $R^i(t_c) = 1.470, R(t_c) = 1.378.$

Fig. S10. From top to down: Indonesia ($\mathcal{I}=0.890, \, \tilde{t}=8.18, \, \mathcal{S}(\tilde{t})=0.029, \, R^i(t_c)=0.927, \, R(t_c)=0.939),$ Iran ($\mathcal{I}=0.676, \, \tilde{t}=9.11, \, \mathcal{S}(\tilde{t})=0.006,$ $R^i(t_c) = 0.963, R(t_c) = 0.982$), Ireland ($\mathcal{I} = 0.730, \tilde{t} = 8.57, \mathcal{S}(\tilde{t}) = 0.045, R^i(t_c) = 1.075, R(t_c) = 1.069)$ and Israel ($\mathcal{I} = 0.570, \tilde{t} = 8.45, \mathcal{S}(\tilde{t}) = 0.042,$ $R^{i}(t_{c}) = 0.442, R(t_{c}) = 0.451.$

Fig. S11. From top to down: Italy ($\mathcal{I} = 0.584$, $\tilde{t} = 8.74$, $\mathcal{S}(\tilde{t}) = 0.020$, $R^i(t_c) = 1.001$, $R(t_c) = 0.922$), Japan ($\mathcal{I} = 0.570$, $\tilde{t} = 8.93$, $\mathcal{S}(\tilde{t}) = 0.041$, $R^i(t_c) = 1.216,\, R(t_c) = 1.307$), Jordan ($\mathcal{I} = 0.437,\, \tilde{t} = 8.00,\, \mathcal{S}(\tilde{t}) = 0.047,\, R^i(t_c) = 1.027,\, R(t_c) = 0.853)$ and Kenya ($\mathcal{I} = 0.574,\, \tilde{t} = 7.91,\, \mathcal{S}(\tilde{t}) = 0.056,\, R(t_c) = 0.056,\, R(t_c) = 0.056,\, R(t_c) = 0.056,\, R$ $R^{i}(t_c) = 1.351, R(t_c) = 1.396$.

Fig. S12. From top to down: Latvia ($\mathcal{I} = 0.299$, $\tilde{t} = 8.43$, $\mathcal{S}(\tilde{t}) = 0.026$, $R^i(t_c) = 0.993$, $R(t_c) = 1.050$), Mexico ($\mathcal{I} = 0.449$, $\tilde{t} = 8.46$, $\mathcal{S}(\tilde{t}) = 0.051$, $R^i(t_c) = 0.976, R(t_c) = 0.993$), Morocco ($\mathcal{I} = 0.329, \tilde{t} = 7.32, S(\tilde{t}) = 0.025, R^i(t_c) = 1.030, R(t_c) = 1.045)$ and Netherlands ($\mathcal{I} = 0.601, \tilde{t} = 8.55,$ $S(\tilde{t}) = 0.023, R^{i}(t_c) = 1.168, R(t_c) = 1.120$.

Fig. S13. From top to down: Norway ($\mathcal{I}=0.609, \tilde{t}=8.48, \mathcal{S}(\tilde{t})=0.053, R^i(t_c)=1.046, R(t_c)=0.891),$ Pakistan ($\mathcal{I}=0.557, \tilde{t}=8.37,$ $\mathcal{S}(\tilde{t})=0.027,$ $R^i(t_c) = 1.274, R(t_c) = 1.127$), Peru ($\mathcal{I} = 0.830, \tilde{t} = 8.68, \mathcal{S}(\tilde{t}) = 0.105, R^i(t_c) = 1.122, R(t_c) = 1.258$) and Peru ($\tilde{t} = 8.02, \mathcal{S}(\tilde{t}) = 0.088, R^i(t_c) = 1.122, R(t_c) = 1.258$ $R(t_c) = 1.270$.

Fig. S14. From top to down: Philippines ($\mathcal{I}=0.313, \, \tilde{t}=8.55, \, \mathcal{S}(\tilde{t})=0.026, \, R^i(t_c)=1.408, \, R(t_c)=1.358),$ Poland ($\mathcal{I}=0.227, \, \tilde{t}=8.77, \, \mathcal{S}(\tilde{t})=0.022,$ $R^i(t_c) = 1.267$, $R(t_c) = 1.253$), Portugal ($\mathcal{I} = 0.230$, $\tilde{t} = 9.49$, $\mathcal{S}(\tilde{t}) = 0.103$, $R^i(t_c) = 0.844$, $R(t_c) = 0.839$) and Romania ($\mathcal{I} = 0.265$, $\tilde{t} = 8.57$, $S(\tilde{t}) = 0.019, R^{i}(t_c) = 1.107, R(t_c) = 1.060$.

Fig. S15. From top to down: Russia ($\mathcal{I} = 0.621$, $\tilde{t} = 7.25$, $\mathcal{S}(\tilde{t}) = 0.010$, $R^i(t_c) = 0.954$, $R(t_c) = 0.963$), Serbia ($\mathcal{I} = 0.548$, $\tilde{t} = 8.41$, $\mathcal{S}(\tilde{t}) = 0.043$, $R^i(t_c) = 1.059$, $R(t_c) = 0.978$), Slovakia ($\mathcal{I} = 0.304$, $\tilde{t} = 8.31$, $\mathcal{S}(\tilde{t}) = 0.029$, $R^i(t_c) = 0.776$, $R(t_c) = 0.785$) and Slovenia ($\mathcal{I} = 0.354$, $\tilde{t} = 7.88$, $S(\tilde{t}) = 0.034, R^{i}(t_c) = 1.132, R(t_c) = 1.127.$

Fig. S16. From top to down: South Africa ($\mathcal{I}=0.299, \tilde{t}=10.42, \mathcal{S}(\tilde{t})=0.055, R^i(t_c)=0.937, R(t_c)=0.961),$ Spain ($\mathcal{I}=0.290, \tilde{t}=9.70, \mathcal{S}(\tilde{t})=0.046,$ $R^i(t_c) = 1.117, R(t_c) = 1.153$), Sweden ($\mathcal{I} = 0.192, \tilde{t} = 9.45, S(\tilde{t}) = 0.022, R^i(t_c) = 1.128, R(t_c) = 1.146$) and Switzerland ($\mathcal{I} = 0.206, \tilde{t} = 9.10,$ $S(\tilde{t}) = 0.016, R^{i}(t_c) = 1.167, R(t_c) = 1.183.$

Fig. S17. From top to down: Tunisia ($\mathcal{I}=0.738, \, \tilde{t}=8.19, \, \mathcal{S}(\tilde{t})=0.038, \, R^i(t_c)=0.995, \, R(t_c)=1.121),$ Turkey ($\mathcal{I}=0.554, \, \tilde{t}=8.32, \, \mathcal{S}(\tilde{t})=0.013,$ $R^i(t_c) = 1.375, R(t_c) = 1.384,$ Ukraine ($\mathcal{I} = 0.384, \tilde{t} = 8.07,$ $\mathcal{S}(\tilde{t}) = 0.034,$ $R^i(t_c) = 1.197, R(t_c) = 1.093)$ and United Arab Emirates ($\mathcal{I} = 0.773,$ $\tilde{t} = 8.41,$ $S(\tilde{t}) = 0.021, R^{i}(t_c) = 0.957, R(t_c) = 0.975$.

Fig. S18. From top to down: United Kingdom ($\mathcal{I}=0.557$, $\tilde{t}=8.26,$ $\mathcal{S}(\tilde{t})=0.024,$ $R^i(t_c)=1.009,$ $R(t_c)=1.006)$, USA ($\mathcal{I}=0.569,$ $\tilde{t}=8.76,$ $\mathcal{S}(\tilde{t})=0.023,$ $R^i(t_c) = 1.100, R(t_c) = 1.188$), Uruguay ($\mathcal{I} = 0.822, \tilde{t} = 8.26, \mathcal{S}(\tilde{t}) = 0.039, R^i(t_c) = 1.384, R(t_c) = 1.354)$ and Uruguay ($\tilde{t} = 8.34, \mathcal{S}(\tilde{t}) = 0.041,$ $R^i(t_c) = 1.384, R(t_c) = 1.489.$

Fig. S19. From top to down: Arkansas ($\mathcal{I}=0.753, \tilde{t}=8.46, \mathcal{S}(\tilde{t})=0.155,$ $R^i(t_c)=0.762,$ $R(t_c)=0.816),$ California ($\mathcal{I}=0.692,$ $\tilde{t}=6.72,$ $\mathcal{S}(\tilde{t})=0.033,$ $R^i(t_c) = 0.868$, $R(t_c) = 0.904$), Connecticut ($\mathcal{I} = 0.936$, $\tilde{t} = 8.00$, $\mathcal{S}(\tilde{t}) = 0.061$, $R^i(t_c) = 1.320$, $R(t_c) = 1.541$) and Florida ($\mathcal{I} = 0.606$, $\tilde{t} = 8.74$, $S(\tilde{t}) = 0.021, R^{i}(t_c) = 1.052, R(t_c) = 1.098$.

Fig. S20. From top to down: Georgia ($\mathcal{I} = 0.463$, $\tilde{t} = 8.13$, $\mathcal{S}(\tilde{t}) = 0.035$, $R^i(t_c) = 0.988$, $R(t_c) = 0.998$), Idaho ($\mathcal{I} = 0.450$, $\tilde{t} = 8.02$, $\mathcal{S}(\tilde{t}) = 0.034$, $R^i(t_c) = 0.944, R(t_c) = 0.902$), Illinois ($\mathcal{I} = 0.516, \tilde{t} = 8.25, \mathcal{S}(\tilde{t}) = 0.026, R^i(t_c) = 1.170, R(t_c) = 1.243$) and Indiana ($\mathcal{I} = 0.586, \tilde{t} = 8.31, \mathcal{S}(\tilde{t}) = 0.031,$ $R^i(t_c) = 1.073, R(t_c) = 1.156$.

Fig. S21. From top to down: Kansas ($\mathcal{I}=0.595, \tilde{t}=8.50, \mathcal{S}(\tilde{t})=0.692, R^i(t_c)=0.940, R(t_c)=-0.022, \mathcal{V}(i)=1.728),$ Kansas ($\tilde{t}=7.42, \mathcal{S}(\tilde{t})=0.205,$ $R^i(t_c) = 0.940, R(t_c) = 1.666$), Kansas ($\tilde{t} = 7.59, S(\tilde{t}) = 0.065, R^i(t_c) = 0.940, R(t_c) = 1.131, w = 40$) and lowa ($\mathcal{I} = 0.707, \tilde{t} = 8.49, S(\tilde{t}) = 0.055, R(\tilde{t}) = 0.056$ $R^i(t_c) = 1.195$. $R(t_c) = 1.347$

Fig. S22. From top to down: Maryland ($\mathcal{I}=0.525, \tilde{t}=8.20, \mathcal{S}(\tilde{t})=0.028, R^i(t_c)=1.150, R(t_c)=1.217),$ Massachusetts ($\mathcal{I}=0.630, \tilde{t}=8.35, \mathcal{S}(\tilde{t})=0.031,$ $R^i(t_c) = 1.192,\, R(t_c) = 1.256,$ New York ($\mathcal{I} = 0.860,\, \tilde{t} = 8.00,\, \mathcal{S}(\tilde{t}) = 0.048,\, R^i(t_c) = 1.260,\, R(t_c) = 1.378)$ and New York ($\tilde{t} = 8.76,\, \mathcal{S}(\tilde{t}) = 0.049,\,$ $R^i(t_c) = 1.260, R(t_c) = 1.465.$

Fig. S23. From top to down: North Dakota ($\mathcal{I}=0.537, \tilde{t}=8.00,$ $\mathcal{S}(\tilde{t})=0.086,$ $R^i(t_c)=1.279,$ $R(t_c)=1.401$), Ohio ($\mathcal{I}=0.542,$ $\tilde{t}=8.55,$ $\mathcal{S}(\tilde{t})=0.032,$ $R^i(t_c) = 1.077, R(t_c) = 1.175$), Texas ($\mathcal{I} = 0.576, \tilde{t} = 7.93, S(\tilde{t}) = 0.081, R^i(t_c) = 0.931, R(t_c) = 1.032$) and Utah ($\mathcal{I} = 0.292, \tilde{t} = 7.06, S(\tilde{t}) = 0.023,$ $R^{i}(t_c) = 0.895, R(t_c) = 0.914.$

Fig. S24. From top to down: Vermont ($\mathcal{I}=0.760, \tilde{t}=8.00, \mathcal{S}(\tilde{t})=0.057, R^i(t_c)=1.300, R(t_c)=1.510)$, Washington ($\mathcal{I}=0.816, \tilde{t}=8.23, \mathcal{S}(\tilde{t})=0.027,$ $R^i(t_c) = 1.109, R(t_c) = 1.158$), Washington ($\tilde{t} = 8.47, S(\tilde{t}) = 0.037, R^i(t_c) = 1.109, R(t_c) = 1.299$) and Wisconsin ($\mathcal{I} = 0.344, \tilde{t} = 9.29, S(\tilde{t}) = 0.027, R(\tilde{t}) = 0.037$ $R^i(t_c) = 1.086, R(t_c) = 1.111.$