
A variational model for computing the effective

reproduction number of SARS-CoV-2

Luis Alvarez1, Miguel Colom2 and Jean-Michel Morel2

1 CTIM. Departamento de Informática y Sistemas,
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Abstract

We propose a variational model for computing the effective reproduction number

(ERN) of SARS-CoV-2 from the daily count of incident cases and the serial interval.

The ERN estimate is made through the minimization of a functional that includes: (i)

the adjustment of the incidence curve using an epidemiological model, (ii) the regularity

of the estimation of the ERN and, (iii) the adjustment of the initial value to an initial

estimate of R0 obtained from the initial exponential growth of the epidemic. The model

does not assume any statistical distribution for the ERN and does not require truncating

the serial interval when its distribution contains negative days. A comparative study has

been carried out with the standard EpiEstim method. For a particular choice of the pa-

rameters of the variational model and of the serial interval, a good agreement has been

obtained between the estimate provided by the variational model and a shifted estimate

obtained by EpiEstim. This backward shift suggests that our estimate is closer to present

than that of EpiEstim. We also examine how to forecast the value of the ERN and the

number of infected in the short term. An implementation of the model is available at

www.ipol.im/ern.
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A key epidemiological parameter to evaluate the time varying transmission rate of a disease

is the effective reproduction number (ERN), (also denoted in this paper by Rt or R(t)), defined

as the expected number of secondary cases produced by a primary case at each time t. The

computation of an effective, or instantaneous, reproduction number is much more problematic

than its global estimate, R0, on a large period where the pandemic runs free. In [4] for example,

the reproduction number of the Spanish influenza was estimated from daily case notification

data using several variants of a SEIR model. This estimate was based on a long period, was

therefore not time dependent as it should be in periods where lock-down strategies or other

distancing measures are being applied. We refer to [12] for a comparison of strategies to compute

R0 and Rt.

The key ingredient of the estimation of R(t) is a reproduction formula linking the incidence

i(t) to R(t). Here a caveat must be formulated. We shall reason as though i(t) denoted the total

number of new cases. But, in practice, the detected infected are only a portion of i(t). Hence

all formulas below rely on the assumption that the daily count of detected infected is actually

proportional to the (unavailable) daily count of real infected. This assumption is actually not

true, as it is strongly influenced by detection strategies. But if the detection policies evolve

slowly, the arguments and calculations below remain valid.

The reproduction formula requires the knowledge of the serial interval function Φ(s), which

models the time between the onset of symptoms in a primary case and the onset of symptoms

in secondary cases. This formula linking i(t), R(t) and Φ(s) goes back at least to Nishiura 2007

[10]. It writes

i(t) =

∫ t

0

i(t− s)R(t− s)Φ(s)ds. (1)

The only assumption underlying the reproduction formula (1) is that the serial interval depends

only on biological factors, which is reasonable. If we assume that R(t − s) is locally constant

and equal to R(t), that is R(t− s) ≡ R(t) for s such that Φ(s) > 0, then the above expression

becomes

i(t) = R(t)

∫ t

0

i(t− s)Φ(s)ds. (2)

This expression has been used in the literature by several authors to estimate R(t) [2], [3]. In
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its stochastic Poisson formulation, it is a widely used strategy to compute R(t) using (2) (see

[13], [8] or [5]). In that case, the formula is given in stochastic form, assuming i(t) follows a

Poisson model (see [5], [12] [13]). Then the second member of (2) is taken to be the expectation

of the Poisson model.

In [1] the problem of estimating R(t) by maximum likelihood estimation of L is comple-

mented by a piecewise regularity term for R(t), instead of using a Bayesian framework. This

regularity term in the variational model is complemented by a spatial regularity term to ensure

that neighboring French districts have similar values for R(t). One of the most widely used

methods to estimate R(t) is the one proposed by Cori et al. in [5]. The authors show that

if the expectation of i(t) is given by E[i(t)] = R(t)
∑t

s=1 i(t − s)Φ(s) and R(t) is assumed

to follow a gamma prior distribution, then an analytical expression can be obtained for the

posterior distribution of R(t). To obtain a more regular estimate they compute R(t) in a time

window of size τ ending at time t, assuming that R(t) is locally constant is that window. This

method is implemented in the EpiEstim R package and it is also provided as a Microsoft Excel

spreadsheet.

In this paper we use the epidemiological model (1) rather than the simplified version (2)

used by EpiEstim. One important difference between both formulations is that the estimation

of R(t) using the simplified model is shifted with respect to the estimation using the model (1).

The reason is that if we replace R(t− s) in equation (1) by a constant value, it would be more

accurate to replace R(t − s) by a shifted back value R(t − µ) than by R(t), as t is the end of

the integration interval. In other words, it would be more accurate to replace equation (2) by

i(t) = R(t− µ)

∫ t

0

i(t− s)Φ(s)ds. (3)

where µ is the center of mass of the serial distribution Φ(s). So the assumption about the

expectation of i(t) should be E[i(t)] = R(t−µ)
∑t

s=1 i(t−s)Φ(s). It follows that we can expect

to observe a shift between an Rt estimate using the original model (1) and the one obtained

using its simplification (2). Our experiments here reveal a clear shift between our estimation

and the one obtained by EpiEstim, going up to seven days. This shift suggests that our estimate

is more to date than the one proposed by EpiEstim.
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We now discuss what serial interval functions Φ are available for SARS-CoV-2. As we saw,

the serial interval in epidemiology refers to the time between successive observed cases in a

chain of transmission. Du et al. in [6] define this interval as follows:

The serial interval is defined as the time duration between a primary case (infector)

developing symptoms and secondary case (infectee) developing symptoms.

Hence, by a careful inquiry on many pairs of patients, where one is the probable cause of the

infection of the other, one may obtain the distribution of the serial interval in practice, as it

has been done by Du et al. in [6] on 468 cases. The authors of this paper recall that this

quantity cannot be inferred from daily case count data alone [14]. Moreover, the observed serial

distribution in [6] had a significant number of cases on negative days, meaning that the infectee

had developed symptoms up to 10 days before the infector.

In [7], the serial interval is defined as the length of time a person is contagious. It can be

estimated by tracking contacts (i.e., infector-infected pairs) and by counting the number of days

between the dates of onset of symptoms in the infecting and infected individuals respectively.

In the experiments presented in this paper we shall use three serial intervals: the one

obtained by Du et al. in [6] using 468 cases, a serial interval obtained by Nishiura et al. in

[11] using 28 cases which is approximated by a log-normal distribution, and a serial interval

obtained by Ma et al. in [9] using 1155 cases. As proposed by the authors this serial interval has

been approximated by a shifted log-normal to take into account the cases in the negative days.

In Fig. 1 we show the profile of these serial intervals. Of course, more accurate estimates of the

serial interval for the SARS-CoV-2 can be expected in the future. In the online interface (www.

ipol.im/ern) the users can, optionally, upload their own distribution for the serial interval.
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METHODS

A new variational model to compute Rt.

Equation (1) was originally formulated for serial interval functions Φ(s) satisfying Φ(s) = 0

for s ≤ 0, but this is definitely not true for the SARS-CoV-2. Hence, to avoid an artificial

truncation of the serial interval function, we adopt the obvious generalization of this equation

as

i(t) =

∫ ∞
−∞

i(t− s)R(t− s)Φ(s)ds. (4)

In that way, the integration is performed on the whole support of the serial interval Φ(s). In

practice, we deal with an incidence curve observed itself on a limited interval, up to present.

Hence, boundary conditions including days in the future will be requested to apply the above

formula to any point of the incidence curve. Our method requires the observation of:

• the incidence curve, namely the daily count of new detected cases of SARS-CoV-2 infec-

tions, denoted as it = i(t) on day t.

• an empirical probability distribution Φ = (Φf0 , · · · ,Φf ) for the serial interval. We assume

that a patient can show symptoms up to f0 days before the person who contaminated

him/her shows symptoms himself/herself. So we have f0 = −4 for the Ma et al. serial

interval, f0 = 0 for Nishiura et al. and f0 = −10 for Du et al. The discrete support of Φ

is therefore contained in the interval [f0, f ].

We shall use the straightforward discretization of Equation (4),

it =

f∑
s=f0

it−sRt−sΦs for t = 0, .., tc, (5)

where Rt represents the discrete version of R(t), t = 0 is the time where the infection number

starts to grow and tc the current time. This equation is inserted in a variational model to
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estimate Rt by minimizing the energy

E({Rt}) =
tc∑
t=0

(
it −

∑f
s=f0

it−sRt−sΦs

p90(i)

)2

+
tc∑
t=1

wt(Rt −Rt−1)
2 +

M∑
m=0

βm(Rtm − R̄tm)2, (6)

where p90(i) is the 90th percentile of {it}t=0,..,tc used to normalize the energy with respect to

the size of it. The first term of E is a data adjustment term which forces equation (5) to

be satisfied as much as possible. The second term forces Rt to be a smooth curve ; wt ≥ 0

represents the weight of the regularization at each time t. The higher the value of wt the

smoother Rt. The last term of E forces Rtm to be close to an initial estimate given by R̄tm for

some particular times tm. Finally, βm is a weight that determines the confidence we have in

such initial estimate R̄tm . The larger βm, the greater this confidence. Typically, M is equal to

0 or 1. In the case of M = 0, we use in the energy a prescribed value of R0 and in the case

of M = 1, we use the prescribed value of R0 and a prescribed value of Rtc (the current time).

Minimizing the energy E leads to satisfy approximately the epidemiological model (5) with a

reasonably smooth Rt and prescribed initial value for R0 and Rtc . The parameters wt and βm

determine the importance assigned to these constraints in the estimation.

Minimizing E with respect to the sequence {Rt} yields a linear system of equations that is

easily solved, if it is complemented with adequate boundary conditions for Rt and it on both

ends of the observation interval.

Definition of the boundary conditions.

For R(t), we will always assume that R(t) = R(0) for t < 0 and R(t) = R(tc) for t > tc (the

current time). Concerning i(t), when t > tc we use linear regression to extrapolate the values

of i(t) beyond tc, to compute the regression line (i = m7 · t+n7) we use the last 7 values of i(t).

For t < 0 we will assume that the cumulative number of infected detected I(t) ≡
∑t

k=0 i(k)

follows an exponential growth for t < 0, that is I(t) = I(0)eat, where a represents the initial

exponential growth rate of I(t) at the beginning of the infection spread. In summary, the
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extension of i(t) beyond the observed interval [0, tc] is defined by

i(t) =


I(0)eat − I(0)ea(t−1) if t < 0;

m7 · t+ n7 if t > tc.

(7)

Computation of the initial exponential growth a and R̄0 We now naturally estimate a by

a = median({log
(
I(t+ 1)

I(t)

)
: t = 0, .., 14}). (8)

If we assume that I(t) = I(0)eat follows initially an exponential growth and that Rt is initially

constant, then using equation (5) we obtain that

i0 = I(0)(1− e−a) = I(0)R0

f∑
k=f0

(e−ka − e−(k+1)a)Φk. (9)

Hence, we can compute an approximation of R0 as

R̄0 =
1− e−a∑f

k=f0
(e−ka − e−(k+1)a)Φk

. (10)

Note that this estimation strongly depends on the serial interval used. For instance for a = 0.2

we obtain that R̄0 = 2.26 for the Nishiura et al. serial interval, R̄0 = 2.62 for the Ma et al.

serial interval and R̄0 = 1.80 for the Du et al. serial interval.

We assumed here that we would compute R(t) from the beginning of the epidemic’s spread

to the present day. Since the epidemic is likely to be with us for a long period of time, note

that it is also possible to use our model to start calculating R(t) from any ulterior time t1, in

which case the user can provide an initial value of R(t1).

Management of the regularization weight wt

Let ŵ0 > 0 be a constant value, we define wt as

wt = ŵ0
Gσw ∗ i(t)
p90(i)

, (11)

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.08.01.20165142doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.01.20165142
http://creativecommons.org/licenses/by-nc-nd/4.0/


where Gσw ∗ i(t) represents the convolution of it with a Gaussian kernel of standard deviation

σw and p90(i) is the 90th percentile of {it}t=0,..,tc . Therefore, at each time t, the regularization

weight is proportional to the number of cases in t (filtered using a Gaussian convolution). By

default, we use σw = 3, as standard deviation of the Gaussian kernel.

We noticed that in the case ŵ0 is small, by minimizing the energy (6) one can obtain negative

values Rt for some t. In such cases, we increase iteratively the value of the regularization weights

at such points and their neighbors and we compute again the minimum of (6). More precisely

for any tk such that Rtk < 0, we update wtk = 10wtk , wtk+1 = 10wtk+1, wtk−1 = 10wtk−1 and

then recompute the minimum of the energy (6). This operation is performed until all Rt’s

become positive. We observed experimentally that this objective is reached in a few iterations.

Filtering “administrative noise”

The raw data curve in is extraordinarily noisy, and the administrative noise has unfortu-

nately little to do with the Poisson noise used in most aforementioned publications. Government

statistics are affected by changes of testing and polling policies, political decisions, and week-

end reporting delays. Here is for example a list of explanations for the undue peaks (and

even negative counts) in official cases statistics in France (https://en.wikipedia.org/wiki/

COVID-19_pandemic_in_France):

• A new laboratory transmits data since May 4, retrospectively from March 16.

The new number of cases in the last 24 hours takes this into account.

• The increase in cases compared to data of the previous day is an aggregation

of additional data from 13th May, previously not taken into account.

• Some positive patients were counted twice, this is no longer the case, therefore

the decrease in cases compared to data of the previous day.

These recording delays and consecutive rash corrections make a peculiar feature of such time

series that we call administrative noise. They result in strong impulse noise, together with a

“week-end” 7-periodic noise. These noises clearly dominate the alleged Poisson noise inherent

in any counting procedure.

9

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.08.01.20165142doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.01.20165142
http://creativecommons.org/licenses/by-nc-nd/4.0/


To remove the bulk of such impulses, we (optionally) filter the raw time series of infected

with a sliding median filter with window size radius wR and a linear Gaussian filter with

standard deviation σ. The application of the optional median filter is especially important in

cases where singular data appear due to strong adjustments of the infected values from one day

to the next. This is the case, for example, in France, the United Kingdom or Spain, but it is

less necessary for larger countries such as the United States or India. A more local linear filter

is also optionnally applied. It is less aggressive and can be used to smooth the data a bit. This

linear filtering can be a Gaussian filtering or a moving average.

Summary of the algorithm computing Rt.

• Step 1: Pre-processing of the input data (detected infected): filtering of the data to reduce

the administrative noise and to take into account that currently, some countries are not

providing new data during the week-end.

• Step 2: Estimation of the time t0 where the accumulated data, It, starts to grow in an

exponential way. We use a very basic algorithm where we impose that It+1 > 1.1It in two

consecutive days. More formally, we set

t0 := min
t>2
{t : It > 10 and It > 1.1It−1 and It−1 > 1.1It−2}.

Once t0 is computed the previous data sequence is removed so that t0 becomes 0.

• Step 3: Compute the initial exponential growth rate a and an initial estimation of R0

using (8) and (10).

• Step 4: Initial computation of Rt by minimizing the energy (6). If any of the computed

Rt is non-positive we increase locally the regularization weight wt and we iterate the

minimization of (6) as explained above.
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Short time forecasting of Rt and it.

Since the variational method provides a point estimate of Rt up to the current time tc, by

extrapolating the value of R into the future, it is possible, using equation (5), to obtain a

forecast of the number of infected it in the near future. We considered two approaches to

extrapolate Rt. In the first one we extrapolate Rt beyond the current time tc assuming that

the evolution of Rt is going to be similar to that of the last days and we use a basic harmonic

oscillator model to fit the evolution in the last days and to extrapolate Rt. In the second

approach we allow the user to provide the expected constant new value of Rt in the future and

how many days are required to reach such new value.

Extrapolation of Rt using the harmonic oscillator model.

We use the following damped harmonic oscillator :

R′′(t) + cR′(t) + d(R(t)− R̃1) = 0 t ≥ tc, (12)

the harmonic oscillator parameters c, d and R̃1 are computed by fitting R(t) to the solution of

the harmonic oscillator (see the Web appendix for technical details).

User interactive extrapolation of Rt

In this case the user provides the expected new value R1 = R(tc + Nd), where Nd is the

number of days required to reach this new value. To obtain a smooth transition between the

current value R(tc) and R1 we use a basic Hermite interpolation polynomial (see the Web

appendix for technical details).

RESULTS

All of the experiments made here can be reproduced with the online demo available at www.

ipol.im/ern.

Summary of algorithm parameters.
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• it: input data with the daily registered infected curve.

• Serial interval used: by default we propose 3 options: the serial intervals obtained by Ma

et al., by Nishiura et al. and by Du et al.. The users can also upload their own serial

interval.

• Parameters in the energy (6):

– ŵ0: regularization weight. The default value is ŵ0 = 10.

– β0: weight for the initial estimation of R0 computed using (10). The fixed value

is β0 = 105. This parameter is not in the online interface because it has not any

significant influence in the last values of R(t).

– β1: weight in the energy (6) for the initial estimation of R(tc) computed using the

estimate in the last 3 days. The default value is β1 = 100.2.

• Optional Data Pre-filtering:

– rW : radius of the median filter window for data filtering. If the value of this param-

eter is zero no median filter is applied. The default value is 0.

– σ: standard deviation of the Gaussian linear filter for data filtering. If the value of

this parameter is zero no Gaussian filter is applied. The default value is 0.

– rM : radius of the moving average window filter. If the value of this parameter is

zero no moving average is applied. The default value is 0.

• Forecasting (in the case of user interactive forecasting):

– R1: expected value of R(tc +Nd) for forecasting.

– Nd: Number of days to reach the value R1.

We shall pay particular attention to the comparison with EpiEstim, the method proposed

by Cori et al. in [5] that we have explained briefly in the introduction. It is one of the

most widely used methods to estimate R(t). For the EpiEstim method we used, initially, the

default parameters proposed in the Microsoft Excel spreadsheet implementation of the method
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provided by the authors. In particular; they use a 7 day time interval size to estimate R(t). We

compared the results obtained by our variational method and the ones obtained by EpiEstim

for four countries: France, the United Kingdom, Spain and the United States. We used the data

of infected reported by the countries up to July 23, 2020 that we obtained from the European

Centre for Disease Prevention and Control service. Since EpiEstim does not allow for negative

values we replaced any negative value by zero in the data sequence. For several weeks France

and Spain have not provided data during the weekends and have given instead on Mondays a

cumulative count of three consecutive days. To avoid the artificial noise generated in the event

that no median filter is applied to the sequence, the accumulated value of the 3 days divided

by 3 was assigned to Saturday, Sunday and Monday.

We compared the results of our method and EpiEstim after applying (for both methods) a

median filter and a Gaussian filter to the data, and we also compared them without applying

this pre-filtering step. In Fig. 2 we show both data sequences for the four countries.

EpiEstim does not allow for a serial interval distribution with positive values at 0 or on

negative days, so for comparison purposes we used the serial interval of Nishiura et al., as it

is the one requiring a minimal truncation when removing the non-positive days from the serial

interval distribution. In Fig. 3 the results obtained by both methods are presented when a

median and Gaussian pre-filter were applied. In the case of the USA we divided by 10 the

number of all infected it before using EpiEstim because otherwise the method did not work

(likely the values of it for USA are too high for the particular implementation in the Excel

spreadsheet). The estimate of R(t) by the variational method is invariant under this kind of

data transformation. Surprisingly, despite the fact that both methods are quite different, a

very good fit of both estimates in the four countries was observed, after the EpiEstim estimate

has been shifted 7 days.

It might be argued that if the data is pre-filtered, a smaller time interval could be used in

EpiEstim. Fig. 4 shows the result obtained using EpiEstim with a time interval of size 1. It

is observed, as expected, that the estimate of R(t) is somewhat more irregular but due to the

filtering, it is quite similar to those obtained for a time interval of size 7 and in this case the

translation with respect to the results of the variational method is reduced to 4 days. In other
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terms, as expected, the smaller the time interval, the smaller the backward shift of the estimate

of Rt with respect to the current date. In summary, two factors intervene in the shift between

the estimation of Rt by the variational model and by EpiEstim: a first shift, as explained in

the introduction, occurs by assuming Rt locally constant in the model (2) and a second shift

occurs when estimating Rt in a time interval.

In Fig. 5 we present the R(t) estimates obtained by both methods when no pre-filtering

was applied to the data. In that situation, the weight of the regularization was increased in

our method to compensate for the lack of regularity of the data. The fit of both estimates

is relatively good, but less exact than after applying our pre-filtering. This is a reasonable

outcome. Indeed, the more irregular the curve R(t), the less accurate the assumption that R(t)

is locally constant. Hence the model (1) used in our method and its simplified version (2) used

in EpiEstim are less coherent with each other. Comparing Fig. 2 and 5, we notice that for

the USA the original data i(t) is more regular than in the other countries (likely because the

numbers in USA are much larger than in the other countries; hence the administrative noise is

smoothed out). So we find a better agreement between the estimate of Rt by both methods.

In Fig. 6 we show the results of two different forecasting strategies using an extrapolation

of R(t). In the Web appendix we present additional experiments to illustrate the influence of

the different parameters of the variational model.

DISCUSSION

In this paper we proposed a variational model given by the expression (6) for computing the

effective reproduction number Rt of SARS-CoV-2 using the daily registered infected and the

serial interval. The main advantages we found with this method are:

• It is based on a known epidemiological model (given by the equation (1)) which establishes

how R(t) and the serial interval intervene in the evolution of the number of incident cases.

The method does not involve the ”naive” simplification which assumes R(t) to be locally

constant. Our method does not assume that the observation noise is Poisson, because it

plainly isn’t.
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• The method can use serial intervals with distributions containing negative days (as it is

the case for the SARS-CoV-2). Thus, we avoid an artificial truncation of the distribution.

• The method computes a point estimate of Rt up to the current date. It seems to provide

a more to date (by up to 7 days) estimate of Rt than EpiEstim, which is based on the

model (2) and a time interval estimation.

• The method does not assume any statistical distribution forRt. The main assumptions are

that the Rt estimate should follow the epidemiological model (1) but keeping Rt regular

enough. We include this regularity hypothesis in the model using standard techniques of

calculus of variations.

We have included an automatic procedure in the algorithm to deal with countries where no

data is provided during the week-end, and, optionally, a pre-processing step of the data using a

median filter and a Gaussian filter. This pre-processing step removes most of the administrative

noise of the data and eases the Rt estimation. In any case, this pre-processing is optional and

its application depends on the level of noise of the country data.

While our method and the standard Cori et al. (EpiEstim) method are quite different, we

found experimentally that for a particular choice of the parameters of the variational method

and the serial interval, a good agreement can been obtained between the estimate of Rt provided

by the variational model and a shifted estimate of Rt obtained by EpiEstim.

Since the point estimation of Rt is obtained up to the current date, it allows us to forecast

the value of Rt in the short term. Currently, in countries that are relaxing social distancing

measures, it is hard to obtain an accurate forecast because the situation of the epidemic can

change rapidly in any direction in a few days. Therefore, the forecasting techniques proposed

in this paper are just an example that shows how an Rt estimation can be used to forecast the

number of infected. We proposed two techniques to extrapolate the value of Rt. The first one

is automatic and assumes that the behavior of Rt in the next future will be similar to that of

the recent past that is modeled using a harmonic oscillatory model. The second technique is

interactive and allows the user to supply a future target value for Rt and the number of days

needed to reach that value. This target value can depend on the actions that a country is
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taking to control the epidemic, but it is reasonable to assume that any country exerts itself to

reach an ERN lower than 1.

We finally notice how dependent is any estimation or forecast of the ERN on governement

policies, both for gathering data and for recording them. The main hindrances to a precise

estimate of the ERN are :

a) the constant changes of detection policies, which can go from a minimal count of serious

cases confirmed at hospitals to wide ranging random testing;

b) the incredible incapacity of administrations to record cases on a daily base, in the era of

internet and instant communication.

An online implementation of the method is available at www.ipol.im/ern where the users

can perform their own experiments using official registered data of infected or uploading their

own data of daily infected and/or the serial interval distribution.
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pour la contrôler, (2020).
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Figure 1: Serial intervals used in our experiments: the discrete one proposed by Du et al. in
[6] (solid bars), a log-normal approximation of the serial interval proposed by Nishiura et al.
in [11] (dotted line) and a shifted log-normal approximation of the serial interval proposed by
Ma et al. in [9] (dashed line).

0

1000

2000

3000

4000

5000

6000

7000

8000

27
-F

eb
2-

M
ar

6-
M

ar
10

-M
ar

14
-M

ar
18

-M
ar

22
-M

ar
26

-M
ar

30
-M

ar
3-

Ap
r

7-
Ap

r
11

-A
pr

15
-A

pr
19

-A
pr

23
-A

pr
27

-A
pr

1-
M

ay
5-

M
ay

9-
M

ay
13

-M
ay

17
-M

ay
21

-M
ay

25
-M

ay
29

-M
ay

2-
Ju

n
6-

Ju
n

10
-Ju

n
14

-Ju
n

18
-Ju

n
22

-Ju
n

26
-Ju

n
30

-Ju
n

4-
Ju

l
8-

Ju
l

12
-Ju

l
16

-Ju
l

20
-Ju

l

France

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

29
-F

eb
4-

M
ar

8-
M

ar
12

-M
ar

16
-M

ar
20

-M
ar

24
-M

ar
28

-M
ar

1-
Ap

r
5-

Ap
r

9-
Ap

r
13

-A
pr

17
-A

pr
21

-A
pr

25
-A

pr
29

-A
pr

3-
M

ay
7-

M
ay

11
-M

ay
15

-M
ay

19
-M

ay
23

-M
ay

27
-M

ay
31

-M
ay

4-
Ju

n
8-

Ju
n

12
-Ju

n
16

-Ju
n

20
-Ju

n
24

-Ju
n

28
-Ju

n
2-

Ju
l

6-
Ju

l
10

-Ju
l

14
-Ju

l
18

-Ju
l

22
-Ju

l

UK

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1-
M

ar
5-

M
ar

9-
M

ar
13

-M
ar

17
-M

ar
21

-M
ar

25
-M

ar
29

-M
ar

2-
Ap

r
6-

Ap
r

10
-A

pr
14

-A
pr

18
-A

pr
22

-A
pr

26
-A

pr
30

-A
pr

4-
M

ay
8-

M
ay

12
-M

ay
16

-M
ay

20
-M

ay
24

-M
ay

28
-M

ay
1-

Ju
n

5-
Ju

n
9-

Ju
n

13
-Ju

n
17

-Ju
n

21
-Ju

n
25

-Ju
n

29
-Ju

n
3-

Ju
l

7-
Ju

l
11

-Ju
l

15
-Ju

l
19

-Ju
l

23
-Ju

l

Spain

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

3-
M

ar
7-

M
ar

11
-M

ar
15

-M
ar

19
-M

ar
23

-M
ar

27
-M

ar
31

-M
ar

4-
Ap

r
8-

Ap
r

12
-A

pr
16

-A
pr

20
-A

pr
24

-A
pr

28
-A

pr
2-

M
ay

6-
M

ay
10

-M
ay

14
-M

ay
18

-M
ay

22
-M

ay
26

-M
ay

30
-M

ay
3-

Ju
n

7-
Ju

n
11

-Ju
n

15
-Ju

n
19

-Ju
n

23
-Ju

n
27

-Ju
n

1-
Ju

l
5-

Ju
l

9-
Ju

l
13

-Ju
l

17
-Ju

l
21

-Ju
l

USA

Figure 2: Data of daily infected patients used for comparison with EpiEstim: we show, for the
four countries, the data we used when no filtering was applied (solid line) and the data after
applying a median filter (dashed line) with rW = 3 and a Gaussian filter with σ = 2.
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Figure 3: Comparison with EpiEstim including data filtering. We show R(t) obtained using
the proposed variational model (in grey) and EpiEstim (in black) using the data filtered with
rW = 3 and σ = 2. We used the Nishiura et al. serial interval. For the variational method we
used ŵ0 = 10−1.2, β0 = 105 and β1 = 0. The results of EpiEstim are shifted 7 days to fit the
ones obtained by the variational technique.
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Figure 4: Comparison with EpiEstim applied with a smaller time interval. We show the same
results as in Fig. 3 with the filtered data but we use a time interval of size 1 to apply EpiEstim.
For the variational model we use ŵ0 = 10−1.6 (the estimation with EpiEstim is shifted 4 days).
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Figure 5: Comparison with EpiEstim without data filtering. We show the same results as in
Fig. 3 but without data filtering and using ŵ0 = 1 (the estimation of EpiEstim is shifted 7
days).
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Figure 6: Forecasting. We show a 14 day forecast for R(t) and i(t) (we used the data up to July
23 and we forecast from July 24 to August 6). We show a forecast using the harmonic oscillatory
model (solid line), a forecast with an objective R(t) value given by R1 = R(tc + 21) = 1.15
(dashed line) and a forecast with R1 = R(tc + 21) = 0.5 (dotted line). In the last both cases
the number of days to reach the objective value is 21. For the variational model, we used as
parameters rW = 3, σ = 2, β0 = 105, β1 = 0 and the Du et al. serial interval.
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Web Appendix. Some technical issues about the varia-

tional method to compute ERN

Pre-processing of the input data

We check for each country if, from a given date in the past, there are zero values for the

incident cases on Saturdays and Sundays, and cumulative values of three days on Mondays.

To identify this pattern we look, in the past for a time t = M (the Monday) where iM−3 > 0,

iM−2 = iM−1 = 0 and iM > 1.5 · iM−3. If we found that pattern we mark as Saturday and

Sunday with no data all t = M − 7 · k − 1, t = M − 7 · k − 2 (with k = 0, 1, 2..) while

iM−7·k−2 = iM−7·k−1 = 0. Let us denote by We the identified set of Saturdays and Sundays with

no data. In the affected week-end we update the value iM−7·k−2 = iM−7·k−1 = iM−7·k = iM−7·k/3.

In short, we assign to Saturday, Sunday and Monday a third of the cumulative incident cases

over the three days.

The next step in the data pre-processing is an optional median filter to remove adminis-

trative noise. Given a windows radius rW we define the median filter in a time t ≤ tc − rW

as

M(t) = median({in : |n− t| ≤ rW and n /∈ We})

We also optionally perform a linear Gaussian convolution to the data. The general ex-

pression to compute the convolution with a symmetric kernel such as the Gaussian function

is:

G ∗ i(t) = g0 · i(t) +

NG∑
s=1

gs · (i(t+ s) + i(t− s)), (13)

where the coefficients, gs, computed from the Gaussian function, satisfy:

g0 + 2

NG∑
s=1

gs = 1. (14)

In the expression (13), when t + s > tc we use a linear interpolation to compute the value of

i(t+ s). To approximate, i′(tc), the derivative of i(t) in the current time tc, we use a weighted

1
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average of derivatives given by:

i′(tc) =
g0 · (i(tc)− i(tc − 1)) +

∑NG

s=1 gs · (i(tc − s)− i(tc − s− 1))

g0 +
∑NG

s=1 gs
, (15)

and then, for t+ s > tc we define i(t+ s) as

i(t+ s) = i(tc) + i′(tc)(t+ s− tc) (16)

Finally we also include an optional moving average filter as a data preprocessing step.

Short time forecasting of Rt and it

Extrapolation of Rt using the harmonic oscillator model.

We fix the parameters c, d and R̃1 of the harmonic oscillator (12) by fitting R(t) to the

solution of the harmonic oscillator for t ∈ [tc−N1, tc]. R̃1 is the reference value in the last days

given by

R̃1 = median({it : t ∈ [tc −N1, tc]}).

In the experiments we fixed the value of N1 to 14. We point out that the exponential decay of

the amplitude of the oscillations is given by e−ct. If (4d − c2 > 0), then the period T, of the

oscillations is given by

T =
4π√

4d− c2

To avoid spurious oscillations and a strong increase of their amplitude we impose (when com-

puting c and d) that

c ≥ −0.025

T ≥ 7 when 4d− c2 > 0,

once the parameters of the harmonic oscillatory model are fixed we forecast the evolution of

R(t) for t > tc using the solution of the harmonic oscillatory model with the initial conditions

2
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R(tc) and R′(tc).

User interactive extrapolation of Rt

The Hermite interpolation polynomial we use to extrapolate Rt is given by

R̃(t) =



R1 +R′(tc)
γNd

8
(2 t−tc

γNd
− 2)2(2 t−tc

Nd
)+

(R(tc)−R1)
1
4
(2 t−tc

Nd
− 2)2(2 t−tc

Nd
+ 1)

if t ∈ (tc, tc + γNd]

R1 + (R(tc)−R1)
1
4
(2 t−tc

Nd
− 2)2(2 t−tc

Nd
+ 1) if t ∈ (tc + γNd, tc +Nd]

R1 t > tc +Nd,

for any γ ∈ (0, 1], R̃ ∈ C1(tc,∞) satisfies that R̃(tc) = R(tc), R̃
′(tc) = R′(tc), R̃(tc +Nd) =

R1, R̃
′(tc + Nd) = 0. So, using this basic extrapolation procedure we get a smooth transition

between R(tc) and R1. The values of R1 and Nd can be fixed manually accordingly with the

current and/or expected social distancing measures taking by the states. For instance, in

the European countries, currently, we observe that the value of Rt oscillates around 1. In the

experiments, we fixed the default values of this parameters to R1 = 1 and Nd = 21 days. By

default, we initialize γ = 1 and then reduce the value of γ automatically to avoid that R̃(t) has

negative value using the following relation:

R̃(t) ≥ min{R1, R(tc)}+R′(tc)
4

27
γNd ∀t ∈ [tc,∞)

therefore if R1, R(tc) > 0 and γ ∈ (0, 1] is small enough, then R̃(t) > 0 ∀t ∈ [tc,∞).

Forecasting of the daily infected it.

Once we have forecast Rt for t = tc + 1, tc + 2, .., tc + dT (where dT is the number of new

days to forecast), we can compute by iteration it from tc + 1 to tc + dT using equation (5) and

the extrapolation of it given by (7). Then to reduce the effect of the extrapolation of it when

t > tc, we observe that, in fact, equation (5) can be interpreted as a fixed point equation, so

we iterate equation (5) until convergence to update it for t = tc − 9, ..., tc + dT . We start at

3
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Figure 7: Influence of the serial intervals. We show, in the the case of France, the results of the
R(t) computation obtained by the proposed method using the three serial intervals Nishiura et
al. (solid line), Ma et al. (dashed line) and Du et al. (dotted line). In all cases we used the
filtered data with rW = 3, σ = 2, β0 = 105, β1 = 0 and ŵ0 = 10−1.2.

tc − 9 to smooth a bit the forecast and to reduce potential discontinuities of the forecast it at

the time tc.

Influence of the algorithm parameters

This section shows some experiments illustrating the influence of the different parameters of

the variational model. In Fig. 7 we illustrate the influence of the serial interval. We see a big

difference at first because the value of R0 is highly dependent on the serial interval. At the end

it is observed that the estimate with the Ma et al. serial interval is significantly higher than

the other two and that the estimate with the Nishiura et al. serial interval tends to come to

the end flatter than the other two. In Fig. 8 we illustrate the influence of the regularization

parameter. As expected, we note that the higher the value of this parameter, the smoother the

estimate of R(t).

In Fig. 9 we illustrate the influence of the weight β0 in the energy (6). The higher the value

of this parameter, the more similar the value of R(0) is to the initial estimate obtained from

the initial exponential growth rate of the epidemic.

In Fig. 10 we show the influence of the data filtering. We notice that the median filter gets

4
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Figure 8: Influence of the regularization parameter. We show, in the the case of France, the
results of the R(t) computation obtained by the proposed method using the filtered data with
the Nishiura et al. serial interval, rW = 3, σ = 2, β0 = 105, β1 = 0 and ŵ0 = 10−1.2 (solid line),
ŵ0 = 10−5 (dashed line), and ŵ0 = 1 (dotted line).
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Figure 9: Influence of the weight β0 in the energy (6). We show, in the the case of France,
the results of the R(t) computation obtained by the proposed method using the filtered data
with the Nishiura et al. serial interval, rW = 3, σ = 2, ŵ0 ≡ 10−1.2 and β = 105 (solid line),
β = 10−5 (dashed line), β = 10−2 β1 = 0 (dotted line).
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Figure 10: Influence of the data filtering. We show, in the the case of France, the results of the
R(t) computation obtained by the proposed method using the Nishiura et al. serial interval,
ŵ0 = 10−1.2, β0 = 105, β1 = 0 and rW = 3, σ = 2 (solid line), rW = 3, σ = 0 (dashed line), and
rW = 0, σ = 0 (dotted line).

rid of much of the ”administrative” noise, so the estimate of R(t) is much smoother when the

median filter is applied.

Managing the variability of the Rt estimate.

We emphasize that we do not assume any statistical model on the distribution of the Rt values,

therefore, we cannot provide confidence intervals for this estimate using such statistical model.

For certain choices of the variational model parameters, the good agreement with the results

obtained by EpiEstim gives us an idea, by comparison, about the variability of our estimate.

To reduce the variability of the Rt estimate in the last days we use the following procedure:

1. We compute R0(t) by minimizing (6) for t ∈ {t0, .., tc} with M = 0 (that is we do not

add any restriction on the value of R(tc)).

2. We compute R−1(t) by minimizing (6) for t ∈ {t0, .., tc−1} with M = 0, that is we remove

the last value of the data sequence.

3. We compute R−2(t) by minimizing (6) for t ∈ {t0, .., tc−2} with M = 0, that is we remove

the last two values of the data sequence.

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2020. ; https://doi.org/10.1101/2020.08.01.20165142doi: medRxiv preprint 

https://doi.org/10.1101/2020.08.01.20165142
http://creativecommons.org/licenses/by-nc-nd/4.0/


4. We fix M = 1 in (6), t1 = tc and

R̄1 =
R0(tc) +R−1(tc) +R−2(tc)

3

to compute R−1(tc) and R−2(tc) we use linear extrapolation.

5. We compute R(t) by minimizing (6) for t ∈ {t0, .., tc} with M = 1 using R̄1 as initial

estimate of R(tc).

This procedure stabilize the estimate of R(tc) with respect to the estimation in the last 3

days. In addition, it allows us to calculate a measure of the variation of R(t) estimate in the

last 3 days using the expression

sigma(t) =

√
(R(t)−R0(t))2 + (R(t)−R−1(t))2 + (R(t)−R−2(t))2

3
(17)

To illustrate this variability, in the software available online at www.ipol.im/ern, we represent

the estimate of Rt around an empirical interval of variability defined at each point as [Rt − 2 ·

sigma(t), Rt + 2 · sigma(t)].

Representation of the filtered data in the online software

In the online software we show a plot of the initial sequence it and, for comparison, in the case

a pre-filtering is applied to the data, we plot the result of the filtered sequence. In the case of

no pre-filtering is applied we plot the result of the application of the formula (5) to the data

sequence it with the estimated Rt. That is, we plot:

ĩt =

f∑
s=f0

it−sRt−sΦs for t = 0, .., tc, (18)

We observe that due to the regularization included in the estimation of Rt, ĩt is an smoothed

version of it.
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