19th Dec

1	Plasma microRNA profiling for malaria disease: association with severity and P. falciparum
2	biomass
3	Running Title: microRNA of severity and P. falciparum biomass
4	
5	Himanshu Gupta ^{#±} , Mercedes Rubio [#] , Antonio Sitoe, Rosauro Varo, Pau Cisteró, Lola Madrid,
6	Inocencia Cuamba, Alfons Jimenez, Xavier Martiáñez-Vendrell, Diana Barrios, Lorena Pantano,
7	Allison Brimacombe, Mariona Bustamante, Quique Bassat ^a , Alfredo Mayor ^a
8	
9	Author affiliations: ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain (H.
10	Gupta, M. Rubio, R. Varo, P. Cisteró, A. Jimenez, X. Martiáñez-Vendrell, D. Barrios, A.
11	Brimacombe, M. Bustamante, Q. Bassat, A. Mayor); Centro de Investigação em Saúde de Manhiça
12	(CISM), Manhiça, Mozambique (A. Sitoe, R. Varo, L. Madrid, I. Cuamba, Q. Bassat, A. Mayor);
13	Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
14	(A. Jimenez, M. Bustamante, Q. Bassat, A. Mayor); Department of Biostatistics, Harvard T.H.
15	Chan School of Public Health, Boston, MA, USA (L. Pantano); Universitat Pompeu Fabra (UPF),
16	Barcelona, Spain (M. Bustamante); ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain (Q.
17	Bassat); Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu
18	(University of Barcelona), Barcelona, Spain (Q. Bassat)
19	
20	[#] equal contribution
21	^a These authors share senior authorship
22	
23	Abstract word count: 148
24	Text word count: 3485
25	NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

19th Dec

26	Address for correspondenc	e: Dr. Himanshu	Gupta, ISGlobal,	Hospital Clínic,	Universitat de
----	---------------------------	-----------------	------------------	------------------	----------------

- Barcelona, Carrer Rosselló 153 (CEK Bldg), E-08036 Barcelona, Spain; E-mail:
- himanshu.gupta@isglobal.org; himanshugupta.hcu@gmail.com

19th Dec

Gupta et al

51 Abstract

52

52	
53	Severe malaria (SM) is a major public health problem in malaria-endemic countries. Sequestration
54	of <i>Plasmodium falciparum (Pf)</i> infected erythrocytes in vital organs and the associated
55	inflammation leads to organ dysfunction. MicroRNAs (miRNAs), which are rapidly released from
56	damaged tissues into the host fluids, constitute a promising biomarker for the prognosis of SM. This
57	study applied next-generation sequencing to evaluate the differential expression of miRNAs in SM
58	compared to uncomplicated malaria (UM). Six miRNAs were associated with in vitro Pf
59	cytoadhesion, severity in Mozambican children and Pf biomass. Relative expression of hsa-miR-
60	4497 quantified by TaqMan-RT-qPCR, was higher in SM children plasmas compared to that of UM
61	(p<0.048), and again correlated with <i>Pf</i> biomass (p=0.033). These findings suggest that different
62	physiopathological processes in SM and UM lead to differential expression of miRNAs and pave
63	the way to future studies aiming to assess the prognostic value of these miRNAs in malaria.
64	
65	
66	Keywords: miRNA, severe malaria, biomarkers, Next-generation sequencing, Histidine-rich
67	protein 2
68	
69	
70	
71	
72	
73	
74	

medRxiv preprint doi: https://doi.org/10.1101/2020.07.31.20165712; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpertuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

 $19^{th}\,Dec$

76 Introduction

77

78	Case fatality rates for <i>Plasmodium falciparum (Pf)</i> severe malaria (SM) remain unacceptably high
79	in young African children (1). Early detection and prompt treatment of SM are critical to improve
80	the prognosis of sick children. Unfortunately, clinical signs and symptoms in many malaria
81	patients, particularly at the beginning of the infection, may not adequately indicate the potential for
82	the infection to trigger severe or life-threatening disease. Moreover, in malaria-endemic areas,
83	where immunity to malaria is progressively acquired, the detection of peripheral Pf parasitemia in
84	sick children does not necessarily prove that malaria is the cause of the severe pathology observed,
85	given that many individuals may carry parasites without expressing clinical malarial disease (2).
86	
87	Sequestration of <i>Pf</i> infected erythrocytes (iEs) (3) in vital organs is believed to constitute a key
88	pathogenic event leading to SM, as has been shown in post-mortem parasite counts in patients who
89	died with cerebral malaria (CM) (4, 5). This extensive sequestration of parasitized erythrocytes in
90	the microvasculature, together with the production of inflammatory mediators, leads to the
91	dysfunction of one or more peripheral organs, such as the lungs (acute respiratory distress
92	syndrome), kidneys (acute kidney injury) or brain (coma) (6, 7). This tissue-specific tropism of Pf
93	parasites is mediated by the Pf erythrocyte membrane protein-1 (PfEMP1) which can bind to
94	different host receptors on the capillary endothelium, uninfected erythrocytes and platelets (8, 9)
95	such as endothelial receptor of protein C (ePCR), gC1qR, Intercellular adhesion molecule-1, CD36,
96	chondroitin sulfate A or complement receptor 1 (10).

97

Efforts have been made to identify biomarkers of SM which could be used for prevention of the
severity of disease, and for early diagnosis (11). Several biomarkers related to endothelial activation
and immune dysfunction have been associated with different malaria-derived severe pathologies

19th Dec

(11-14). Plasma levels of histidine-rich protein 2 (HRP2), a parasite-specific protein secreted by the 101 102 parasite during its blood cycle, has been used as a biomarker of total parasite biomass (circulating 103 and sequestered parasites) (15, 16) and therefore as a prognostic marker of the total parasite biomass and as a better proxy marker for SM than peripheral parasitemia (16). Organ damage and 104 pathological disease states have also been associated with the rapid release of microRNAs 105 (miRNAs) into the circulation, a class of endogenous small non-coding RNAs (18-24 nucleotides) 106 107 (17). As secreted miRNAs can be detected in biological fluids such as plasma (18), they are currently being explored as promising non-invasive biomarkers to monitor organ functionality and 108 109 tissue pathophysiological status. The content of miRNAs in the host is influenced by host-pathogen 110 interactions (19). Sequestration of erythrocytes infected with *P. berghei* in mice brains has been 111 demonstrated to modify the miRNA expression in cells (20). Similarly, sequestration of P. vivax gametocytes in the bone marrow has been associated with transcriptional changes of miRNAs 112 113 involved in erythropoiesis (21). The aforementioned evidence suggests that *Plasmodium* parasites, although not able to produce miRNAs (22), could affect the production of organ-specific host 114 115 miRNAs, pointing towards the potential of these small molecules to detect SM associated organ injury (23) and to confirm the contribution of malaria in the chain of events leading to death 116 117 through the analysis of postmortem tissues (23).

118

This study was conducted under the hypothesis that miRNA levels in plasma are differentially expressed among children with severe and uncomplicated malaria due to the parasite sequestration in vital organs of severely ill children. To identify promising biomarkers for SM, a small RNA next-generation sequencing (NGS) was applied to select miRNAs that were differentially expressed by human brain endothelial (HBE) cells exposed to *Pf* iEs selected for cytoadhesion to endothelial receptor of protein C, the main host receptor associated with SM (9), compared to those exposed to non-cytoadherent iEs, and non-infected erythrocytes (niEs), as well as by Mozambican children

19th Dec

126	with SM compared to children with uncomplicated malaria (UM) (Figure 1). miRNAs that were
127	differentially expressed in both analyses, together with the Pf biomass-associated miRNAs
128	(correlation coefficient >0.50 (24)), were quantitatively confirmed in an independent validation
129	cohort set of Mozambican children with SM and UM using TaqMan reverse transcriptase
130	quantitative PCRs (RT-qPCRs).
131	
132	Material and Methods
133	
134	Study population
135	
136	Plasma samples used to assess miRNA levels were collected in two case-control studies conducted
137	in Manhiça District (southern Mozambique) during 2006 (N=113) and 2014 (N=91). Briefly, the
138	cases were children under five years of age admitted to the Manhiça District Hospital with SM and
139	controls were outpatient children with UM. Details on SM and UM criteria, case management,
140	sample collection and storage, and laboratory blood analysis are included in the Technical
141	Appendix.
142	
143	The study protocols for each of the two case-control studies from which this analysis was derived
144	were approved by the National Mozambican Ethical Review Committee (Mozambique) and
145	Hospital Clínic (Barcelona, Spain). A signed written informed consent was obtained from all
146	participants' guardian or parent during the original studies.
147	
148	Parasitological determinations

19th Dec

150	Thick and thin blood films were prepared to quantify <i>Pf</i> parasitaemia. Approximately half of a
151	60µL dried blood drop on Whatman-903 filter paper was used to extract parasite DNA followed by
152	a real-time quantitative PCR (qPCR) targeting the Pf 18S rRNA gene (25, 26). HRP2 levels were
153	quantified using commercially available enzyme-linked immunosorbent assay (ELISA) kits and an
154	in-house highly sensitive quantitative bead suspension array (qSA) based on Luminex technology
155	(Technical Appendix).
156	
157	Pf cytoadhesion assays
158	
159	Cytoadhesion assays were performed to discover the differential expression of miRNAs. HBE cells
160	were incubated with Pf-iEs at the trophozoite stage of the ePCR-binding FCR3 strain (ePCR-iE;
161	which expresses the PfEPM1 protein that binds to ePCR receptor) and the 3D7 strain (3D7-iE; a
162	strain without the protein that binds to ePCR receptor). Non-infected erythrocytes were used as
163	negative control. Details on cytoadhesion assays are included in the Technical Appendix. The cell-
164	conditioned media of each group were collected after 1hr (t1) and 24hrs of stimulation (t24) and
165	subjected to RNA extraction followed by small-RNA sequencing.
166	
167	Molecular procedures, gene target prediction and data analysis
168	
169	RNA was extracted from cell-conditioned media (3ml) and plasma samples (1ml) using the
170	miRNeasy tissues/cells kit and miRNeasy Plasma/Serum kit, respectively, with the use of $5\mu g$
171	UltraPure [™] glycogen/sample. Given that the plasma samples were conserved in heparin, RNA was
172	precipitated with LiCl as described elsewhere (27). Purified RNA was subjected to library
173	preparation, pooling and sequencing using a HiSeq 2000 (Illumina) platform following the protocol
174	for small RNAs (28), for more details see the Technical Appendix. A previously published pipeline

19th Dec

175	(28) was used to assess the sequencing quality, identification and quantification of small RNAs,
176	normalization and other species RNA contamination (Technical Appendix). To detect miRNAs and
177	isomiRs, reads were mapped to the precursors and annotated to miRNAs or isomiRs using miRBase
178	version 21 with the miraligner (29). DESeq2 R package v.1.10.1 (R3.3.2) (30) was used to perform
179	an internal normalization.
180	
181	Fifty μ l of plasma from the Mozambican children (2014) with no haemolysis were used for RNA
182	extraction as described above followed by RT-qPCR. Details on RT-qPCR and endogenous controls
183	(ECs) are included in the Technical Appendix. miRNA relative expression levels (RELs) were
184	calculated with the $2^{-\Delta Ct}$ method, where $\Delta Ct = [Ct (miRNA) - Mean Ct (ECs)]$, considering
185	efficiencies of 100% for all the miRNAs and ECs (31).
186	
187	The selected miRNAs were screened through different gene target prediction programs such as
188	DIANA-microT-CDS, MiRDIP, MirGate, and TargetScan (Technical Appendix).
189	
190	Differential expression of miRNAs and isomiRs was assessed using DESEq2 and IsomiRs packages
191	in R (29, 32), for more details see the Technical Appendix. All statistical analyses were performed
192	using R3.3.2 and graphs were prepared with GraphPad (Technical Appendix).
193	
194	
195	
196	
197	
198	
199	

19th Dec

- 200 **Results**
- 201
- 202 Discovery phase
- 203

204 miRNA expression by HBE cells

205

206	The ePCR binding <i>Pf</i> strain (FCR3; ePCR-iE) showed higher levels of cytoadhesion to HBE cells
207	(mean of 32.60 iE per 500cells, standard deviation [SD]:4.87) than a non-binding $Pf(3D7; 3D7-iE)$
208	strain (3.20, SD:1.06; p=0.001) and non-infected erythrocytes (3.12, SD:0.39; p=0.001) (Appendix
209	Figure 1). Three replicates of the media collected from each cytoadhesion assay after one (t1) and
210	24 hours (t24) were sequenced, giving a total of more than 200 million reads per lane, with a mean
211	of 12.10 million reads (SD=13.31) per sample (Table 1; Figure 2A; Appendix Table 1). The mean
212	percentage of miRNAs in the media samples analysed was 4.01% (SD=2.93) and a mean of 203
213	(SD=93.82) distinct miRNAs (a minimum of 101 and a maximum of 465) were detected (Appendix
214	Table 1). The ten most expressed miRNAs for all samples at t1 and t24 time points are described in
215	Figure 2B. No contamination with RNA from other species was observed.
216	
217	One hour after incubating the HBE cells with Pf infected and non-infected erythrocytes, 111
218	miRNAs were found to be differentially expressed in cell-condition media of niE and ePCR-iE, 76
219	of them being downregulated and 35 upregulated in ePCR-iE compared to niE (Figure 2C;
220	Appendix Table 2). At this same time point, 100 miRNAs were differentially expressed in cell-
221	condition media of 3D7-iE and ePCR-iE, 67 were downregulated and 33 upregulated in ePCR-iE
222	compared to 3D7-iE (Figure 2D; Appendix Table 3). Overall, 89 miRNAs were differentially
223	expressed in ePCR-iE compared to both niE and 3D7-iE, 28 and 61 of which were upregulated and
224	downregulated, respectively, in ePCR-iE. There were no differentially expressed miRNAs between

Gupta et al

19th Dec

niE and 3D7-iE cell-condition media. At t24, only hsa-miR-451a was significantly upregulated in
cell-condition media of ePCR-iE with respect to niE and 3D7-iE. There were no significantly
different miRNAs found between niE and 3D7-iE cell-condition media. All differentially expressed
isomiRs were from the selected miRNAs and none of them presented any modifications in the seed
region.

230

miRNAs expression in plasmas from Mozambican children with malaria of varying severity 232

Out of 113 plasma samples collected from Mozambican children with SM (N=57) and UM (N=56) 233 234 in 2006, 11 samples were discarded because of haemolysis (N=5; $OD_{414}>0.2$) (33), and because no 235 peak was observed between 133-150 nucleotides (typical size for miRNAs plus library adaptors) on the bioanalyzer results after library preparation (N=6). Among the 102 sequenced samples (SM=53: 236 237 UM=49), 19 samples (9 SM; 10 UM) were further excluded because of the low number of miRNA reads (<10,000 reads). Finally, samples from 83 children (44 with SM and 39 with UM) were 238 239 included in the analysis (Table 2). The characteristics of Mozambican children are presented in Table 2. 240

241

242	The sequencing of the 83 plasma samples yielded a mean of 9.42 million reads (SD=6.4) per
243	sample (Figure 2A; Table 1; and Appendix Table 4). The mean percentage of miRNAs per plasma

samples was 20.5% (SD=13.2), with a mean of 395 (SD=169) distinct miRNAs detected (a

245 minimum of 116 and a maximum of 786; Appendix Table 4). The total number of miRNAs

detected across samples was 1450. The ten most expressed miRNAs can be found in Figure 2B. No

247 contamination with RNA from other species was observed.

19th Dec

249	hsa-miR-122-5p was found upregulated in children with SM (Table 3). In the sub-analysis by signs
250	of severity, five miRNAs were found associated with SA, prostration and ARD (Table 3). Twelve
251	miRNAs were found associated with PM-agglutination and cytoadhesion to g1CqR (Table 3). No
252	associations were observed between miRNA counts and rosetting, CD36 and CD54. After adjusting
253	for multiple comparisons, three (hsa-miR-10b-5p, hsa-miR-378a-3p and hsa-miR-4497) out of the
254	1450 miRNAs (identified in RNA sequencing data) were found to correlate with HRP2 levels
255	determined by qSA (Spearman analysis; Figure 3). Similar correlations were observed when HRP2
256	levels were determined by ELISA (Appendix Table 5). miRNAs were neither associated with
257	hepatomegaly nor with splenomegaly. All differentially expressed isomiRs between children with
258	SM and UM belong to the differentially expressed miRNAs, with no modifications in the seed
259	region.
260	

261 Validation cohort

262

Among the 89 miRNAs differentially expressed in cell-condition media of HBE cells exposed to 263 niE and 3D7-iE compared to ePCR-iE, 5 miRNAs were further confirmed to be differentially 264 expressed between children with SM and UM. These five miRNAs (hsa-miR-122-5p, hsa-miR-265 266 320a, hsa-miR-1246, hsa-miR-1290 and hsa-miR-3158-3p) along with hsa-miR-4497 miRNA, which had a correlation coefficient with HRP2 higher than 0.5 (Figure 3), were selected for 267 TagMan-RT-gPCRs validation in an independent cohort of children with SM and UM recruited in 268 2014. Among the 91 plasma samples collected from these children, 21 were discarded because of 269 haemolysis (OD₄₁₄>0.2) (33). Out of the 70 remaining samples, 40 and 30 samples were collected 270 from children with SM and UM, respectively (Table 2). The characteristics of Mozambican children 271 are presented in Table 2. 272

273

19th Dec

274	All samples tested by RT-qPCR amplified the exogenous control (ath-miR-159a) with a Ct
275	value<18 and a coefficient of variance (CV) <5%, suggesting the correct RNA extraction and
276	cDNA preparation. hsa-miR-191-5p (CV=4.8%, basemean=3953.3, log ₂ fold change (FC)=-0.02 and
277	SD=0.56), hsa-miR-30d-5p (CV=4.9%, basemean=14172.31, FC=0.01 and SD=0.61) and hsa-miR-
278	148a-3p (CV=5%, basemean=111593.08, FC=0.11 and SD=0.82) were selected as a panel of ECs
279	for RT-qPCR analysis. Among these three, the NormFinder stability value was 0.044 for the
280	combination of hsa-miR-30d-5p and hsa-miR-191-5p, and were thus selected as ECs. No
281	statistically significant differences were found when Ct values of exogenous and two endogenous
282	controls were compared between SM and UM samples (Appendix Figure 2). Standard curves for all
283	miRNAs (ECs and selected miRNAs) were performed, giving efficiencies between 91.1% - 103.8%
284	(Appendix Table 6), which were assumed as 100% to calculate the relative expression values using
285	the $2^{-\Delta Ct}$ method (31).

286

The relative expression levels of hsa-miR-3158-3p and hsa-miR-4497 were significantly higher in 287 288 children with SM than UM (p<0.05) as shown in Figure 4. hsa-miR-3158-3p levels were higher in children with prostration, multiple seizures and ARD compared to UM (p<0.05; Figure 5). Severe 289 anaemia and ARD symptoms were associated with higher hsa-miR-4497 levels (p<0.05; Figure 5). 290 291 No such associations were observed for CM and hypoglycaemia. RELs of hsa-miR-3158-3p and 292 hsa-miR-4497 were found positively correlated with HRP2 levels quantified by qSA (p<0.05; Figure 6), with similar correlations observed when HRP2 levels were determined by ELISA 293 (Appendix Table 5). 294

295

296 miRNA gene target prediction

19th Dec

298	A total of 87 putative targets for hsa-miR-3158-3p and hsa-miR-4497 miRNAs were identified,
299	none of which were shared by both miRNAs (Appendix Table 7). Forty-five experimentally
300	validated mRNA targets were predicted for hsa-miR-3158-3p and 42 for hsa-miR-4497. The
301	predicted targets were found to be involved in a broad range of biological processes (Appendix
302	Table 8). However, significance was lost when adjusted by the Benjamini-Hochberg method. None
303	of the target genes were clustered under the KEGG pathway with p value <0.05.
304	
305	Discussion
306	
307	As microRNAs can reflect disease states and organ damage due to their specificity to cell type (17),
308	they have the potential to provide a new screening method for early detection of pathological Pf
309	sequestration and may consequently become an effective prognosis tool for severe malaria.
310	Moreover, the detection of miRNAs associated with organ damage in host biofluids may provide an
311	alternative to post-mortem autopsies for determining the presence of parasites in host vital organs.
312	This approach creates new opportunities to develop malaria diagnostic tools that can guide
313	treatment decisions, and to understand the role of human miRNAs in several disease conditions
314	(23).
315	
316	In the discovery phase, 89 miRNAs were found to be differentially expressed in the media of HBE

cells after incubation with an ePCR-cytoadherent *Pf* strain as compared with non-cytoadherent
parasites and non-infected erythrocytes. In addition, fifteen miRNAs in plasma samples obtained
from Mozambican children were associated with SM, with specific severity symptoms, and with the
cytoadherent *Pf* phenotype, compared to UM and non-cytoadherent parasites. In the validation
phase, the higher abundance of hsa-miR-3158-3p and hsa-miR-4497 in SM children compared to
children with UM was further confirmed. Prostration, multiple seizures, SA and ARD symptoms of

19th Dec

severity were associated with higher levels of hsa-miR-3158-3p and hsa-miR-4497. hsa-miR-4497 323 324 levels were also positively correlated with the parasite biomass as quantified by the levels of HRP2 both in the discovery and validation phases. Overall, these findings suggest that different 325 physiopathological processes in SM and UM lead to differential expression of miRNAs in plasma. 326 327 HBE cells released a high number of the miRNAs when they were stimulated with an ePCR-328 329 binding *Pf* strain within the first hour of incubation. After 24 hours the system stabilizes and only one miRNA (hsa-miR-451a) was found at higher levels in cell-conditioned media of HBE cells 330 incubated with an ePCR-binding strain compared to cells stimulated with non-adherent (3D7-iE) or 331 332 non-infected erythrocytes. miR-451 has been implicated in translocation to form a chimera with 333 Plasmodium mRNAs to block their translation (34), and also found to be abundant in sickle erythrocytes (35). In addition, it was shown that parasites could reduce miR-451 levels in host 334 335 fluids (36). However, it was not confirmed in plasmas from Mozambican children in this study. Five miRNA levels were higher in children with SM and severity symptoms (prostration, SA and 336 ARD) compared to UM cases. Pf cytoadhesion phenotypes (PM-agglutination and cytoadhesion to 337 gC1qR) were also associated with the differential expression of miRNAs, suggesting that the 338 339 interaction between PfEMP1 and host receptors leads to the secretion to plasma of specific 340 miRNAs. Moreover, three miRNAs (hsa-miR-10b-5p, hsa-miR-378a-3p and hsa-miR-4497) were positively correlated with HRP2 levels. 341

342

Six candidate miRNAs that were identified in the discovery phase were selected to determine the
validity of the previous results in an independent cohort of Mozambican children. The relative
expression of hsa-miR-3158-3p and hsa-miR-4497 was significantly higher in children with SM
compared to UM, with hsa-miR-3158-3p levels being higher in children with prostration, multiple
seizures as well as ARD, and hsa-miR-4497 in children with SA and ARD. To our knowledge, hsa-

19th Dec

miR-3158-3p, which is widely expressed in skin, spleen, kidney and brain tissues (37), has been 348 349 associated with bipolar disorders (38), but not with other infectious diseases. Further validation is required for hsa-miR-3158-3p, as the levels of this miRNA were found to be downregulated in the 350 plasma from Mozambican children recruited in 2006 with positive PM-agglutination compared to 351 no PM-agglutination, a Pf cytoadhesion phenotype which has been associated with malaria severity 352 (39). However, the positive correlation of hsa-miR-4497 with HRP2 levels, which was consistently 353 observed in the cohort of children from 2006 and 2014, suggesting that increasing parasite biomass 354 associated with parasite sequestration may lead to higher levels of secretion of this specific miRNA 355 by damaged tissues. hsa-miR-4497 is widely expressed in the lymph nodes, spleen, kidney and liver 356 357 tissues (37). Overall, this study shows that hsa-miR-4497, which is also associated with SM, might 358 be an interesting proxy marker of malaria severity. However, hsa-miR-4497 was found as a tumour suppressor (40), and associated with *Mycobacterium tuberculosis* infection (41). Therefore, 359 360 longitudinal studies are required to assess the prognostic value of this miRNA, as well as to estimate its differential expression in children with severity due to non-malarial infections. 361

362

Few of the most expressed miRNAs found in the present study, which represent a 70% of the total 363 miRNA counts in plasma samples, have been reported as highly abundant in plasma samples 364 365 previously (28, 42). According to public data deposited in the miRmine database (43), hsa-miR-486-5p and hsa-miR-451a are the two most abundant miRNAs in plasma and were also present in 366 the list of ten most expressed miRNAs of this study. Although there is no data available on 367 miRNAs from cell-conditioned media of HBE cells, miRNA data from other cell types, such as 368 primary tissue explants, primary stromal cells and breast cancer cell lines, also show low miRNA 369 vield (44), similar to this study. This observation indicates that RNA sequencing data obtained in 370 371 this study is of good quality and can be used for posterior analysis with high confidence. However, this study has several limitations. First, only HBE cells and ePCR-binding parasites were utilized 372

19th Dec

Gupta et al

for the *in vitro* assay, and therefore miRNAs produced by other parasite-host interactions 373 374 contributing to SM may have been missed. Second, plasma samples used in this study were collected retrospectively. Therefore, factors prior to small RNA sequencing and TaqMan-RT-375 gPCRs, such as time taken between centrifugation, storage, and storage temperature, might have 376 varied among the samples, affecting miRNA plasma levels (45, 46). However, confirmation of 377 findings in both the study cohorts suggest a minimal impact of pre-analytical conditions in the 378 379 results. Third, variations in the number of miRNAs identified in replicates of in vitro experiments may have led to the loss of some miRNAs. Fourth, the lack of tissue samples from organs with *Pf* 380 sequestration restricted the histological confirmation of identified miRNAs, and the presence of co-381 382 infections other than blood culture positive bacteraemia cannot be neglected in the studied plasma 383 samples. Finally, the association of each miRNA with specific symptoms that are part of the SM case definition may need further validation using a larger sample size, considering that our numbers 384 385 were relatively small for individual SM criteria. In addition, future studies using the machinelearning approaches would allow the identification of a combination of miRNAs that may detect 386 387 SM pathologies.

388

In conclusion, the profiling of miRNAs in media from HBE cells after incubation with a
cytoadherent *Pf* strain and in plasmas from Mozambican children with different clinical
presentations allowed the identification of promising miRNA candidates for characterizing severe
malaria, specifically hsa-miR-4497. This study opens the ground for future analyses to understand
the value of these miRNAs as a prognostic biomarker and for disentangling the aetiology of severe
malaria.

395

396

19th Dec

Acknowledgements 398

400	We are grateful to the children who participated in the study; the staff of the Manhiça District
401	Hospital; the clinical officers, field supervisors and data managers; G. Cabrera, L. Mussacate, N.
402	Ernesto José and A. Nhabomba for their contribution to the collection of parasites; L. Puyol for her
403	laboratory management, as well as everyone who supported this study directly or indirectly. We
404	also thank Ruhi Sikka, Varun Sharma, Rebecca Smith-Aguasca, Malia Skjefte, and Catriona
405	Patterson for their useful comments on this manuscript.
406	
407	[±] HG moved to the department of Infection Biology, London School of Hygiene and Tropical
408	Medicine, London, UK.
409	
410	This work was supported by the Instituto de Salud Carlos III (PI13/01478 cofunded by the Fondo
411	Europeo de Desarrollo Regional [FEDER], CES10/021-I3SNS to AM and CP11/00269 from the
412	Miguel Servet program to QB). HG was supported (Jan/2017 – Jan/2019) by the Science and
413	Engineering Research Board (SERB), Department of Science & Technology, Government of India
414	(Overseas Postdoctoral Fellowship, SB/OS/PDF-043/2015-16). ISGlobal is a member of the
415	CERCA Programme, Generalitat de Catalunya (http://cerca.cat/en/suma/). CISM is supported by
416	the Government of Mozambique and the Spanish Agency for International Development (AECID).
417	This research is part of ISGlobal's Program on the Molecular Mechanisms of Malaria, which is
418	partially supported by the Fundación Ramón Areces.
419	
420	
421	
422	

19th Dec

Biographical Sketch 423

424	•
-----	---

424	
425	Dr. Gupta is a molecular biologist and an early career malaria disease researcher. His research
426	focuses on host and parasite factors associated with severe malaria, and on the use of molecular
427	tools for the active surveillance of emerging drug resistance, gene deletions, and afebrile malaria in
428	malaria-endemic regions.
429	
430	Availability of data and materials
431	
432	The datasets analysed in this study are available from the corresponding author on request.
433	
434	Competing interests
435	
436	The authors declare that they have no competing interests.
437	
438	Authors' contributions
439	
440	HG, MR carried out the molecular analysis, results interpretation and wrote the first draft of this
441	manuscript. PC also carried out molecular analysis and conducted cytoadhesion assays. AS, RV,
442	LM and IC participated in fieldwork, collected clinical, epidemiological data, plasma samples, dried
443	blood drop filter papers and performed microscopy. AJ, XMV and DB participated in HRP2
444	analyse. MR, PC, HG, LP, AB and MB participated in bioinformatics and statistical analyses. QB
445	and AM participated in the study design, supervision, funding acquisition, project administration
446	and coordinated all the stages of the project. All authors reviewed and approved the final
447	manuscript.

medRxiv preprint doi: https://doi.org/10.1101/2020.07.31.20165712; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

 $19^{th}\,Dec$

448 **References**

- Dondorp AM, Fanello CI, Hendriksen IC, Gomes E, Seni A, Chhaganlal KD, et al.
 Artesunate versus quinine in the treatment of severe falciparum malaria in African children
 (AQUAMAT): an open-label, randomised trial. Lancet. 2010 Nov 13;376(9753):1647-57.
 Gravenor MB, van Hensbroek MB, Kwiatkowski D. Estimating sequestered parasite
- 454 population dynamics in cerebral malaria. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7620-4.
- 455 3. Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature.
 456 2002 Feb 7;415(6872):673-9.
- 457 4. Dorovini-Zis K, Schmidt K, Huynh H, Fu W, Whitten RO, Milner D, et al. The 458 neuropathology of fatal cerebral malaria in malawian children. Am J Pathol. 2011 459 May;178(5):2146-58.
- 460 5. Nagatake T, Hoang VT, Tegoshi T, Rabbege J, Ann TK, Aikawa M. Pathology of
 461 falciparum malaria in Vietnam. Am J Trop Med Hyg. 1992 Aug;47(2):259-64.
- 462 6. Milner DA, Jr., Whitten RO, Kamiza S, Carr R, Liomba G, Dzamalala C, et al. The systemic
 463 pathology of cerebral malaria in African children. Frontiers in cellular and infection microbiology.
 464 2014;4:104.
- 465 7. White NJ, Turner GD, Day NP, Dondorp AM. Lethal malaria: Marchiafava and Bignami
 466 were right. The Journal of infectious diseases. 2013 Jul 15;208(2):192-8.
- 8. Rowe JA, Claessens A, Corrigan RA, Arman M. Adhesion of Plasmodium falciparuminfected erythrocytes to human cells: molecular mechanisms and therapeutic implications. Expert
 reviews in molecular medicine. 2009 May 26;11:e16.
- 470 9. Turner L, Lavstsen T, Berger SS, Wang CW, Petersen JE, Avril M, et al. Severe malaria is
 471 associated with parasite binding to endothelial protein C receptor. Nature. 2013 Jun
 472 27;498(7455):502-5.
- 473 10. Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of
 474 PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol
 475 Rev. 2020 Jan;293(1):230-52.
- 476 11. Sahu PK, Satpathi S, Behera PK, Mishra SK, Mohanty S, Wassmer SC. Pathogenesis of
 477 cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches. Frontiers in cellular
 478 and infection microbiology. 2015;5:75.
- Erdman LK, Petes C, Lu Z, Dhabangi A, Musoke C, Cserti-Gazdewich CM, et al. Chitinase
 3-like 1 is induced by Plasmodium falciparum malaria and predicts outcome of cerebral malaria and
 severe malarial anaemia in a case-control study of African children. Malaria journal. 2014 Jul
 21;13:279.
- 483 13. Lucchi NW, Jain V, Wilson NO, Singh N, Udhayakumar V, Stiles JK. Potential serological
 484 biomarkers of cerebral malaria. Disease markers. 2011;31(6):327-35.
- Tahar R, Albergaria C, Zeghidour N, Ngane VF, Basco LK, Roussilhon C. Plasma levels of
 eight different mediators and their potential as biomarkers of various clinical malaria conditions in
 African children. Malaria journal. 2016 Jun 29;15:337.
- 488 15. Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich
 489 K, et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2.
 490 PLoS medicine. 2005 Aug;2(8):e204.
- Hendriksen IC, Mwanga-Amumpaire J, von Seidlein L, Mtove G, White LJ, Olaosebikan R,
 et al. Diagnosing severe falciparum malaria in parasitaemic African children: a prospective
 evaluation of plasma PfHRP2 measurement. PLoS medicine. 2012;9(8):e1001297.

19th Dec

Gupta et al

Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA. 494 17. 495 MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol. 2011 Aug;8(8):467-77. 496

- Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. 497 18.
- Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S 498 499 A. 2008 Jul 29;105(30):10513-8.
- 500 19. Hakimi MA, Cannella D. Apicomplexan parasites and subversion of the host cell microRNA pathway. Trends in parasitology. 2011 Nov;27(11):481-6. 501
- 502 El-Assaad F, Hempel C, Combes V, Mitchell AJ, Ball HJ, Kurtzhals JA, et al. Differential 20. 503 microRNA expression in experimental cerebral and noncerebral malaria. Infect Immun, 2011 504 Jun;79(6):2379-84.
- Baro B, Deroost K, Raiol T, Brito M, Almeida AC, de Menezes-Neto A, et al. Plasmodium 505 21. vivax gametocytes in the bone marrow of an acute malaria patient and changes in the erythroid 506 miRNA profile. PLoS neglected tropical diseases. 2017 Apr;11(4):e0005365. 507
- Xue X, Zhang O, Huang Y, Feng L, Pan W. No miRNA were found in Plasmodium and the 508 22. 509 ones identified in erythrocytes could not be correlated with infection. Malaria journal. 2008 Mar 510 10;7:47.
- Rubio M, Bassat Q, Estivill X, Mayor A. Tying malaria and microRNAs: from the biology 511 23. 512 to future diagnostic perspectives. Malaria journal. 2016 Mar 15;15:167.
- Available 513 24. Spearman's correlation. [cited: from: 514 http://www.statstutor.ac.uk/resources/uploaded/spearmans.pdf
- 515 25. Mayor A, Serra-Casas E, Bardaji A, Sanz S, Puyol L, Cistero P, et al. Sub-microscopic infections and long-term recrudescence of Plasmodium falciparum in Mozambican pregnant 516 women. Malar J. 2009 Jan 9;8:9. 517
- Taylor SM, Mayor A, Mombo-Ngoma G, Kenguele HM, Ouedraogo S, Ndam NT, et al. A 518 26. quality control program within a clinical trial Consortium for PCR protocols to detect Plasmodium 519 species. Journal of clinical microbiology. 2014 Jun;52(6):2144-9. 520
- Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, et al. MicroRNAs in plasma of 27. 521 pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer 522 prevention research. 2009 Sep;2(9):807-13. 523
- Rubio M, Bustamante M, Hernandez-Ferrer C, Fernandez-Orth D, Pantano L, Sarria Y, et al. 524 28. 525 Circulating miRNAs, isomiRs and small RNA clusters in human plasma and breast milk. PLoS One. 2018:13(3):e0193527. 526
- Pantano L, Estivill X, Marti E. SeqBuster, a bioinformatic tool for the processing and 527 29. 528 analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic 529 cells. Nucleic acids research. 2010 Mar;38(5):e34.
- Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for 530 30. 531 RNA-seq data with DESeq2. Genome biology. 2014;15(12):550.
- Marabita F, de Candia P, Torri A, Tegner J, Abrignani S, Rossi RL. Normalization of 532 31. circulating microRNA expression data obtained by quantitative real-time RT-PCR. Briefings in 533 534 bioinformatics. 2016 Mar;17(2):204-12.
- 32. Pantano L, Estivill X, Marti E. A non-biased framework for the annotation and classification 535 of the non-miRNA small RNA transcriptome. Bioinformatics. 2011 Nov 15;27(22):3202-3. 536
- 537 33. Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G. The Impact of Hemolysis on Cell-Free microRNA Biomarkers. Frontiers in genetics. 2013;4:94. 538
- 539 34. LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and 540
- contributes to malaria resistance. Cell host & microbe. 2012 Aug 16;12(2):187-99. 541

19th Dec

Gupta et al

Chen SY, Wang Y, Telen MJ, Chi JT. The genomic analysis of erythrocyte microRNA 542 35. 543 expression in sickle cell diseases. PLoS One. 2008 Jun 4;3(6):e2360.

Rathjen T, Nicol C, McConkey G, Dalmay T. Analysis of short RNAs in the malaria 544 36. parasite and its red blood cell host. FEBS Lett. 2006 Oct 2;580(22):5185-8. 545

37. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, et al. Distribution of 546 547 miRNA expression across human tissues. Nucleic acids research. 2016 May 5;44(8):3865-77.

Maffioletti E, Cattaneo A, Rosso G, Maina G, Maj C, Gennarelli M, et al. Peripheral whole 548 38. blood microRNA alterations in major depression and bipolar disorder. Journal of affective 549 disorders. 2016 Aug;200:250-8. 550

Mayor A, Hafiz A, Bassat O, Rovira-Vallbona E, Sanz S, Machevo S, et al. Association of 551 39. 552 severe malaria outcomes with platelet-mediated clumping and adhesion to a novel host receptor. PLoS One. 2011 Apr 29;6(4):e19422. 553

- 40. Chen X, Zhang L, Tang S. MicroRNA-4497 functions as a tumor suppressor in laryngeal 554 squamous cell carcinoma via negatively modulation the GBX2. Auris Nasus Larynx. 2019 555 Feb:46(1):106-13. 556
- 557 41. Das K, Saikolappan S, Dhandayuthapani S. Differential expression of miRNAs by macrophages infected with virulent and avirulent Mycobacterium tuberculosis. Tuberculosis. 2013 558 559 Dec;93 Suppl:S47-50.
- 560 42. Tonge DP, Gant TW. What is normal? Next generation sequencing-driven analysis of the human circulating miRNAOme. BMC molecular biology. 2016 Feb 9;17:4. 561
- 562 43. Panwar B, Omenn GS, Guan Y. miRmine: a database of human miRNA expression profiles. 563 Bioinformatics. 2017 May 15;33(10):1554-60.
- Glynn CL, Khan S, Kerin MJ, Dwyer RM. Isolation of secreted microRNAs (miRNAs) from 564 44. cell-conditioned media. MicroRNA. 2013;2(1):14-9. 565
- 45. Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J, Risgaard B, et al. Stability of 566 Circulating Blood-Based MicroRNAs - Pre-Analytic Methodological Considerations. PLoS One. 567 2017;12(2):e0167969. 568
- Sourvinou IS, Markou A, Lianidou ES. Quantification of circulating miRNAs in plasma: 46. 569 effect of preanalytical and analytical parameters on their isolation and stability. The Journal of 570 molecular diagnostics : JMD. 2013 Nov;15(6):827-34. 571
- 572
- 573
- 574
- 575
- 576
- 577
- 578
- 579
- 580

medRxiv preprint doi: https://doi.org/10.1101/2020.07.31.20165712; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license .

 $19^{th}\,Dec$

581 Figure 1: Schematic representation of the study design to identify miRNA based biomarkers

- 582 of severe malaria. [ePCR: endothelial protein-C receptor (a binding *P. falciparum* strain-FCR3);
- 583 3D7: a non-binding *P. falciparum* strain; iE: infected erythrocyte; niE: non-infected erythrocyte;
- 584 HRP2: Histidine-rich protein 2].

19th Dec

Gupta et al

Figure 2: RNA sequencing of human brain endothelial (HBE) cell media and plasma from 596 597 Mozambican children recruited in 2006.

A) Percentage of mapped reads in different species of small RNAs, for both *in vitro* and *ex vivo* 599 approaches. B) Ten most expressed miRNAs in HBE cell medias and plasmas. Colour coded cells 600 show the percentage of each assay/condition (columns) for each miRNA (rows). Volcano plot of 601 602 differentially expressed miRNAs in C) cell-condition media of non-infected erythrocytes (niE) versus cell-condition media of infected erythrocytes with the FCR3-ePCR strain (ePCR-iE) 603 incubated with HBE cells and **D**) cell-condition media of infected erythrocytes with 3D7 strain 604 605 (3D7-iE) versus cell-condition media of infected erythrocytes with the FCR3-ePCR strain (ePCRiE) incubated with HBE cells. Both comparisons (C and D) were adjusted for multiple testing by the 606 Benjamini-Hochberg method. Negative log2FoldChanges indicates overexpression in ePCR-iE 607 608 samples. (SM: severe malaria; UM: uncomplicated malaria).

19th Dec

Gupta et al

610 Figure 3: Spearman correlations between HRP2 levels and miRNA relative expression levels

611 (RELs) in plasma samples from Mozambican children recruited in 2006.

- 612
- HRP2 levels and miRNA RELs were log transformed. The correlation analysis was adjusted for 613
- multiple testing by the Benjamini-Hochberg method. 614

19th Dec

Figure 4: miRNA validation in plasma samples of Mozambican children recruited in 2014.

- Relative expression levels (RELs) were calculated with respect to the mean of two endogenous
- controls (hsa-miR-30d-5p and hsa-miR-191-5p) and compared between children with severe
- malaria (SM) and uncomplicated malaria (UM). Statistical differences were obtained from Mann-

Whitney U test. T bars represent median and Interguartile Ranges (IQR).

19th Dec

Figure 5: Association of miRNA levels with symptoms of severity. 644

- Relative expression levels (RELs) were calculated with respect to the mean of two endogenous 646
- controls (hsa-miR-30d-5p and hsa-miR-191-5p) and compared between children with 647
- uncomplicated malaria (UM) and symptoms of severity. Distributions were compared using Mann-648
- Whitney U test. T bars represent median and Interguartile Ranges (IQR). P values are shown for 649
- 650 significant comparisons. [Prostration (P), Multiple seizures (MS), Acidosis or acute respiratory
- distress (ARD), Severe anaemia (SA)]. 651

- 656
- 657

19th Dec

Gupta et al

Figure 6: Spearman correlations between HRP2 levels and miRNA relative expression levels

(RELs) in plasma samples from Mozambican children recruited in 2014. HRP2 levels and

miRNA RELs were log transformed.

19th Dec

Gupta et al

- 673 Table 1: Quality control and mapped reads (mean and standard deviations) in different species of small
- 674 RNAs obtained from cell-conditioned media of human brain endothelial cells exposed to cytoadherent P.
- falciparum infected and non-infected erythrocytes, and plasma of Mozambican children with severe and 675
- 676 uncomplicated malaria.

		Condition							
		n	iE	31	D7-iE	ePC	R-iE	UM	SM
		t1 (N=3)	t24 (N=3)	t1 (N=3)	t24 (N=3)	t1 (N=3)	t24 (N=3)	(N=39)	(N=44)
Total re	ads, millions (SD)	8.70 (3.55)	16.71 (14.59)	10.43 (3.48)	25.86 (28.14)	4.78 (2.13)	6.11 (1.18)	10.90 (9.69)	9.26 (6.06)
Quality	filtered, counts (SD)	46.00 (36.72)	33.33 (29.67)	14.67 (23.69)	125.67 (217.66)	10.67 (2.31)	16.33 (25.70)	557.62 (1200.76)	615.75 (1163.62)
Comple	exity filtered, counts (SD)	910.67 (775.48)	745.00 (659.60)	369.33 (567.40)	3168.67 (5438.11)	220.67 (163.57)	308.00 (526.55)	535.97 (884.46)	506.23 (455.16)
Size filt	ered, millions (SD)	0.63 (0.34)	2.26 (2.99)	0.68 (0.40)	2.12 (2.92)	0.90 (0.48)	0.49 (0.50)	1.94 (1.51)	2.39 (1.82)
Good q	uality reads*								
	Millions (SD)	8.07 (3.35)	14.44 (11.60)	9.75 (3.10)	23.74 (25.23)	3.88 (2.00)	5.62 (0.84)	8.96 (8.89)	6.88 (4.64)
	Percentage (SD)	92.62 (2.54)	90.35 (6.98)	93.93 (2.37)	94.15 (3.26)	79.60 (8.86)	92.62 (6.35)	77.76 (15.31)	74.95 (11.08)
miRNA									
	Millions (SD)	0.26 (0.19)	1.09 (1.57)	0.27 (0.19)	0.98 (1.14)	0.25 (0.07)	0.15 (0.13)	2.05 (2.50)	1.33 (1.42)
	Percentage (SD)	3.02 (1.73)	4.97 (4.92)	2.47 (1.52)	3.75 (0.54)	7.41 (3.44)	2.47 (1.97)	22.43 (16.01)	20.21 (13.22)
rRNA									
	Millions (SD)	2.34 (1.82)	3.12 (2.71)	1.57 (1.72)	5.74 (9.19)	0.72 (0.38)	0.90 (1.08)	0.92 (0.97)	0.81 (0.72)
	Percentage (SD)	24.72 (16.01)	20.36 (14.62)	14.84 (15.37)	13.41 (15.42)	19.55 (5.14)	15.13 (16.99)	11.11 (7.75)	11.49 (5.78)
tRNA									
	Millions (SD)	1.72 (0.58)	3.37 (1.51)	3.75 (1.80)	6.35 (3.00)	0.84 (0.64)	2.47 (1.47)	1.13 (1.17)	1.14 (0.94)
	Percentage (SD)	27.51 (23.37)	32.53 (27.16)	41.04 (20.74)	43.47 (23.59)	18.65 (9.43)	45.24 (26.80)	13.93 (6.85)	17.79 (7.70)
Unknow	vn								
	Millions (SD)	3.75 (1.92)	6.86 (6.80)	4.16 (1.67)	10.66 (12.55)	2.07 (0.97)	2.11 (0.67)	4.87 (5.88)	3.59 (2.62)
	Percentage (SD)	44.76 (6.35)	42.14 (11.63)	41.65 (5.12)	39.37 (8.36)	54.40 (3.75)	37.15 (7.89)	52.53 (16.01)	50.51 (13.55)

677 *Reads after filtering low quality, low complexity and short (<18nt) sequences

678 SM, Severe malaria; UM, Uncomplicated malaria; niE, non-infected erythrocytes; 3D7-iE, non-adherent 3D7-infected erythrocytes; 679 ePCR-iE, adherent FCR3 expression endothelial receptor of protein C-infected erythrocytes; three replicates of the media collected from 680 each cytoadhesion assay after one (t1) and 24 hours (t24)

681

682

683

684

685

686

19th Dec

Gupta et al

688 Table 2: Characteristics of Mozambican children with severe and uncomplicated malaria recruited in 2006

689 (discovery) and 2014 (validation).

			2006			2014	
		UM	SM		UM	SM	
		N=39	N=44	p value	N=30	N=40	p value
Age [#] (year), mean (SD)		2.3 (1.1)	2.4 (1.3)	0.671	2.2 (1.3)	2.8 (1.2)	0.419
Sex, n (%)							
	Men	24 (62)	28 (64)	1.000	18 (60)	21 (52.5)	0.532
	Women	15 (38)	16 (36)		12 (40)	19 (47.5)	
HRP2 (ng/ml),GM (SD)		71.3 (10.7)	331.4 (40.7)	<0.001	24.1 (4.9)	78.7 (12.2)	0.038
apop (parasitas/ul) CM (וחפ	2084.9	7976.1	0.004	72845.9	94099.6	0.549
qPCR (parasites/µi), GW (50)	(302.5)	(1079.6)		(7193.9)	(8716.0)	
Splenomegaly, n (%)							
	No	33 (85)	21 (48)	0.001	ND	27 (67.5)	NA
	Yes	6 (15)	23 (52)		ND	13 (32.5)	
Hepatomegaly, n (%)							
	No	38 (97)	35 (80)	0.016	ND	35 (87.5)	NA
	Yes	1 (3)	9 (20)		ND	5 (12.5)	
Hyperlactatemia, n (%)							
	No	10 (26)	5 (11)	0.152	26 (86.7)	27 (67.5)	0.064
	Yes	29 (74)	39 (89)		4 (13.3)	13 (32.5)	
Temperature (°C), mean (S	SD)	38.0 (1.6)	38.5 (1.1)	0.093	38.0 (1.3)	38.2 (1.4)	0.437
Weight (Kg), mean (SD)		11.3 (2.8)	11.0 (2.8)	0.599	12.3 (2.9)	12.7 (3.3)	0.476
Platelets (10 ⁹ /L), mean (SI))	156.7 (86.8)	115.8 (66.8)	0.018	149.0 (89.7)	95.3 (69.3)	0.001
Glucose ^a (mM), mean (SD)	6.2 (1.5)	5.9 (1.8)	0.391	6.6 (1.3)	6.0 (2.6)	0.165
WBC (10 ⁹ /L), mean (SD)		9.9 (4.1)	10.2 (3.9)	0.774	9.7 (3.8)	9.6 (5.0)	0.929
Neutrophils ^c (%), mean (SI	D)	54.1 (16.7)	54.4 (14.3)	0.940	50.7 (20.6)	58.9 (13.7)	0.447
Lymphocytes [^] (%), mean (SD)	39.4 (17.9)	36.3 (12.6)	0.374	26.1 (17.1)	25.6 (12.2)	0.995
Lactate (mM), mean (SD)		3.0 (1.7)	4.7 (3.6)	0.009	2.8 (2.2)	3.6 (2.4)	0.035
Severe malaria syndromes	, n (%)						
-	Prostration		33 (75.0)			30 (75.0)	
	Acute respiratory of	distress	18 (40.9)			19 (47.5)	
	Severe anaemia		17 (38.6)			7 (17.5)	
	Multiple seizures		11 (25.0)			24 (60.0)	
	Cerebral malaria		2 (4.5)			7 (17.5)	
	Hypoglycaemia		2 (4 5)			2(50)	

Continuous data = Mann Whitney test; categorical data = Chi-square test

690 691 692 693 694 695 696 SM, Severe malaria; UM, Uncomplicated malaria; HRP2, Histidine-rich protein 2: WBC, White blood cells; GM, Geometric mean; SD, Standard deviation; ND, not determined; NA, not applicable * No data of 1 sample (UM=1) in 2014 study

^a No data of 3 sample (SM=2; UM=1) in 2014 study

⁶ No data of 4 samples (SM=4) in 2014 study ⁶ No data of 3 samples (SM=3) in 2014 study

- 697

- 699
- 700
- 701

702

703

- 705
- 706

19th Dec

Gupta et al

- 707 Table 3: Association of miRNA levels with severe malaria, symptoms of severity and Plasmodium falciparum
- 708 cytoadhesion. Positive FoldChange indicates overexpression in severe malaria and symptoms of severity
- 709 compared to uncomplicated malaria as well as parasites showing cytoadhesion compared to none.
- 710

miRNA	baseMean	log2FoldChange	padj
Clinical data			
Severe malaria (N=44 vs 39)			
hsa-miR-122-5p	19929.69	1.67	0.001
Severe anaemia (N=17 vs 39)			
hsa-miR-4492	17.34	2.81	0.046
hsa-miR-4497	293.66	2.18	0.046
Prostration (N=33 vs 39)			
hsa-miR-122-5p	20677	1.89	0.001
hsa-miR-6087	5.36	2.39	0.033
hsa-miR-511-5p	126.67	1.36	0.040
Acidosis or respiratory distre	ss (N=18 vs 39)		
hsa-miR-122-5p	13367.43	2.21	<0.001
hsa-miR-4497	272.39	2.05	0.07
Cytoadhesion data			
Platelet-mediated agglutination (N	=50 vs 19)		
hsa-miR-3158-3p	1180.96	-2.26	<0.001
hsa-miR-320a	22005.69	-1.48	0.001
hsa-miR-4492	18.33	2.78	0.002
hsa-miR-1290	1011.34	-1.38	0.014
hsa-miR-320b	1191.44	-1.23	0.014
hsa-miR-320c	408.32	-1.29	0.014
hsa-miR-1246	3907.45	-1.32	0.019
hsa-miR-6741-5p	48.11	-1.81	0.023
hsa-miR-1228-5p	82.73	-1.88	0.023
hsa-miR-3195	16.35	2.21	0.023
hsa-miR-7706	334.86	-1.00	0.023
gC1qR (N=35 vs 34)			
hsa-miR-1-3p	622.35	2.09	0.003

711 712 713 Total number of miRNAs were 1450 in RNA sequencing data;

baseMean = Mean normalized expression of the miRNAs in all the samples;

padj = adjusted for multiple testing by the Benjamini-Hochberg method

- 714
- 715
- 716
- 717
- 718
- 719

19th Dec

Gupta et al

720 **Technical Appendix**

721

- 722 Material and Methods
- 723

724 Study population

725

Clinical malaria was defined as the presence of fever (axillary temperature≥37.5°C) with an asexual 726 parasitemia of $Pf > 500/\mu$ L. Children with severe malaria (SM) were those with at least one of the 727 following symptoms: cerebral malaria (Blantyre Coma Score ≤ 2), severe anaemia (SA, packed cell 728 volume <15% or haemoglobin <5g/dL), acidosis or acute respiratory distress (ARD, lactate >5mM 729 and/or chest in-drawing or deep breathing), prostration (inability to sit or breastfeed in children old 730 enough to do so based on their age), hypoglycaemia (blood glucose <2.2mM) and multiple seizures 731 $(\geq 2 \text{ convulsions in the preceding 24h})$ following the modified WHO criteria (1). Children with 732 uncomplicated malaria (UM) were those with clinical malaria but not presenting any 733 signs/symptoms of severity mentioned above (2). The presence of concomitant bacteraemia was 734 tested in all SM cases using blood cultures and children with positive bacteraemia were excluded. 735 736 Children with SM were treated according to Mozambican national guidelines with parenteral quinine in 2006 or parenteral artesunate (complemented with an oral artemisinin-based combination 737 738 therapy) in 2014, and those with UM were treated with a combination of oral amodiaguine and sulfadoxine-pyrimethamine (Fansidar®) in 2006 or with artemether-lumefantrine (Coartem®) in 739 2014. Ten ml of heparinized blood was collected from study participants and processed within 2 740 hours after collection. Filter paper dried blood spots of 60µL blood were prepared from the 741 vacutainer blood. After centrifugation at 1000rpms for 10minutes at 4°C, plasma was stored at -742 20°C. The 2014 study was conducted as a quasi-exact repetition of the 2006 study, the only 743

 $19^{th}\,Dec$

Gupta et al

- difference being that cases and controls were matched by parasitaemia level. Biochemistry
 parameters (glucose and lactate) and a full blood count were performed for each patient using
 Vitros DT60 and Sysmex Kx21 analyzers, respectively.
- 747

748 Parasitological determinations

749

750 Histidine-rich protein 2 (HRP2) levels were quantified using commercially available enzyme-linked immunosorbent assay kits (Malaria Ag CELISA; Cellabs Pty. Ltd., Brookvale, New South Wales, 751 Australia) and an in-house highly sensitive quantitative bead suspension array based on Luminex 752 753 technology. In brief, plasma samples were incubated overnight at 4°C with 2000 magnetic beads to 754 a final dilution of 1:10. After washing, beads were sequentially incubated with 100 µL of in-house biotinylated antibody α-HRP2 (MBS832975, MyBiSource, San Diego, CL) at 1 µg/ml and with 755 756 streptavidin-PE (42250-1ML, Sigma Aldrich, St. Louis, MO) at 1:1000 dilution. Finally, beads were washed and re-suspended in assay buffer, and the plate was read using the Luminex xMAP® 757 758 100/200 analyser (Luminex Corp., Austin, TX). A minimum of 50 microspheres per analyte were acquired and results were exported as crude median fluorescent intensity (MFI). Background 759 760 (blank) MFIs were subtracted and normalized to account for plate to plate variation. Ouantification 761 was performed against a 5-parameter logistic regression curve fitted from a calibration curve 762 consisting of recombinant protein HRP2 type A (890015, Microcoat GmbH, Germany). 763

764 Pf cytoadhesion assays

765

Human brain microvascular endothelial cells (Innoprot, Reference P10361) were cultured in 12
well-plates following the supplier's recommendations and were left until 40% confluency was
achieved. HBE cells were incubated in triplicate with *Pf*-iEs at trophozoite stage of the ePCR-

19th Dec

769	binding FCR3 strain (ePCR-iE; which expresses the PfEPM1 protein that binds to ePCR receptor)
770	and 3D7 strain (3D7-iE; a strain without the protein that binds to ePCR receptor) with 5% of both
771	parasitemia and haematocrit. Non-infected erythrocytes were used as negative control. The cell-
772	conditioned media of each group were collected after 1hr (t1) and 24hrs of stimulation (t24). Next
773	day, HBE cells were stimulated as described above, after 1-hour incubation in agitation, cells were
774	washed at least 10 times with binding media and fixed with 2% glutaraldehyde (SIGMA) in PBS
775	(Gibco) overnight to assess adhesion by light microscopy. After washing with water, cells were
776	stained with 10% Giemsa. iE and niE bound were counted in six different wells per assay in at least
777	500 nuclei cell per well. Results were presented as the number of adhered iE per 500 nuclei of cells.
778	Estimation of <i>Pf</i> adhesion to purified receptors (CD36, CD54 and g1CqR) as well as platelet-
779	mediated (PM)-agglutination and rosetting was performed as described elsewhere (2, 3).
780	Cytoadherence was defined as positive only if the number of iEs bound per mm ² was greater than
781	the mean binding plus 2 standard deviations to Duffy-Fc coated petri dishes. Pf isolates were
782	considered positive for PM clumping if the frequency of clumps was higher in the presence of
783	platelets than in buffer-control and for rosetting if the frequency of rosettes was higher than 2% (2,
784	4).

785

786 **Small RNA sequencing**

787

788 Before RNA extraction, the level of haemolysis in plasma samples was assessed by

789 spectrophotometry (EPOCH, BioTek) at a wavelength of 414nm (absorbance peak of free

- haemoglobin). Samples were classified as non-haemolysed if the optical density at 414nm was less 790
- than 0.2 (5). RNA was extracted from cell-conditioned media (3ml) and plasma samples (1ml) 791
- 792 using the miRNeasy tissues/cells kit and miRNeasy Plasma/Serum kit (Qiagen), respectively, with
- the use of 5µg UltraPure[™] glycogen/sample (Invitrogen). Given that the plasma samples were 793

19th Dec

794	conserved in heparin, RNA was precipitated with LiCl as described elsewhere (6). Purified RNA
795	quality and quantity were determined using the Bioanalyzer (Agilent Technologies) followed by
796	preparation of libraries using NEBNext® Small RNA Library Prep Set for Illumina® (New
797	England Biolabs), then separation of libraries in polyacrylamide gels (Novex, Invitrogen). The
798	Bioanalyzer was again used to quantify and assess the size of the libraries. Further, libraries were
799	pooled at the same equimolar concentrations and no more than 18 libraries were sequenced in the
800	same lane using a HiSeq 2000 (Illumina) platform following the protocol for small RNAs (7).
801	

A previously published pipeline was used to assess the sequencing quality, identification and 802 803 quantification of small RNAs and normalization (7). First, a quality control (QC) was conducted 804 using FASTX-Toolkit and FastQ Screen. After adaptor removing, reads with the following features were removed: 1) Reads <18nt, 2) Mean PHRED scores <30 and 3) Low complexity reads based on 805 806 the mean score of the read. Good quality reads were then annotated to main RNA categories (tRNA, 807 rRNA and miRNAs), and miRNA complexity was estimated as the number of distinct miRNAs that 808 were observed in each sample. Finally, contamination with RNA from other species was evaluated by mapping reads to clade-specific mature miRNA sequences extracted from miRBase v21 (8). The 809 810 tested species categories include animal sponges, nematodes, insects, lophotrochozoan, 811 echinoderms, fish, birds, reptiles, rodents and primates.

812

813 Sequences that passed the QC were subjected to the seqBuster/seqCluster tool that retrieves miRNA 814 and isomiRs counts (9, 10). To detect miRNAs and isomiRs, reads were mapped to the precursors 815 and annotated to miRNAs or isomiRs using miRBase version 21 with the miraligner (9). DESeq2 R 816 package v.1.10.1 (R version 3.3.2) (11) was used to perform an internal normalization where the 817 counts for a miRNA in each sample were divided by the median of the ratios of observed counts to

the geometric mean of each corresponding miRNAs over all samples.

19th Dec

Gupta et al

819

820 **Reverse transcriptase quantitative PCR**

821

Fifty ul of plasma from the Mozambican children recruited in 2014 with no haemolysis were used 822 for RNA extraction as described above. A synthetic RNA mimicking ath-miR-159a (Arabidopsis 823 thaliana; Metabion) was added after lysis reaction at a final concentration of 1.5pM, cDNA 824 825 synthesis and RT-qPCR [ABI PRISM 7500 HT Real-Time System (Applied Biosystems, Foster City, USA)] were performed using the TaqMan® Advanced miRNA assays. A standard curve of 826 five serially diluted points was prepared with cDNA of six randomly selected samples and was run 827 828 in triplicate for each miRNA. Results were normalized using a combination of endogenous controls 829 (ECs). The selection of ECs was based on the following criteria: a) reported in scientific literature as previously used as ECs (12, 13), b) coefficient of variance (CV) of normalized counts across all 830 831 samples $\leq 5\%$, c) basemean ≥ 3000 , d) standard deviation ≤ 1 and e) \log_2 fold change between SM and UM patients ≤ 1 . Finally, the best two ECs tested as housekeepings using the NormFinder (14) were 832 used for normalization of RT-qPCR data. miRNA relative expression levels (RELs) were calculated 833 with the $2^{-\Delta Ct}$ method, where $\Delta Ct = [Ct (miRNA) - Mean Ct (ECs)]$, considering efficiencies of 834 835 100% for all the miRNAs and ECs (12).

836

In silico analysis 837

- 838
- The selected miRNAs were screened through four different gene target prediction programs: 839
- DIANA-microT-CDS (15), MiRDIP (16), MirGate (17), and TargetScan 840
- (http://www.targetscan.org/vert 71/). Identified gene targets of each program were compared using 841
- an online tool Venny2.1.0 (http://bioinfogp.cnb.csic.es/tools/venny/). The gene targets that occurred 842
- in more than one database were selected and screened through the miRTarBase (18) online program 843

19th Dec

to check if these genes have been experimentally validated previously. These gene targets were
anticipated to be true positive targets present at detectable levels in field samples. The identified
gene targets were further analysed by DAVID 6.8 using *Homo sapiens* as the reference species.
Genes were clustered to Gene Ontology terms and KEGG pathways (fold enrichment >1.5 and p
<0.05).

849

850 Statistical analysis

851

Differential expression of miRNAs and isomiRs was assessed using DESEq2 and IsomiRs packages 852 853 in R (9, 10), which use negative binomial generalized linear models adjusted for multiple testing 854 with the false discovery rate (FDR) by the Benjamini-Hochberg method (19). Those with an FDR of 5% or below were selected for posterior analysis. Analysis of the modification in the bases of the 855 856 seed region was carried using isomiR package to determine a possible change in the target messenger RNAs. Mann-Whitney U and χ^2 (Chi-square) tests were performed to compare 857 858 continuous data and categorical data, respectively. Spearman correlation analysis was performed to assess the correlation of miRNA RELs (log transformed) with log transformed HRP2 levels. A two-859 sided p<0.05 was considered statistically significant. All statistical analyses were performed using 860 861 R 3.3.2 in Linux-based system and graphs were prepared with GraphPad. 862 863 864

865

866

19th Dec

Figure 1: Cytoadhesion assay: Infected erythrocytes (iEs) with human brain endothelial (HBE) 868 cells stained with Giemsa and visualised at 200X. A) non-infected erythrocytes (niE), B) non-869 adherent 3D7-infected erythrocytes (3D7-iE), C) adherent FCR3 expression endothelial receptor of 870 protein C-infected erythrocytes (ePCR-iE) and D) three group's comparison for infected 871 erythrocytes adhered to HBE cells. Bars represent the mean and T line the standard deviation. p 872 873 values were calculated using an unpaired t-test.

874

19th Dec

Gupta et al

877 Figure 2: RT-qPCR Ct values of exogenous (ath-miR-159a) and endogenous (hsa-miR-191-5p,

878 hsa-miR-30d-5p and hsa-miR-148a-3p) controls in severe malaria (SM) and uncomplicated

879 malaria (UM) groups. Distributions were compared using Mann-Whitney U test. T bars represent

880 median and Interquartile Ranges (IQR).

881

882

883

884

19th Dec

Table 1: Number of reads, quality control and number of different miRNAs detected in cell-886

conditioned media of human brain endothelial cells exposed to cytoadherent (ePCR-iE), non-887

cytoadherent (3D7-iE) P. falciparum infected and non-infected erythrocytes (niE). 888

889

Sample	Total reads	Quality	Complexity	Length	Good quality	rRNA	tRNA	miRNA	Unknown	Different
		filtered	filtered	filtered	reads					miRNAs
t1_niE-1	4681945	4	34	337979	4343966	270763	2366921	75187	1631095	231
t1_niE-2	11411515	62	1191	562570	10848945	3679590	1543964	252710	5372681	212
t1_niE-3	10012344	72	1507	1000811	9011533	3064588	1243462	449402	4254081	465
t1_3D7-iE-1	12991483	2	81	850480	12141003	912334	5575569	369947	5283153	233
t1_3D7-iE-2	6470351	0	4	225621	6244730	281177	3677882	46237	2239434	240
t1_3D7-iE-3	11824305	42	1023	965079	10859226	3529982	1986414	392862	4949968	256
t1_ePCR-iE-1	5571743	8	60	1450083	4121660	585628	982702	215775	2337555	363
t1_ePCR-iE-2	2366064	12	215	591454	1774610	434035	137804	201756	1001015	122
t1_ePCR-iE-3	6400097	12	387	651993	5748104	1148564	1398684	322921	2877935	181
t24_niE-1	33411780	61	1326	5688689	27723091	5762892	4456704	2896826	14606669	157
t24_niE-2	10227177	37	881	899113	9328064	3242238	1646379	328760	4110687	137
t24_niE-3	6482702	2	28	203593	6279109	347523	4011059	58043	1862484	119
t24_3D7-iE-1	14668936	0	51	730638	13938298	663276	7270210	498805	5506007	101
t24_3D7-iE-2	5034919	0	7	156980	4877939	208106	2998788	161344	1509701	146
t24_3D7-iE-3	57868438	377	9448	5474274	52394164	16356374	8786690	2280235	24970865	230
t24_ePCR-iE-1	6163503	2	2	156258	6007245	212547	3808455	92989	1893254	120
t24_ePCR-iE-2	7262082	46	916	1057919	6204163	2149075	896948	293743	2864397	223
t24_ePCR-iE-3	4907246	1	6	246902	4660344	336305	2697248	52875	1573916	118

890

891

892

893

19th Dec

Gupta et al

- Table 2: miRNAs differentially expressed in cell-conditioned media of human brain endothelial 895
- cells when exposed to niE and compared with ePCR-iE after one hour incubation. Positive 896
- FoldChange indicates overexpression in niE. 897

miRNA	baseMean	log2FoldChange	padj
hsa-miR-150-5p	3628.925319	7.106957417	2.20E-64
hsa-miR-1246	8513.8312	6.854156394	2.86E-33
hsa-miR-342-3p	663.0033186	5.589928255	2.74E-29
hsa-miR-1290	958.7797602	6.480019242	3.64E-22
hsa-miR-223-5p	359.7886812	6.949480635	3.31E-19
hsa-miR-4791	186.7263031	9.764657543	1.81E-13
hsa-miR-143-3p	3014.137094	4.242367581	1.25E-12
hsa-miR-3690	70.86488948	9.209904393	3.00E-12
hsa-miR-145-5p	72.96215294	8.781293485	4.09E-12
hsa-miR-146b-5p	572.9246948	3.850563079	7.29E-12
hsa-miR-150-3p	60.38153154	7.465472022	4.02E-11
hsa-miR-223-3p	3583.963415	10.60183039	6.42E-11
hsa-miR-197-3p	1848.704656	3.167278515	3.68E-10
hsa-miR-6842-3p	121.4605639	5.034134649	3.78E-10
hsa-miR-27a-5p	159.1304428	4.762393491	2.69E-09
hsa-miR-4286	28.41313356	7.592582565	5.34E-09
hsa-miR-4732-3p	39.85412873	-4.344998011	9.19E-09
hsa-miR-29a-3p	264.2422459	3.036225197	3.23E-08
hsa-miR-23a-3p	1648.646951	2.426234941	5.38E-08
hsa-miR-1291	24.09578022	7.678294911	6.73E-08
hsa-miR-140-3p	6094.803676	2.906210556	8.46E-08
hsa-miR-361-3p	518.887784	2.698437793	9.62E-08
hsa-miR-582-3p	45.25401955	5.187956688	1.71E-07
hsa-miR-363-3p	412.4688189	-2.480558611	2.01E-07
hsa-miR-1299	102.3727512	4.139411714	2.36E-07
hsa-miR-28-3p	1018.820725	2.668213456	5.27E-07
hsa-miR-766-3p	29.59956282	5.9824388	5.65E-07
hsa-miR-146b-3p	27.95214056	5.751583995	6.65E-07

19th Dec

Gupta et al

hsa-miR-146a-5p	395.7308176	2.295825898	1.07E-06
hsa-miR-486-3p	442.3385331	-2.280314186	1.42E-06
hsa-miR-199b-5p	17.69789788	6.652284259	1.65E-06
hsa-miR-148a-3p	21311.06097	2.967223068	2.14E-06
hsa-miR-769-5p	78.16221633	3.454304058	2.22E-06
hsa-miR-132-3p	13.41828033	6.795969882	2.82E-06
hsa-miR-504-5p	16.20689324	6.842868855	3.34E-06
hsa-miR-92a-3p	65823.55513	-2.10142854	4.67E-06
hsa-miR-330-3p	53.90163431	3.129351136	4.88E-06
hsa-miR-200c-3p	15.27230031	6.716323846	5.34E-06
hsa-miR-486-5p	186570.8541	-2.309900141	5.98E-06
hsa-miR-338-5p	16.14897785	6.511596255	7.43E-06
hsa-miR-183-5p	757.7566497	-2.260214693	7.87E-06
hsa-miR-1273h-5p	11.10031853	6.530890359	1.55E-05
hsa-miR-342-5p	93.52411001	3.308610483	4.55E-05
hsa-miR-326	16.42493563	5.988631002	4.61E-05
hsa-miR-618	15.6716072	6.016209684	4.61E-05
hsa-miR-191-5p	2983.128623	1.523838499	7.79E-05
hsa-miR-27a-3p	285.7014296	1.731405393	7.96E-05
hsa-miR-328-3p	271.7224572	2.170776673	7.96E-05
hsa-miR-451a	14357.385	-1.83622576	9.53E-05
hsa-miR-3614-5p	9.33818402	6.123669779	0.000106957
hsa-miR-30e-3p	815.6225605	2.360699038	0.000125365
hsa-miR-3653-3p	9.955406247	6.067314627	0.000138372
hsa-miR-16-2-3p	99.02227371	-2.704373872	0.000138392
hsa-miR-941	1372.569505	2.112993367	0.000155687
hsa-miR-1273h-3p	8.79013326	5.927996135	0.000189765
hsa-miR-584-5p	74.74437394	-2.177917358	0.000200673
hsa-miR-361-5p	31.19551383	3.652271942	0.000286557
hsa-miR-423-5p	9496.481452	-1.666500408	0.000301254
hsa-miR-425-3p	23.4899942	3.50770916	0.000497233
hsa-miR-1908-5p	5.40110314	-6.802848578	0.000500329
hsa-miR-144-5p	73.08790204	-2.608545423	0.000614181
hsa-miR-148a-5p	7.077958372	5.991607608	0.000826919
hsa-miR-3960	21.82641113	-3.014306593	0.000826919
hsa-miR-92b-3p	284.8388438	-1.662148164	0.001252142

19th Dec

Gupta et al

hsa-miR-625-3p	147.3917485	2.170185206	0.001322084
hsa-miR-320a	3462.527306	-1.402939938	0.00139293
hsa-miR-345-5p	22.71828536	3.943197206	0.00139293
hsa-miR-1260a	50.29735001	2.615764632	0.001605391
hsa-let-7i-5p	12361.71358	-1.302787012	0.001797592
hsa-miR-619-5p	22.7811983	3.161529188	0.001900387
hsa-miR-122-5p	3385.264898	-1.584467253	0.002340813
hsa-miR-340-5p	46.36446243	2.653771404	0.002544196
hsa-miR-144-3p	48.36612972	-2.49500384	0.002555714
hsa-miR-126-3p	892.3500608	-1.625098791	0.003126621
hsa-miR-543	129.0107724	-1.784228026	0.003228785
hsa-miR-22-3p	198.2421283	-1.339256703	0.003317174
hsa-miR-125a-3p	25.61739412	2.647707932	0.0045958
hsa-miR-26b-3p	5.972701619	5.518835758	0.0045958
hsa-miR-365a-3p	53.55418216	2.123552072	0.0045958
hsa-miR-365b-3p	53.55418216	2.123552072	0.0045958
hsa-let-7b-5p	11122.0756	-1.385051301	0.004654547
hsa-miR-340-3p	9.403598252	4.19564441	0.007285806
hsa-miR-3158-3p	143.2936325	-1.487178473	0.00782372
hsa-miR-3909	4.660678895	5.033669701	0.008065745
hsa-miR-505-3p	19.61789922	3.184975964	0.009512761
hsa-miR-96-5p	6.228218724	-4.412956083	0.01160297
hsa-miR-92b-5p	15.60484631	-2.774216268	0.011905118
hsa-miR-5684	14.25740308	-3.392469579	0.012209695
hsa-miR-574-3p	151.5421548	1.44861864	0.012209695
hsa-miR-589-5p	112.3400591	1.712421621	0.012209695
hsa-miR-1260b	38.28153971	1.901084012	0.015737938
hsa-miR-17-5p	56.12478112	-1.912960954	0.017636633
hsa-miR-4488	301.3772581	1.686545438	0.019800269
hsa-miR-3150b-3p	9.284489454	3.713227496	0.020280067
hsa-miR-503-5p	39.07218516	-1.757011842	0.023641179
hsa-miR-24-2-5p	7.48136792	3.967586096	0.024393346
hsa-miR-4508	74.78488456	-1.444481229	0.024393346
hsa-miR-193a-5p	184.9649622	1.410027061	0.025848637
hsa-miR-148b-3p	604.5039106	1.071494091	0.025962098
hsa-miR-24-3p	347.9262528	1.011562924	0.025962098

medRxiv preprint doi: https://doi.org/10.1101/2020.07.31.20165712; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 19th Dec Gupta et al hsa-miR-26a-5p 2978.105792 1.023914595 0.030449772 hsa-let-7a-5p 14867.14987 -1.186931323 0.032443997 hsa-miR-1180-3p 0.032443997 56.26387509 -1.461006415 hsa-miR-128-3p 0.032663654 443.1001246 1.234565868 hsa-miR-4732-5p 37.4933489 -1.669985619 0.033292936 hsa-miR-194-5p 19.87025713 -2.652995088 0.035040129 hsa-let-7e-5p 315.5665007 -1.266168593 0.036277702 hsa-miR-222-3p 1950.75622 -1.054430196 0.04170154 hsa-miR-744-5p 307.4576353 1.101237911 0.04395607 hsa-miR-93-3p 0.04444623 19.14613315 2.21447109 2.619036378 hsa-miR-28-5p 0.047605172 15.19613321 899 Total number of miRNAs were 363 in RNA sequencing data; 900 baseMean = Mean normalized expression of the miRNAs in all the samples; 901 padj = adjusted for multiple testing by the Benjamini-Hochberg method; 902 niE, non-infected erythrocytes; ePCR-iE, adherent FCR3 expression endothelial receptor of protein C-infected erythrocytes 903 904 905 906 907 908 909 910 911 912 913 914 43

19th Dec

Gupta et al

- Table 3: miRNAs differentially expressed in cell-conditioned media of human brain endothelial 915
- cells when exposed to 3D7-iE and compared with ePCR-iE after one hour incubation. Positive 916
- FoldChange indicates overexpression in 3D7-iE. 917

miRNA	baseMean	log2FoldChange	padj
hsa-miR-150-5p	3628.925319	6.447621237	8.41E-53
hsa-miR-1246	8513.8312	6.448500505	2.44E-29
hsa-miR-342-3p	663.0033186	4.805719054	1.87E-21
hsa-miR-1290	958.7797602	6.047501723	3.28E-19
hsa-miR-143-3p	3014.137094	4.973540967	3.06E-17
hsa-miR-223-5p	359.7886812	6.431781207	1.96E-16
hsa-miR-4791	186.7263031	10.38932761	2.56E-15
hsa-miR-145-5p	72.96215294	8.773111499	5.33E-12
hsa-miR-23a-3p	1648.646951	2.919080408	3.83E-11
hsa-miR-146b-5p	572.9246948	3.720217317	5.04E-11
hsa-miR-423-5p	9496.481452	-2.845800299	1.45E-10
hsa-miR-223-3p	3583.963415	10.40824443	1.77E-10
hsa-miR-28-3p	1018.820725	3.236927509	7.54E-10
hsa-miR-197-3p	1848.704656	3.045327492	2.21E-09
hsa-miR-3690	70.86488948	7.939040485	3.04E-09
hsa-miR-363-3p	412.4688189	-2.752949366	7.66E-09
hsa-miR-451a	14357.385	-2.623190083	1.10E-08
hsa-miR-4732-3p	39.85412873	-4.446862598	1.22E-08
hsa-miR-4286	28.41313356	7.221117949	3.72E-08
hsa-miR-1299	102.3727512	4.296659106	8.94E-08
hsa-miR-146a-5p	395.7308176	2.416585365	3.27E-07
hsa-miR-320a	3462.527306	-2.147110555	4.06E-07
hsa-miR-150-3p	60.38153154	5.841471731	5.53E-07
hsa-miR-3158-3p	143.2936325	-2.671376413	6.03E-07
hsa-miR-199b-5p	17.69789788	6.756414418	1.41E-06
hsa-miR-326	16.42493563	7.000378659	1.46E-06
hsa-miR-92a-3p	65823.55513	-2.206241834	1.80E-06
hsa-miR-618	15.6716072	6.882512894	2.54E-06
hsa-miR-27a-5p	159.1304428	3.853017578	2.61E-06
hsa-miR-361-5p	31.19551383	4.557109213	3.99E-06

19th Dec

Gupta et al

hsa-miR-766-3p	29.59956282	5.475435141	7.17E-06
hsa-miR-338-5p	16.14897785	6.585842515	7.56E-06
hsa-miR-1180-3p	56.26387509	-2.865258808	1.15E-05
hsa-miR-486-5p	186570.8541	-2.257048303	1.36E-05
hsa-miR-486-3p	442.3385331	-2.077360932	1.53E-05
hsa-miR-140-3p	6094.803676	2.378049094	1.89E-05
hsa-miR-1291	24.09578022	6.218174392	2.27E-05
hsa-miR-29a-3p	264.2422459	2.377846317	2.52E-05
hsa-miR-4508	74.78488456	-2.537316275	3.24E-05
hsa-miR-6842-3p	121.4605639	3.458457239	3.89E-05
hsa-miR-200c-3p	15.27230031	6.110652566	5.42E-05
hsa-miR-504-5p	16.20689324	6.10449083	5.42E-05
hsa-miR-582-3p	45.25401955	4.02067135	9.79E-05
hsa-miR-769-5p	78.16221633	2.900427661	0.000122239
hsa-miR-27a-3p	285.7014296	1.699710038	0.000132728
hsa-miR-625-3p	147.3917485	2.549490741	0.000132728
hsa-miR-340-5p	46.36446243	3.201883577	0.000214609
hsa-miR-144-3p	48.36612972	-3.0660485	0.000220627
hsa-miR-425-3p	23.4899942	3.724522238	0.000223367
hsa-miR-320b	420.1406035	-1.862313231	0.000276457
hsa-miR-365a-3p	53.55418216	2.655154806	0.000276457
hsa-miR-365b-3p	53.55418216	2.655154806	0.000276457
hsa-miR-132-3p	13.41828033	5.410556286	0.000380553
hsa-let-7i-5p	12361.71358	-1.47141141	0.000382512
hsa-miR-30e-3p	815.6225605	2.226049992	0.000382512
hsa-miR-92b-5p	15.60484631	-4.163857943	0.0003924
hsa-miR-146b-3p	27.95214056	4.242630881	0.000482005
hsa-miR-92b-3p	284.8388438	-1.785328471	0.000505668
hsa-miR-4732-5p	37.4933489	-2.594968757	0.000643162
hsa-miR-122-5p	3385.264898	-1.753744088	0.000704175
hsa-miR-144-5p	73.08790204	-2.558810315	0.00089817
hsa-miR-3653-3p	9.955406247	5.420823215	0.000963768
hsa-miR-330-3p	53.90163431	2.33736255	0.001216256
hsa-miR-2115-3p	6.041154984	5.834660721	0.001395787
hsa-miR-183-5p	757.7566497	-1.689145385	0.001439809
hsa-miR-1273h-3p	8.79013326	5.232979185	0.001476418

19th Dec

Gupta et al

hsa-miR-1273h-5p	11.10031853	5.004655278	0.001837808
hsa-miR-345-5p	22.71828536	3.888926893	0.001844401
hsa-miR-361-3p	518.887784	1.669833063	0.001878529
hsa-miR-328-3p	271.7224572	1.756856697	0.002066471
hsa-miR-3614-5p	9.33818402	5.084630328	0.002066471
hsa-miR-1260a	50.29735001	2.56883531	0.002146885
hsa-miR-191-5p	2983.128623	1.22004135	0.002216696
hsa-miR-505-3p	19.61789922	3.426913927	0.00528521
hsa-miR-4685-3p	26.37952361	-2.212963535	0.006078573
hsa-miR-148a-3p	21311.06097	1.831991607	0.006860876
hsa-miR-126-3p	892.3500608	-1.523444179	0.007103832
hsa-let-7b-5p	11122.0756	-1.342668008	0.007601427
hsa-miR-5189-5p	4.690302347	-6.195706422	0.008125759
hsa-miR-4448	19.99074734	2.751420355	0.008596921
hsa-miR-28-5p	15.19613321	3.329553964	0.008697526
hsa-miR-619-5p	22.7811983	2.721712643	0.011008689
hsa-miR-5684	14.25740308	-3.504790338	0.011818106
hsa-miR-221-5p	30.33237403	2.235527273	0.014993794
hsa-miR-24-3p	347.9262528	1.101827408	0.015833224
hsa-miR-193a-5p	184.9649622	1.491052572	0.020130112
hsa-miR-22-3p	198.2421283	-1.113442482	0.021327869
hsa-miR-93-3p	19.14613315	2.52716344	0.021327869
hsa-miR-2110	117.7715931	-1.410612056	0.02301949
hsa-miR-342-5p	93.52411001	2.045398548	0.02301949
hsa-miR-543	129.0107724	-1.437070341	0.02604373
hsa-miR-155-5p	135.1369051	1.308204109	0.02781228
hsa-miR-152-3p	52.85362465	1.703147513	0.027818637
hsa-miR-584-5p	74.74437394	-1.39071939	0.029085671
hsa-let-7e-5p	315.5665007	-1.333615616	0.030343738
hsa-miR-1908-5p	5.40110314	-4.518938959	0.033717462
hsa-miR-16-2-3p	99.02227371	-1.642902948	0.035497673
hsa-miR-3150b-3p	9.284489454	3.477104992	0.037288673
hsa-miR-106a-5p	5.273323169	-4.723234986	0.046728731
hsa-miR-15b-5p	59.88239009	1.339085366	0.048947187

918 Total number of miRNAs were 363 in RNA sequencing data;

919 baseMean = Mean normalized expression of the miRNAs in all the samples;

920 padj = adjusted for multiple testing by the Benjamini-Hochberg method;

921 3D7-iE, non-adherent 3D7-infected erythrocytes; ePCR-iE, adherent FCR3 expression endothelial receptor of protein C-infected erythrocytes

19th Dec

Table 4: Number of reads, quality control and number of different miRNAs detected in plasma 922

from Mozambican children recruited in 2006. 923

Sample	Total reads	Quality	Complexity	Length	Good quality	rRNA	tRNA	miRNA	Unknown	Different
		filtered	filtered	filtered	reads					miRNAs
525881.3	10711219	1019	496	3093606	7617613	1831500	651064	807691	4327358	395
525884.4	13220660	803	702	3888349	9332311	966969	596303	1966978	5802061	574
525885.1	10702582	333	566	2319260	8383322	1232736	1136730	1751858	4261998	548
525887.5	13661026	1124	53	2762425	10898601	594196	670121	2832128	6802156	539
525889.9	26426632	1073	384	2617714	23808918	2136483	2578042	5776301	13318092	642
525891.2	9524995	439	270	1873951	7651044	699777	854636	1589401	4507230	593
525893.6	2162887	79	49	120186	2042701	127077	390794	440733	1084097	331
525896.7	17421782	1908	548	5626333	11795449	1265772	839750	1030609	8659318	341
525898.1	3320188	126	118	832015	2488173	142443	215289	1663216	467225	425
525899.8	5937637	296	454	1500015	4437622	572501	700764	517740	2646617	355
525903.0	14957552	2	276	2265449	12692103	1692270	3040674	1194073	6765086	292
525909.2	10293853	2128	224	3483287	6810566	768196	599146	1269410	4173814	412
544393.2	9208074	489	675	2151722	7056352	1496125	1507206	883567	3169454	501
544394.9	13598660	996	1250	6286338	7312322	1247933	758898	1477246	3828245	580
544395.6	16309029	973	1449	3847507	12461522	3653367	2378483	1189219	5240453	554
544396.3	7566573	276	197	1246660	6319913	627080	1632315	1027308	3033210	531
544397.0	6772398	266	222	1805393	4967005	1187429	550612	675373	2553591	498
544404.3	7386300	287	354	1583391	5802909	433117	555473	996837	3817482	581
544406.7	575642	0	1	94684	480958	34498	156803	223001	66656	337
544407.4	322699	7	47	33711	288988	26869	86815	40357	134947	199
544408.1	10702037	390	839	2161657	8540380	710955	2179306	1632353	4017766	663
544413.5	15424105	20	208	3016358	12407747	2130079	1918422	2473544	5885702	276
544415.9	15845270	581	585	4355557	11489713	1693453	1942665	3572255	4281340	757
544417.3	320995	6	47	49727	271268	79124	58275	53365	80504	229
544423.4	12314227	511	879	2620234	9693993	1146777	1257197	2022726	5267293	620
544425.8	6960365	244	319	1393757	5566608	452538	1278619	967048	2868403	473
544430.2	29411214	2681	2251	7142325	22268889	2330062	2430827	2447114	15060886	472
544431.9	12913067	374	771	2019212	10893855	1553982	2423487	2087189	4829197	298
544434.0	9194679	428	55	1158428	8036251	1187467	1514795	1642793	3691196	433
544436.4	10628594	352	242	1424162	9204432	1030961	2030035	2940439	3202997	465
544439.5	18820329	990	1239	3728346	15091983	1867354	2041446	1558034	9625149	659

19th Dec

Gupta et al

566322.2	9096499	219	526	970253	8126246	222824	1176992	1440172	5286258	463
566323.9	12512273	307	147	681565	11830708	373103	468855	8338268	2650482	770
566324.6	7407842	271	230	799057	6608785	473056	1541802	2306487	2287440	644
566327.7	265530	5	26	39505	226025	23941	18230	86877	96977	274
566329.1	575470	7	48	23763	551707	59080	163228	133556	195843	311
566332.1	9282984	18	577	2188722	7094262	936251	1105618	2509571	2542822	310
566333.8	12485750	1976	85	3068214	9417536	1147898	945883	1973103	5350652	669
566335.2	16300010	1628	450	3430462	12869548	1439268	1267034	2367655	7795591	395
566353.6	12299560	520	92	4379950	7919610	1052903	619183	2088724	4158800	612
566355.0	2968770	0	79	1009357	1959413	328104	255943	440443	934923	160
566356.7	15403237	1053	1726	3642172	11761065	2419028	1509598	1633826	6198613	628
566358.1	8943757	529	1773	3677028	5266729	1105767	487154	1637474	2036334	454
566359.8	744578	20	72	58563	686015	35746	148801	79994	421474	288
566361.1	25792113	905	1378	7723560	18068553	1793988	2690970	6727806	6855789	580
566362.8	12021808	747	24	3274341	8747467	1603501	18940	10773	7114253	151
566364.2	1631464	99	104	556133	1075331	112855	251575	48887	662014	274
566365.9	19129131	2	966	1691465	17437666	2087295	2389159	7624018	5337194	399
566366.6	19623668	7037	92	5322923	14300745	1231391	1029852	1170845	10868657	467
566367.3	384010	3	32	97518	286492	22854	26912	122521	114205	150
579033.4	12761288	299	223	2438291	10322997	4471210	1076958	2371736	2403093	570
579034.1	7225891	25	2766	472409	6753482	472354	2250034	994990	3036104	465
579035.8	9863866	517	265	2370430	7493436	441043	567999	1734312	4750082	481
579036.5	145356	0	13	17436	127920	4210	11235	65688	46787	196
579037.2	1493408	4	82	338939	1154469	47182	229698	521844	355745	394
579038.9	10367363	371	1380	3078000	7289363	639425	1550985	991123	4107830	388
579040.2	9253151	13	408	2472738	6780413	384449	1761922	500022	4134020	373
579042.6	15960129	470	202	2728371	13231758	638919	3805700	1934893	6852246	380
579043.3	7089342	206	697	1602007	5487335	964876	1536510	687802	2298147	260
579045.7	1982823	2	433	143776	1839047	233623	490286	324346	790792	305
579046.4	1873456	486	38	806002	1067454	75715	60748	43809	887182	185
579048.8	1082686	1	50	185056	897630	54474	153016	135343	554797	200
579050.1	170063	2	27	17739	152324	17255	29933	23521	81615	160
579051.8	10722970	448	158	1708024	9014946	642574	2552986	1186376	4633010	313
579052.5	4228866	219	748	2256487	1972379	246201	433194	222570	1070414	146
579053.2	8618384	462	1092	1949499	6668885	354969	1025766	994142	4294008	319
		(00	1.42	4284002	5102211	340702	1452805	638954	2669660	242

medl prepr	medRxiv preprint doi: https://doi.org/10.1101/2020.07.31.20165712; this version posted August 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in									
19 th I	Dec		It is made availa	ble under a	CC-BY-NC-ND 4	0 Internatior	al license .		Gı	ıpta et al
579055.6	3526717	94	80	1769909	1756808	199283	294707	223967	1038851	123
579058.7	1792508	133	10	997704	794804	53040	154970	126036	460758	242
579059.4	17665599	8	910	1746197	15919402	1020271	3146816	6390514	5361801	365
579060.0	11438101	537	771	3749312	7688789	618651	1015852	548212	5506074	300
								1109671		
579061.7	33311564	3	1496	2576915	30734649	2601559	5795176	6	11241198	442
579062.4	3451830	156	2	1762819	1689011	202947	239684	218299	1028081	116
579064.8	8994815	278	178	2721236	6273579	840779	987181	593171	3852448	161
579065.5	18176617	7425	386	6172449	12004168	781469	399288	948897	9874514	334
579068.6	5128830	305	256	1520699	3608131	300353	890927	810364	1606487	396
579069.3	45577321	37	4302	2027990	43549331	926339	3622063	5903995	33096934	786
579075.4	9827499	20	816	1032689	8794810	363164	665426	1692835	6073385	515
579077.8	10214090	344	167	1093407	9120683	1504424	989870	3501517	3124872	595
579078.5	4481826	234	167	2157860	2323966	119110	242195	281184	1681477	175
579079.2	1225321	30	72	869796	355525	78232	60481	95781	121031	204
598991.0	8703408	2	406	1378261	7325147	439304	989308	2636136	3260399	546

598993.4

19th Dec

- Table 5: Spearman correlations between ELISA based HRP2 levels and miRNA relative expression
- levels (RELs) in plasma samples from Mozambican children. HRP2 levels and miRNA RELs were
- log transformed.

Children recruited in 2006 hsa-miR-10b-5p 0.415 0.020 hsa-miR-378a-3p 0.422 0.020 hsa-miR-378a-3p 0.533 <0.001 hsa-miR-4497 0.533 <0.001 Children recruited in 2014 hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	Children recruited in 2006 hsa-miR-10b-5p 0.415 0.020 hsa-miR-378a-3p 0.422 0.020 hsa-miR-378a-3p 0.422 0.020 hsa-miR-378a-3p 0.533 <0.001 Children recruited in 2014 Children recruited in 2014 hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	miRNA	rho	p value
hsa-miR-10b-5p 0.415 0.020 hsa-miR-378a-3p 0.422 0.020 hsa-miR-4497 0.533 <0.001 Children recruited in 2014 hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-10b-5p 0.415 0.020 hsa-miR-378a-3p 0.422 0.020 hsa-miR-4497 0.533 <0.001 Children recruited in 2014 Ka-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	Children recruited in	n 2006	
hsa-miR-10b-5p 0.415 0.020 hsa-miR-378a-3p 0.422 0.020 hsa-miR-4497 0.533 <0.001	hsa-miR-10b-5p 0.415 0.020 hsa-miR-378a-3p 0.422 0.020 hsa-miR-4497 0.533 <0.001			
hsa-miR-378a-3p 0.422 0.020 hsa-miR-4497 0.533 <0.001	hsa-miR-378a-3p 0.422 0.020 hsa-miR-4497 0.533 <0.001	hsa-miR-10b-5p	0.415	0.020
hsa-miR-4497 0.533 <0.001 Children recruited in 2014 hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-4497 0.533 <0.001	hsa-miR-378a-3p	0.422	0.020
Children recruited in 2014 hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001	Children recruited in 2014 hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001	hsa-miR-4497	0.533	< 0.001
Children recruited in 2014 hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001	Children recruited in 2014 hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001			
hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	Children recruited in	n 2014	
hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001	hsa-miR-122-5p -0.016 0.892 hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001			
hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-320a 0.121 0.320 hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001	hsa-miR-122-5p	-0.016	0.892
hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-1246 0.066 0.588 hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-320a	0.121	0.320
hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-1290 0.123 0.310 hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-1246	0.066	0.588
hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-3158-3p 0.511 <0.001 hsa-miR-4497 0.401 <0.001	hsa-miR-1290	0.123	0.310
nsa-miR-4497 0.401 <0.001	hsa-miR-4497 0.401 <0.001	hsa-miR-3158-3p	0.511	< 0.001
		hsa-miR-4497	0.401	< 0.001

19th Dec

Gupta et al

Table 6: PCR efficiencies of each miRNA used for RT-qPCR analysis.

miRNA	PCR efficiencies
hsa-miR-122-5p	99.6%
hsa-miR-320a	95.3%
hsa-miR-1246	98.4%
hsa-miR-1290	103.0%
hsa-miR-3158-3p	91.2%
hsa-miR-4497	96.9%
has-miR-191-5p	93.1%
hsa-miR-30d-5p	103.8%
hsa-miR-148a-3p	100.1%
ath-miR-159a	103.2%

19th Dec

Gupta et al

Table 7: The predicted targets of the two miRNAs (hsa-miR-3158-3p and hsa-miR-4497) validated

957 in children recruited in 2014.

hsa-miR-3158-3p	hsa-miR-4497
TXNIP	RUNX1
МАРЗК9	CCNF
ZNF704	CTTN
BCL7A	FANCA
GATAD2B	NAB2
FBXO46	NF2
CHST15	NPY4R
FTSJ3	PRPS1
CTC1	TPM3
CABP7	UGT8
C20orf194	VEGFA
IGSF8	RAB9A
KLHL15	IRX5
NLK	BPNT1
NFASC	APPBP2
LMNB2	CD226
MRPS18A	ATP1B4
LSM4	SH2B1
XRCC6	SDF4
ZBTB39	MTPAP
UBXN2B	TMEM33
RRP7A	DUSP22
ZCCHC14	RAB22A
RANGAP1	TBC1D24

19th Dec

Gupta et al

RAB3IP	ZNF490
AMOTL2	DSN1
ANXA11	FBXL18
C22orf39	LRRC27
DDX6	ATP13A4
CDK2	HIST1H2AH
ENAH	SP140L
ENPP5	CAMK2N2
GDAP1L1	C10orf71
FOSL1	FAM83C
MMP15	MIPOL1
PLAG1	CCNY
NANOS1	PRPS1L1
MRTO4	CBARP
PIGQ	LHFPL3
NLGN1	C8orf82
RTN2	PPAN-P2RY11
SAMD4A	CASTOR2
PTPRJ	
THSD7A	
ZNF281	

27th June

Gupta et al

Table 8: Clustering results of DAVID analysis. 960

Category	Term	Genes	Fold	р	Benjamini p
			Enrichment	value	value
GOTERM_CC_DIR	GO:0030687~preribosome,	PPAN-P2RY11, FTSJ3,	25.136	0.006	0.647
ECT	large subunit precursor	MRTO4			
GOTERM_BP_DIR	GO:0007399~nervous system	IGSF8, NAB2, VEGFA,	4.875	0.007	0.977
ECT	development	NLGN1, BPNT1,			
		PRPS1			
GOTERM_CC_DIR	GO:0045335~phagocytic	RAB9A, ANXA11,	18.691	0.011	0.605
ECT	vesicle	RAB22A			
GOTERM_MF_DIR	GO:0000287~magnesium ion	NLK, MTPAP,	5.237	0.015	0.902
ECT	binding	PRPS1L1, BPNT1,			
		PRPS1			
GOTERM_BP_DIR	GO:0006015~5-phosphoribose	PRPS1L1, PRPS1	116.611	0.017	0.987
ECT	1-diphosphate biosynthetic				
	process				
GOTERM_BP_DIR	GO:0002175~protein	NFASC, UGT8	116.611	0.017	0.987
ECT	localization to paranode region				
	of axon				
GOTERM_BP_DIR	GO:0009156~ribonucleoside	PRPS1L1, PRPS1	93.288	0.021	0.974
ECT	monophosphate biosynthetic				
	process				
GOTERM_MF_DIR	GO:0004749~ribose phosphate	PRPS1L1, PRPS1	85.473	0.023	0.702
ECT	diphosphokinase activity				
GOTERM_CC_DIR	GO:0043231~intracellular	CTTN, MTPAP,	3.048	0.026	0.667
ECT	membrane-bounded organelle	RANGAP1, UGT8,			
		RUNX1, ATP13A4,			
		DDX6			
GOTERM_MF_DIR	GO:0019003~GDP binding	RAB9A, RAB22A,	11.871	0.026	0.641
ECT		PRPS1			
GOTERM_CC_DIR	GO:0005635~nuclear envelope	TMEM33, ANXA11,	6.112	0.027	0.602
ECT		ATP1B4, RANGAP1			
GOTERM_CC_DIR	GO:0030027~lamellipodium	ENAH, CTTN, NF2,	6.074	0.027	0.542
ECT		RAB3IP			
GOTERM_BP_DIR	GO:0030913~paranodal	NFASC, UGT8	66.634	0.029	0.978
ECT	junction assembly				
GOTERM_CC_DIR	GO:0000932~cytoplasmic	LSM4, SAMD4A,	9.345	0.04	0.627

27 th June						Gupta et al
ECT	mRNA processing body	DDX6				
GOTERM_MF_DIR	GO:0030371~translation	NANOS1, SAMD4A	38.851	0.049	0.798	
ECT	repressor activity					
GOTERM_CC_DIR	GO:0001726~ruffle	CTTN, NF2, RAB22A	8.099	0.052	0.674	
ECT						
GOTERM_BP_DIR	GO:0000956~nuclear-	LSM4, MRTO4	35.88	0.054	0.996	
ECT	transcribed mRNA catabolic					
	process					
GOTERM_BP_DIR	GO:0033962~cytoplasmic	LSM4, DDX6	35.88	0.054	0.996	
ECT	mRNA processing body					
	assembly					
GOTERM_BP_DIR	GO:0071425~hematopoietic	RUNX1, CTC1	33.317	0.058	0.994	
ECT	stem cell proliferation					
GOTERM_BP_DIR	GO:0051301~cell division	DSN1, CCNY, CCNF,	3.331	0.061	0.99	
ECT		ANXA11, CDK2				
GOTERM_BP_DIR	GO:0009165~nucleotide	PRPS1L1, PRPS1	31.096	0.062	0.983	
ECT	biosynthetic process					
GOTERM_CC_DIR	GO:0042470~melanosome	RAB9A, TMEM33,	7.217	0.063	0.708	
ECT		ANXA11				
GOTERM_CC_DIR	GO:0005856~cytoskeleton	ENAH, CTTN, NF2,	3.274	0.064	0.673	
ECT		RAB3IP, TPM3				
GOTERM_MF_DIR	GO:0005161~platelet-derived	PTPRJ, VEGFA	28.491	0.067	0.837	
ECT	growth factor receptor binding					
GOTERM_BP_DIR	GO:0050860~negative	PTPRJ, DUSP22	27.437	0.069	0.984	
ECT	regulation of T cell receptor					
	signaling pathway					
GOTERM_MF_DIR	GO:0044822~poly(A) RNA	PPAN-P2RY11,	1.892	0.075	0.828	
ECT	binding	RRP7A, XRCC6,				
		ANXA11, MTPAP,				
		LSM4, FTSJ3,				
		SAMD4A, MRTO4,				
		DDX6				
GOTERM_BP_DIR	GO:0009116~nucleoside	PRPS1L1, PRPS1	24.549	0.077	0.984	
ECT	metabolic process					
GOTERM_BP_DIR	GO:0051894~positive	PTPRJ, VEGFA	22.211	0.085	0.985	
ECT	regulation of focal adhesion					
	assembly					
GOTERM_BP_DIR	GO:0000027~ribosomal large	PPAN-P2RY11,	22.211	0.085	0.985	
ECT	subunit assembly	MRTO4				

GOTERM_CC_DIR GO ECT GOTERM_MF_DIR GO ECT bin GOTERM_BP_DIR GO ECT ner	2:0005770~late endosome 2:0019901~protein kinase ding 2:0007422~peripheral vous system development	RAB9A, RAB22A, SDF4 PTPRJ, FAM83C, CCNY, CAMK2N2, CD226 NFASC, UGT8	5.975 2.841 19.435	0.087 0.096 0.096	0.757 0.862 0.987	
GOTERM_CC_DIR GO ECT GOTERM_MF_DIR GO ECT bin GOTERM_BP_DIR GO ECT ner	0:0005770~late endosome 0:0019901~protein kinase ding 0:0007422~peripheral vous system development	RAB9A, RAB22A, SDF4 PTPRJ, FAM83C, CCNY, CAMK2N2, CD226 NFASC, UGT8	5.975 2.841 19.435	0.087	0.757 0.862 0.987	
ECT GOTERM_MF_DIR GO ECT bin GOTERM_BP_DIR GO ECT ner	e:0019901~protein kinase ding e:0007422~peripheral vous system development	SDF4 PTPRJ, FAM83C, CCNY, CAMK2N2, CD226 NFASC, UGT8	2.841	0.096	0.862	
GOTERM_MF_DIR GO ECT bin GOTERM_BP_DIR GO ECT ner	20019901~protein kinase ding 2:0007422~peripheral vous system development	PTPRJ, FAM83C, CCNY, CAMK2N2, CD226 NFASC, UGT8	2.841	0.096	0.862	
ECT DIN GOTERM_BP_DIR GO ECT ner	0:0007422~peripheral vous system development	CD226 NFASC, UGT8	19.435	0.096	0.987	
GOTERM_BP_DIR GO ECT ner	2:0007422~peripheral vous system development	NFASC, UGT8	19.435	0.096	0.987	
ECT ner	vous system development					

27th Iune

Gupta et al

985 **Appendix References**

- 986 1. WHO. Guidelines for the treatment of malaria. 3rd ed. 2015. [cited 2020 08/06/2020]; 987 Available from: https://www.who.int/malaria/publications/atoz/9789241549127/en/
- 988 Mayor A, Hafiz A, Bassat Q, Rovira-Vallbona E, Sanz S, Machevo S, et al. Association of 2. severe malaria outcomes with platelet-mediated clumping and adhesion to a novel host receptor. 989 990 PLoS One. 2011 Apr 29;6(4):e19422.
- 991 Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash G, Marsh K, et al. Rapid switching to 3. 992 multiple antigenic and adhesive phenotypes in malaria. Nature. 1992 Jun 25;357(6380):689-92.
- 993 4. Magallon-Tejada A, Machevo S, Cistero P, Lavstsen T, Aide P, Rubio M, et al. 994 Cytoadhesion to gC1qR through Plasmodium falciparum Erythrocyte Membrane Protein 1 in 995 Severe Malaria. PLoS pathogens. 2016 Nov;12(11):e1006011.
- 996 Kirschner MB, Edelman JJ, Kao SC, Vallely MP, van Zandwijk N, Reid G. The Impact of 5. 997 Hemolysis on Cell-Free microRNA Biomarkers. Frontiers in genetics. 2013;4:94.
- 998 Wang J, Chen J, Chang P, LeBlanc A, Li D, Abbruzzesse JL, et al. MicroRNAs in plasma of 6. 999 pancreatic ductal adenocarcinoma patients as novel blood-based biomarkers of disease. Cancer .000 prevention research. 2009 Sep;2(9):807-13.
- Rubio M, Bustamante M, Hernandez-Ferrer C, Fernandez-Orth D, Pantano L, Sarria Y, et al. .001 7. .002 Circulating miRNAs, isomiRs and small RNA clusters in human plasma and breast milk. PLoS .003 One. 2018:13(3):e0193527.
- .004 Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: 8. .005 microRNA sequences, targets and gene nomenclature. Nucleic acids research. 2006 Jan .006 1:34(Database issue):D140-4.
- Pantano L, Estivill X, Marti E. SeqBuster, a bioinformatic tool for the processing and .007 9. .008 analysis of small RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic .009 cells. Nucleic acids research. 2010 Mar;38(5):e34.
- .010 Pantano L, Estivill X, Marti E. A non-biased framework for the annotation and classification 10. of the non-miRNA small RNA transcriptome. Bioinformatics. 2011 Nov 15;27(22):3202-3. .011
- 11. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for .012 .013 RNA-seq data with DESeq2. Genome biology. 2014;15(12):550.
- Marabita F, de Candia P, Torri A, Tegner J, Abrignani S, Rossi RL. Normalization of .014 12. circulating microRNA expression data obtained by quantitative real-time RT-PCR. Briefings in .015 .016 bioinformatics. 2016 Mar;17(2):204-12.
- .017 Yeri A, Courtright A, Reiman R, Carlson E, Beecroft T, Janss A, et al. Total Extracellular 13. Small RNA Profiles from Plasma, Saliva, and Urine of Healthy Subjects. Scientific reports. 2017 .018 .019 Mar 17;7:44061.
- Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse .020 14. transcription-PCR data: a model-based variance estimation approach to identify genes suited for .021 .022 normalization, applied to bladder and colon cancer data sets. Cancer research. 2004 Aug .023 1;64(15):5245-50.
- .024 Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, et 15. .025 al. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic acids research. 2013 Jul;41(Web Server issue):W169-73. .026
- Tokar T, Pastrello C, Rossos AEM, Abovsky M, Hauschild AC, Tsay M, et al. mirDIP 4.1-.027 16. .028 integrative database of human microRNA target predictions. Nucleic acids research. 2018 Jan .029 4;46(D1):D360-D70.
- Andres-Leon E, Gonzalez Pena D, Gomez-Lopez G, Pisano DG. miRGate: a curated .030 17. .031 database of human, mouse and rat miRNA-mRNA targets. Database : the journal of biological .032 databases and curation. 2015;2015:bav035.
- Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, et al. miRTarBase update .033 18. .034 2018: a resource for experimentally validated microRNA-target interactions. Nucleic acids research. .035 2018 Jan 4;46(D1):D296-D302.

27th June

Gupta et al

Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in .036 19. behavior genetics research. Behavioural brain research. 2001 Nov 1;125(1-2):279-84. .037

.038