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Abstract 
 

Studies leveraging gene-environment (GxE) interactions within Mendelian randomization 

(MR) analyses have prompted the emergence of two methodologies: MR-GxE and MR-

GENIUS. Such methods are attractive in allowing for pleiotropic bias to be corrected when 

using individual instruments. Specifically, MR-GxE requires an interaction to be explicitly 

identified, while MR-GENIUS does not. We critically examine the assumptions of MR-GxE 

and MR-GENIUS, and propose sensitivity analyses to evaluate their performance. Finally, we 

explore the association between body mass index (BMI) and systolic blood pressure (SBP) 

using data from the UK Biobank. We find both approaches share similar assumptions, though 

differences between the approaches lend themselves to differing research settings. Where 

interactions are identified, MR-GxE relies on weaker assumptions and allows for further 

sensitivity analyses. MR-GENIUS circumvents the need to identify interactions, but relies on 

the MR-GxE assumptions holding globally. Through applied analyses we find evidence of a 

positive effect of BMI upon SBP. 
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Mendelian randomization (MR) is an epidemiological approach applied to observational data, 

in which genetic variants are used as instrumental variables (IVs) in order to estimate the 

causal effect of a modifiable exposure on a downstream outcome1. It encompasses a wide 

range of statistical methods, and typically relies upon three key assumptions to test for 

causality. A suitable genetic IV is strongly associated with the exposure of interest (IV 

assumption 1), independent of all confounders of the exposure and outcome, as well as 

confounders of the IV and outcome (IV2), and independent of the outcome when 

conditioning on the exposure and all confounders of the exposure and outcome (IV3)1, 2. 

Direct associations between a genetic instrument and the outcome of interest are defined as 

horizontal pleiotropic pathways3. Associations which violate IV2-3 represent the set of 

associations between the genetic variant and the outcome which are unrelated to the 

exposure, introducing bias into estimates of causal effect4. Pleiotropic associations are also 

believed to be potentially more likely when examining complex phenotypes in MR analyses, 

inducing bias in causal effect estimates. As a consequence, pleiotropy robust methods have 

been a central research focus in MR methods development2, 5, 6. 

One strategy to mitigate the problem of pleiotropic bias is to leverage variation in instrument 

strength across one or more covariates within a target population, represented as a gene-by-

covariate interaction7-9. Intuitively, if it were possible to identify a subgroup of the population 

wherein the instrument and exposure are independent (i.e. a `no-relevance group’), it follows 

that, in the absence of pleiotropy, the corresponding instrument and outcome should also be 

independent. A non-zero instrument-outcome association in such a situation therefore 

indicates that pleiotropy is present7, 10, 11. Empirically, however, no-relevance groups of 

sufficient size are rarely observed, prompting the development of more sophisticated 

approaches that leverage statistical assumptions to extrapolate back to a hypothetical no-

relevance group. Two such methods are MR using Gene-by-Environment interactions (MR-

GxE) and MR G-Estimation under No Interaction with Unmeasured Selection (MR-

GENIUS)7, 12. MR-GxE uses an explicit gene-by-covariate interaction to estimate causal 

effects. MR-GENIUS does not require observed interacting covariates, but implicitly 

leverages all possible gene-by-covariate interactions that induce a dependence between the 

instrument and the exposure variance. There is, however, little guidance as to the relative 

strengths and limitations of each approach. 

In this paper we implement MR-GxE in an individual level data setting, and critically 

evaluate the performance of MR-GxE and MR-GENIUS through simulation. We demonstrate 

how both approaches share similar underlying assumptions and are best applied in differing 

research settings, specifically whether a suitably `strong’ gene-by-environment interaction is, 

or is not, directly observed. When such a covariate is observed MR-GxE allows for a number 

sensitivity analyses to be exploited, with related assumptions applying only to the adopted 

interaction. In contrast, MR-GENIUS requires assumptions to hold across the entire set of 

potential interactions. Finally, we perform an applied analysis estimating the effect of 

adiposity upon systolic blood pressure (SBP) using data from the UK Biobank, finding 

evidence of a positive association between adiposity and SBP using both MR-GxE and MR-

GENIUS. 
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Results 
 

Overview of MR-GxE and MR-GENIUS 

The MR-GxE and MR-GENIUS approaches use differences in instrument strength across one 

or more covariates to estimate and correct for pleiotropic bias7. For 𝑖 ∈ {1,2, . . . , 𝑁} 

observations, let 𝐺𝑖 denote a single genetic instrument for an exposure 𝑋𝑖, and let 𝑌𝑖 represent 

the outcome of interest. Further, assume there exists an unmeasured confounder 𝑈𝑖 of 𝑋𝑖 and 

𝑌𝑖, and a set of interaction covariates 𝒁𝑖 = {𝑍1 … 𝑍𝐾} across which the instrument-exposure 

association varies. In order to make our ideas concrete, we now define an underlying data 

generating model for a continuous exposure and outcome, which are themselves a function of 

genetic variants 𝐺𝑖, 𝑍𝑖 and 𝑈𝑖. 

 

𝑍𝑘𝑖 = 𝜋𝑘0 + 𝜋𝑘1𝐺𝑖 + 𝜖𝑍𝑘𝑖                                                                 (1) 

𝑼𝑖 = 𝜃0 + 𝜃1𝐺𝑖 + ∑ (𝜃2𝑘𝑍𝑘𝑖 + 𝜃3𝑘𝐺𝑖𝑍𝑘𝑖)𝐾
𝑘=1 + 𝜖𝑼𝑖                                           (2) 

𝑋𝑖 = 𝛾0 + 𝛾1𝐺𝑖 + ∑ (𝛾2𝑘𝑍𝑘𝑖 + 𝛾3𝑘𝐺𝑖𝑍𝑘𝑖)
𝐾
𝑘=1 + 𝛾4𝑈𝑖 + 𝜖𝑋𝑖                                    (3) 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐺𝑖 + ∑ (𝛽3𝑘𝑍𝑘𝑖 + 𝛽4𝑘𝐺𝑖𝑍𝑘𝑖)𝐾
𝑘=1 + 𝛽5𝑈𝑖 + 𝜖𝑌𝑖                             (4) 

 

In equations (1-4), the 𝜖(.𝑖) terms represent independent error terms, and relationships with 

reference to a single interaction covariate 𝑍𝑘𝑖 are illustrated in Figure 1 wherein 𝐺𝑖, 𝑍𝑘𝑖, and 

𝑈𝑖 are assumed independent for clarity. 

 

Figure 1:  A directed acyclic graph showing the relationship between a genetic instrument 𝐺, interaction covariate 𝑍, 

exposure 𝑋, outcome 𝑌, and one or more confounders 𝑈. 𝐺𝑍 denotes the interaction 𝐺 × 𝑍, and 𝐺, 𝑍, and 𝑈 are assumed 

independent for clarity. 
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The MR-GxE approach requires an interaction covariate (𝑍𝑖) to be explicitly observed, in 

contrast to MR-GENIUS which leverages variance differences for a given exposure (𝑋𝑖) 

across subgroups of a genetic instrument (𝐺𝑖). Such variances differences implicitly rely on 

the presence of one or more unmeasured interaction covariates. For both approaches, 

unbiased estimation of causal effects requires three assumptions to be satisfied, summarised 

as assumptions GxE1-3 below. A suitable interaction (𝐺𝑖𝑍𝑖) is: 

 

GxE1: Strongly associated with the exposure of interest. 

GxE2: Independent of confounders of the exposure and outcome. 

GxE3: Not directly associated with the outcome of interest. 

 

For MR-GxE each assumption is framed with reference to a single observed interaction 

covariate. In contrast, MR-GENIUS requires assumptions GxE1-3 to hold globally across the 

set of observed and unobserved gene-by-covariate interactions in the sample (𝐺𝑖𝒁𝑖). For 

example, GxE1 is satisfied with respect to MR-GENIUS when the average interaction 

strength for all possible interactions (𝛾3𝐾) is non-zero across the sample. 

MR-GxE is implemented by using a gene-by-covariate interaction as an instrument within a 

two-stage least squares (TSLS) framework. In the first-stage model (equation 5), the exposure 

is regressed upon a genetic instrument and observed interaction covariate including an 

interaction term. The second-stage model (equation 6) then regresses the outcome upon the 

genetic instrument, interaction covariate, and fitted values for the exposure obtained using the 

first-stage model.  

 

�̂�𝑖 = 𝛾0 + 𝛾1𝐺𝑖 + 𝛾2𝑍𝑖 + 𝛾3𝐺𝑖𝑍1𝑖                                                       (5) 

𝑌𝑖 = 𝛽0 + 𝛽1�̂�𝑖 + 𝛽2𝐺𝑖 + 𝛽3𝑍𝑖 + 𝜖𝑌𝑖                                                     (6) 

 

This returns a causal effect estimate (�̂�1), as well as an estimate of pleiotropic effect as the 

coefficient of the genetic instrument (�̂�2) in the second-stage model (see Methods). MR-

GENIUS is implemented by first performing a simple regression of the exposure upon the 

genetic instrument and obtaining a set of residuals  𝜖�̂�𝑖. These residuals are then used in 

conjunction with the genetic instrument and incorporated within a TSLS model as a single 

instrument for the exposure (see Methods)12.  

 

MR-GxE sensitivity analyses and simulations 

By explicitly defining an interaction-covariate, it is possible to perform a range of sensitivity 

analyses which evaluate assumptions GxE1-3. MR-GxE is reliant upon a strong first-stage 

interaction (GxE1), and where this is not the case estimates will exhibit weak instrument bias 

(see Methods). The first-stage F-statistic for the interaction term in the first-stage model can 
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be used to identify candidate gene-by-covariate interactions, in a similar fashion to utilising 

GWASs to identify genetic variants associated with a phenotype of interest. Identifying 

candidate interactions is performed by fitting the first-stage MR-GxE model for each 

candidate interaction covariate 𝑍𝑘𝑖 and calculating the F-statistic with respect to 𝐺𝑖𝑍𝑘𝑖 (see 

equation 5 and Methods)9. Applying a Bonferroni multiple testing correction, it is then 

possible to plot and identify interaction covariates for which the MR-GxE model is 

identified13. 

To illustrate the role of interaction strength in MR-GxE and MR-GENIUS analyses, we 

present two simulated examples using the data generating models given in equations 1-5. 

Scenario 1 uses a single simulated dataset to demonstrate how sufficiently strong interactions 

can in principle be identified and visualised by evaluating the F-statistic for the interaction 

term in the first-stage model (equation 5). We use a sample size of 10,000 including 𝐾 = 100 

potential interaction covariates. Of the 100 interaction covariates, 10 were designated to have 

a first-stage interaction, assigning a value for 𝛾3𝑘 sampled from a normal distribution with 

mean 2 and standard deviation 0.5. Remaining interaction covariates were assigned values for 

𝛾3𝑘 sampled from a normal distribution with mean 0 and standard deviation 0.01. The 

complete set of interaction covariates 𝑍𝐾𝑖 were generated so as to be independent of 𝐺𝑖, such 

that 𝜋𝑘1 = 0 in equation (1). Scenario 2 illustrates how weak instrument bias results in biased 

estimates of causal effect. This is achieved using the same data generating model as in 

simulation 1, varying the strength of the first-stage interaction to demonstrate the effect of 

weak instrument bias. Causal effect estimates represent the mean estimate for a given mean 

F-statistic across a total of 5000 iterations, and were obtained using a separate sample of 

10,000 observations. 

The results of simulations 1 and 2 are presented in Table 1 and Figure 2 below. For 

simulation 1, Figure 2a shows how a scatter plot can be constructed in a similar fashion to a 

Manhattan plot in GWAS analyses. In this case, a Bonferroni multiple testing correction can 

be visualised using a solid horizontal line. From Table 1 it can be seen that using individual 

interaction covariates within the MR-GxE framework provides results comparable to MR-

GENIUS when the assumptions of both approaches are satisfied. Simulation 2 demonstrates 

how causal effect estimates exhibit both bias and a loss of precision as interaction strength 

decreases, as shown using a forest plot in Figure 2b and presented in Table 1. 
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Figure 2:  Panel A shows a scatter plot of  − log10(𝑝 − 𝑣𝑎𝑙𝑢𝑒) for the first-stage F-statistic across the set of 100 potential 

interaction covariates for a single simulated data set. Panel B shows a forest plot of mean causal effect estimates and 

confidence intervals under varying mean interaction strength. A solid horizontal line is included representing the Bonferroni 

correction threshold for statistical significance in panel A, while the dotted vertical line in panel B represents the true causal 

effect 𝛽1 = 1. 

 

Table 1: Simulated results and effect estimates for subset of interaction (denoted 𝑍) identified from Figure 2a (simulation 1), 

and results illustrating direction of bias under weak instrument (interaction) (simulation 2). 

Simulation 1 Simulation 2 

Covariate �̂�𝟏 (CI) F-statistic (p-value) Mean F-statistic �̅�𝟏 (CI) 

𝒁𝟓 1.003 (0.99-1.01) 341.7 (<0.001) 8.7 0.86 (-0.91, 2.63) 

𝒁𝟐𝟏 1.004 (0.99-1.02) 111.5 (<0.001) 13.3 0.93 (0.22, 1.65) 

𝒁𝟑𝟎 1.008 (1.00-1.02) 443.8 (<0.001) 19.1 0.97 (0.44, 1.50) 

𝒁𝟑𝟔 1.007 (1.00-1.02) 264.4 (<0.001) 25.5 0.97 (0.54, 1.41) 

𝒁𝟑𝟕 1.006 (1.00-1.01) 406.5 (<0.001) 32.9 0.98 (0.61, 1.35) 

𝒁𝟓𝟒 0.997 (0.99-1.01) 222.8 (<0.001) 41.7 0.99 (0.66, 1.31) 

𝒁𝟔𝟒 1.002 (0.99-1.01) 329.7 (<0.001) 51.0 0.99 (0.70,1.28 ) 

𝒁𝟕𝟕 1.001 (0.98-1.02) 76.5 (<0.001) 60.9 0.99 (0.73, 1.25) 

𝒁𝟕𝟖 1.001 (0.99-1.01) 250.9 (<0.001) 72.8 0.99 (0.75, 1.23) 

𝒁𝟗𝟔 1.015 (1.01-1.02) 376.2 (<0.001) 85.4 0.99 (0.77, 1.21) 

MR-GENIUS 1.008 (1.00-1.02) 280.0 (<0.001) a - - 
a Identification test using Breusch-Pagan test for heteroskedasticity. 

 

MR-GENIUS requires the set of unobserved interactions to be sufficiently strong globally to 

provide sufficiently precise estimates of causal effect. This can be shown in a further 

simulated example under scenario 1 above, with the addition that the proportion of non-zero 

interactions is varied within the sample. Table 2 contrasts estimates obtained using a single 
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valid and explicitly defined interaction using MR-GxE with MR-GENIUS estimates 

implicitly using the entire interaction set. It can be seen that as the mean interaction strength 

increases across the set of 𝐾 covariates the precision of the MR-GENIUS approach improves. 

This highlights the utility of the MR-GxE approach where interaction covariates are readily 

identifiable, and the flexibility of the MR-GENIUS approach in the absence of observed 

gene-by-covariate interactions. 

 

Table 2: Simulated results using differing proportions of non-zero interaction covariates. 

Proportion of 𝜸𝟑𝑲 ≠ 𝟎 Mean 

𝜸𝟑𝑲 
MR-GxE �̂�𝟏 

(CI) 

MR-GENIUS �̂�𝟏 

(CI) 

BP-Test p-

value 

𝟏% 0.020 1.000 (0.99, 1.01) 1.006 (0.87, 1.14) 0.083 

𝟓% 0.100 1.000 (0.99, 1.01) 1.001 (0.94, 1.06) <0.001 

𝟏𝟎% 0.200 1.000 (0.99,1.01) 1.002 (0.96, 1.05) <0.001 

𝟐𝟓% 0.500 1.000 (0.99, 1.01) 1.001 (0.96, 1.04) <0.001 

𝟓𝟎% 1.000 1.000 (0.99, 1.01) 1.001 (0.96, 1.04) 0.001 

𝟕𝟓% 1.499 1.000 (0.99, 1.01) 1.001 (0.96, 1.04) 0.004 

𝟏𝟎𝟎% 2.004 1.000 (0.99, 1.01) 1.001 (0.96, 1.04) 0.006 

 

 

Assumption GxE2 requires the gene-by-covariate interaction to be independent of common 

causes and confounders of the exposure and outcome. This is equivalent to instrument 

exogeneity in the conventional MR setting, though it should be noted that associations 

between the instrument 𝐺𝑖 and the interaction covariate 𝑍𝑖 do not necessarily introduce bias 

into MR-GxE estimates. This is most likely the result of problematic confounding structures 

between 𝐺𝑖, 𝑍𝑖, and 𝑈𝑖, and consequently it is possible to estimate the correlation between 𝐺𝑖 

and 𝑍𝑖, with independence serving as evidence of GxE2 being satisfied. However, it should 

be highlighted such independence does not necessary imply that GxE2 is satisfied, but an 

observed correlation can highlight potential issues that warrant further consideration (see 

Methods). 

The third assumption GxE3 requires pleiotropic effects of 𝐺𝑖 upon 𝑌𝑖 to remain constant 

across values of 𝑍𝑖, with the gene-by-covariate interaction being independent of 𝑌𝑖 when 

conditioning on 𝑋𝑖. Where this is not the case estimates of causal effect will exhibit bias in 

the direction of 𝛽4 in a similar fashion to horizontal pleiotropic bias in univariate MR 

analyses. By reframing MR-GxE within a TSLS framework, it is possible to apply tests of 

over-identification to evaluate the constant pleiotropy assumption, though this is not possible 

where only one instrument is available, for example, a single genetic variant. In cases where 

the single instrument is comprised of many instruments, such as a polygenic risk score, it is 

possible to examine different configurations of instruments iteratively using MR-GxE and 

assess heterogeneity in the set of MR-GxE estimates obtained from each iteration. These 

subsets of instruments are hereafter referred to as sub-instruments. 

In this scenario, a Sargan test can be used to compare different MR-GxE estimates of the 

same causal parameter (the coefficient of 𝑋𝑖 in equation 6 – i.e., 𝛽1), assuming we have more 

instruments than we need to consistently estimate the parameter14. However, it is important to 

note that in applying this test it is crucial for each of the sub-instruments to be sufficiently 
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strong to overcome weak instrument bias, though practically the test can be applied where 

weak interactions are present if assessing the strength of individual instruments of interest. 

To demonstrate the impact of GxE3 violation, as well as the utility of employing an adapted 

Sargan test as a sensitivity analysis, we present a further simulation shown in Table 3. In this 

case, a score analogous to a PRS was used as a single IV, comprised of 10 individual sub-

instruments of approximately equal strength. Mirroring the previous simulated example, the 

true causal effect was defined as 𝛽1 = 1 with a horizontal pleiotropic effect 𝛽2 = 0.05. Sub-

instruments violating assumption GxE3 were estimated to have a value 𝛽4 = 0.2, varying the 

proportion of invalid sub-instruments across the set of simulated models. The mean F-statistic 

for the simulations is 698.5 (Breusch-Pagan 253.97 𝑝 < 0.001), and MR-GENIUS estimates 

are presented for comparison. 

 

Table 3: Simulated results illustrating GxE3 and Sargan test. 

Proportion of valid 

interactions 

Mean 𝜷𝟒 MR-GxE �̂�𝟏 (CI) GENIUS �̂�𝟏 (CI) Sargan p-value 

𝟏𝟎𝟎% 0 0.974 (0.92, 1.08) 1.000 (0.92, 1.08) 0.501 

𝟖𝟎% 0.04 1.384 (1.29, 1.44) 1.179 (1.10, 1.26) <0.001 

𝟔𝟎% 0.08 1.736 (1.66, 1.80) 1.367 (1.26, 1.47) <0.001 

𝟒𝟎% 0.12 2.068 (2.01, 2.18) 1.544 (1.40, 1.69) <0.001 

𝟐𝟎% 0.16 2.470 (2.35, 2.56) 1.727 (1.543, 1.910) <0.001 

𝟎% 0.2 2.742 (2.69, 2.94) 1.908 (1.68, 2.14) 0.502 

 

As shown in Table 3, both MR-GxE and MR-GENIUS produce biased causal effect estimates 

when the constant pleiotropy assumption is violated. Violation of the constant pleiotropy 

assumption is also detected by applying a Sargan test, provided all sub-instruments do not 

identically violate GxE3 such that 𝛽4𝑘 is constant. As the Sargan test relies upon at least one 

instrument being valid, identical violation of assumption GxE3 would also violate the 

assumptions of the conventional Sargan approach. 

 

Estimating the effect of adiposity on systolic blood pressure within the UK 

Biobank 

To demonstrate each of the sensitivity analyses previously described, we performed MR 

analyses estimating the causal effect of adiposity (measured using BMI) on SBP using data 

from the UK Biobank. This serves as a re-examination of the original applied example in  

Spiller et al (2019) who first proposed the MR GxE model7. Here we go further by evaluating 

each underlying assumption using the diagnostic tools described above, and contrasting the 

results with MR-GENIUS7, 12. After performing quality control, removing participants with 

missing data, and restricting the sample to unrelated individuals of European ancestry, a total 

of 358,928 participants were included in the analyses. 

MR-GxE was implemented by constructing a weighted PRS informed using genetic variants 

previously identified from the GIANT consortium15. As the GIANT consortium represents a 

subset of the most recent UK Biobank release, subsequent analyses have been conducted in a 

one-sample framework. A total of 95 independent genetic variants were used after 
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performing linkage disequilibrium (LD) pruning, and removing tri-allelic or palindromic 

variants. Finally, we standardized BMI, SBP, and the weighted PRS using a z-score 

transformation prior to performing analyses. In previous work we found evidence of a 

positive association between BMI and SBP using OLS and TSLS regression approaches7, 16-

18. 

Initially, a discovery subset (N=100,000) was randomly sampled from the UK Biobank data 

for use in identifying interactions for MRGxE analyses. Causal effect estimates and 

sensitivity analyses were performed using the remaining data. Candidate gene-by-covariate 

interactions were detected by estimating the first-stage F-statistic for 576 candidate 

interaction covariates within the UK Biobank. After applying a multiple testing correction, 

the 20 interaction covariates with the strongest association were selected and utilised in 

subsequent analyses. Table 4 shows MR-GxE estimates of causal effect and corresponding 

sensitivity analyses with respect to each interaction covariate. The strength of each 

interaction across the set of candidate interaction covariates is illustrated in Figure 3, where 

annotations give the UK Biobank field ID for each interaction covariate. 

 

 

Figure 3: A scatter plot showing the first-stage F-statistics for instrument-by-covariate interactions using data from UK 

Biobank. A horizontal line is included representing the Bonferroni correction for statistical significance. For clarity, blue 

points represent interactions identified after multiple testing. The 20 strongest interactions have been annotated using their 

UK Biobank field identification number. 

To assess assumption GxE2, we created 9 sub-instruments sampling from the 95 SNPs used 

to create the initial PRS instrument. Fitting the MR-GxE model using multiple sub-
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instruments allows for overidentification tests to be performed, testing the extent to which 

causal effect estimates differ when using individual sub-instruments. In each case, a failure to 

reject the null can be considered to be evidence of interaction exogeneity as previously 

outlined. To implement this approach, the set of SNPs were randomly assorted into 9 sub-

instruments of approximately equal strength, quantified using the F-statistic with respect to 

BMI. Repeating this procedure using sub-instruments containing differing SNPs yielded 

similar results. We also present the mean F-statistic across the set of sub-instruments to 

emphasise their strength. 
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Table 4: MR-GxE estimates and sensitivity analyses using each candidate interaction covariate and MR-GENIUS. The F-

statistic reported refers to the F-statistic for the interaction term using the PRS, while �̂�1 corresponds to the causal effect 

estimates obtained using each exposure. 

Covariate  

(UK Biobank Field ID) 

F-statistic  �̂�𝟏  

(p-value) 

𝝆 (𝑮, 𝒁)a 

(p-value) 

Sargan b  

(p-value) 

Mean 

F c 

Waist circumference 

(f.48.0.0) 

182.86  -0.524 

(< 0.001) 

0.103 

(<0.001) 

7.531 

(0.481) 

79.40 

Weight (kg) 

(f.21002.0.0) 

123.16  -0.687 

(< 0.001) 

0.119 

(<0.001) 

9.342 

(0.314) 

48.79 

Diabetes diagnosis 

(f.2443.0.0) 

54.22  -0.065 

(0.470) 

0.020 

(<0.001) 

12.19 

(0.143) 

41.22 

Alcohol intake frequency 

(f.1558.0.0) 

50.65  0.163 

(0.006) 

0.001 

(0.526) 

5.69 

(0.682) 

41.62 

Physical activity (vigorous) 

(f.904.0.0) 

42.10  0.017 

(0.862) 

0.004 

(0.003) 

20.40 

(0.009) 

17.03 

Vascular/ heart problem diagnosis 

(f.6150.0.0) 

33.65  -0.446 

(< 0.001) 

0.028 

(<0.001) 

7.22 

(0.513) 

16.76 

Time number displayed during memory test 

(f.4253.0.5) 

28.42 -2.155 

(0.333) 

0.015 

(0.002) 

14.54 

(0.069) 

13.51 

Number of days per week walked 10+ mins 

(f.864.0.0) 

27.87 0.208 

(0.011) 

0.001 

(0.705) 

6.87 

(0.551) 

18.98 

DBP (automated, baseline) 

(f.4079.0.0) 

26.45 -0.324 

(<0.001) 

0.020 

(<0.001) 

6.39 

(0.603) 

16.32 

Physical activity (moderate) 

(f.884.0.0) 

23.60  0.165 

(0.107) 

0.001 

(0.324) 

3.66 

(0.886) 

14.27 

Townsend deprivation index 

(f.189.0.0) 

23.01 0.108 

(0.489) 

-0.016 

(<0.001) 

9.24 

(0.323) 

16.80 

Comparative body size at age 10 

(f.1687.0.0) 

20.65 0.283 

(0.004) 

0.048 

(<0.001) 

9.94 

(0.269) 

14.62 

Time to complete pair matching activity 

(f.400.0.2) 

20.49 0.052 

(0.689) 

-0.007 

(<0.001) 

29.50 

(<0.001) 

11.84 

Pulse rate 

(f.4194.0.0) 

20.45 0.031 

(0.873) 

-0.010 

(<0.001) 

13.78 

(0.088) 

4.77 

Time watching television 

(f.1070.0.0) 

20.01 -0.140 

(0.211) 

0.017 

(<0.001) 

14.83 

(0.063) 

15.08 

DBP (automated, follow-up) 

(f.4079.0.1) 

19.55 -0.501 

(<0.001) 

0.016 

(<0.001) 

6.37 

(0.606) 

11.72 

Own or rent accommodation 

(f.680.0.0) 

18.41 0.078 

(0.607) 

-0.006 

(<0.001) 

19.84 

(0.011) 

10.13 

Age at assessment 

(f.21003.0.0) 

18.15 0.697 

(<0.001) 

0.013 

(<0.001) 

17.28 

(0.027) 

14.03 

Birthweight known 

(f.120.0.0) 

17.93 0.067 

(0.851) 

-0.014 

(<0.001) 

14.16 

(0.078) 

4.94 

Year of birth 

(f.34.0.0) 

15.85 0.710 

(<0.001) 

-0.014 

(<0.001) 

17.12 

(0.029) 

13.94 

Observational - 0.1864 

(<0.001) 

- - - 

Two-stage least squares 7776.52 0.1303 

(<0.001) 

- - - 

MR-GENIUS 1332.7 
 (< 𝟎. 𝟎𝟎𝟏)d 

0.034 

(0.009) 

- - - 

Bonferroni testing correction p-value < 5 × 10−5. 
a𝜌(𝐺, 𝑍) represents the correlation between the PRS and interaction covariate. 

b Sargan shows the results to overidentification tests using multiple sub-instruments. 
c The mean F-statistic for the sub-instruments is given under Mean F. 

d BP Heterogeneity Test 
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Figure 4: A forest plot showing MR-GxE causal effect estimates using the interaction covariates presented in Table 4. 

Observation f.4253.0.5 has been omitted for clarity. Red points indicate analyses for which assumptions may likely be 

violated, while blue points show potentially valid interaction covariates using accompanying sensitivity analyses. 

Observational, two-stage least squares (TSLS), and MR-GENIUS estimates are also shown as black points. 

 

As shown in Table 4, there exists substantial disagreement across the range of selected 

interaction covariates, suggesting that one or more violate underlying assumptions of the 

MR-GxE approach. 

Considering assumption GxE2, several of the identified gene-by-covariate interactions are 

proxy measures of adiposity, specifically waist circumference, weight in kilograms, and 

comparative body size at age 10. Such interaction covariates are often problematic, as 

associations between the genetic variants and the interaction can result in collider bias where 

the interaction covariate is downstream of the exposure (see Methods). In this case, higher 

estimates of 𝜌 (𝐺, 𝑍) for these variables supports this interpretation, and their subsequent 

exclusion from further analyses. A similar argument can also be made with respect to 

interaction covariates downstream of BMI, including diabetes diagnosis, vascular/heart 

problem diagnosis, and diastolic blood pressure (DBP). 

By applying Sargan tests, a number of interaction covariates related to cognition, physical 

activity, and age appear to violate assumption GxE3. This could be explained by the gene-by-

covariate interactions relating to one or more underlying risk factors, which are not adjusted 

for in the corresponding MR-GxE models. 
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After applying sensitivity analyses, three interaction covariates can be identified as 

appropriate choices for estimation using MR-GxE. This selection was made using Sargan test 

and correlation p-value thresholds of < 0.0025, applying a multiple testing correction. 

Selected covariates include alcohol intake frequency and physical activity, both days walked 

and moderate levels of exercise. Considering alcohol intake and physical activity, the lack of 

a substantial correlation between each interaction covariate and the PRS suggests that 

violation of GxE2 is unlikely.  

In previous work Townsend deprivation index (TDI) was selected as an interaction covariate 

in a summary MR-GxE analysis and returned estimates in agreement with both alcohol 

consumption and physical activity measures identified above. However, it is important to 

note that TDI shows evidence of a non-zero instrument-interaction covariate correlation, 

potentially highlighting a violation of assumption GxE2. This can be explained by TDI being 

plausibly downstream of both BMI and the instrument, representing situation in which the 

correlation does not invalidate estimates of causal effect. For reference, this would resemble  

confounding scenario (c) (see Methods Figure 5c) with respect confounding structures 

invalidating assumption GxE2.  

Crucially, adopting alcohol and physical activity as interaction covariates yields causal effect 

estimates which appear biologically plausible, and support evidence from both observational 

and MR studies suggesting a positive association between BMI and SBP. Estimates using 

each interaction covariate are presented in Figure 4. 

As a final analysis, we implemented MR-GENIUS using the PRS, BMI, and SBP measures 

from UK Biobank. This resulted in a more precise estimate in comparison to MR-GxE, 

however, the effect estimate appears to strongly disagree with evidence from MR-GxE and 

alternate approaches. Given MR-GENIUS implicitly relies upon analogous assumptions to 

MR-GxE, it seems reasonable to assume that such a discrepancy could arise from bias due to 

violations stemming from one or more unmeasured interactions. This is further supported by 

MR-GxE estimates of similar direction and magnitude which appear to show evidence of 

bias, such as vigorous physical activity which shows evidence of GxE3 violation. 
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Discussion 
 

In this paper we examine two related interaction-based MR approaches: MR-GxE and MR-

GENIUS. Both MR-GxE and MR-GENIUS rely upon similar underlying assumptions, whilst 

differing based on whether a gene-by-covariate interaction needs to be explicitly incorporated 

within the estimation model. Specifically, MR-GxE relies upon at least a single measured 

gene-by-covariate interaction which satisfies assumptions GxE 1-3, whilst MR-GENIUS does 

not require such an interaction to be observed. However, as a consequence of implicitly 

leveraging multiple underlying interactions, the MR-GENIUS approach requires assumptions 

GxE 1-3 to hold globally. Essentially, stronger assumptions are required to mitigate the 

absence of an observed gene-by-covariate interaction. 

Through an examination of the MR-GxE assumptions, several approaches aiming to evaluate 

assumptions GxE 1-3 have been outlined. Interaction strength (GxE1) can be evaluated using 

the first-stage F-statistic for the interaction term, analogous to evaluating instrument strength 

in conventional MR. The corresponding global test for interaction strength using MR-

GENIUS and a continuous exposure is the Breusch-Pagan test for heteroskedasticity12, 19. 

Assumption GxE2 can initially be evaluated by estimating the correlation between 𝑍𝑖 and 

both 𝐺𝑖 and 𝑋𝑖 respectively. Where 𝑍𝑖 is observed to be correlated with 𝐺𝑖, it is possible that a 

confounding relationship exists violating assumption GxE2. Further, the simultaneous 

association of 𝑍𝑖 with 𝐺𝑖 and 𝑋𝑖 can result in bias where 𝑍𝑖 is downstream of 𝑋𝑖. However, as 

the existence of such correlations does not necessarily imply that this assumption is violated, 

a more promising approach may be to adopt an interaction covariate 𝑍𝑖 which is highly likely 

to be exogenous (see Methods). For example, one could employ genetic variants which 

instrument a likely interaction covariate. Future work will explore this possibility. 

The constant pleiotropy assumption (GxE3) can be tested in cases where the initial 

instrument 𝐺𝑖 is a composite instrument, that is, comprised of multiple sub-instruments such 

as genetic variants within a PRS. Heterogeneity in effect estimates obtained using sub-

instruments can be considered as evidence of violation of the constant pleiotropy assumption, 

analogous to heterogeneity in two-sample summary MR4, 20. In principle, a similar approach 

can be applied using sub instruments with MR-GENIUS, though such an examination is 

beyond the scope of this paper. 

In the applied analysis the association between BMI and SBP was estimated using MR-

GENIUS and a range of interaction covariates in conjunction with MR-GxE. We identified 

four suitable interaction covariates, which suggest a positive effect of BMI upon SBP in 

agreement with previous observational and MR analyses. Importantly, we highlight 

interaction covariates which violate the MR-GxE assumptions and link these issues to the 

possibly biased effect estimates obtained using MR-GENIUS. 

Several limitations remain with respect to MR-GxE which warrant further explanation. 

Firstly, reliance upon an observed gene-by-covariate interaction limits the extent to which the 

method can be applied in contrast to MR-GENIUS. We advocate the use of MR-GENIUS in 

cases where no interaction covariate is available, though care needs to be taken in justifying 

the more stringent assumptions MR-GENIUS entails. Second, evaluating GxE2 using the 

correlation of between 𝑍𝑖 and 𝐺𝑖 does not provide a clear indication of whether the 
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assumptions hold. It is possible that GxE2 can be violated when 𝑍𝑖 and 𝐺𝑖 appear to be 

independent, and assuming the direction of effect between 𝑍𝑖 and 𝑋𝑖  relies upon a priori 

knowledge regarding the direction of association. It is therefore critical to identify plausible 

biological mechanisms underpinning the observed relationships in the MR-GxE model. 

Finally, whilst an overidentification test has been presented for evaluating GxE3, there is not 

at present a method aiming to correct for violation of the constant pleiotropy assumption. It is 

likely that pleiotropy robust methods, such as median or modal regression, could be utilised 

to correct for resulting bias, and the application of such methods will be fully explored in 

future work. 
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Methods 
 

The MR-GxE Approach 

The extent to which instrument strength varies across strata of a given interaction covariate 

𝑍𝑘 is quantified by the magnitude of the first-stage interaction between 𝐺𝑖 and 𝑍𝑘𝑖 (𝛾3𝑘) 

shown in equation (3). The MR-GxE approach also relies upon 𝛽4𝑘 and 𝜃3𝑘 being equal to 

zero, analogous to instrument validity in conventional MR. In previous work, MR-GxE was 

implemented using an approach analogous to MR-Egger regression in two-sample summary 

MR4, 7. This is achieved by initially obtaining strata specific instrument-exposure and 

instrument-outcome associations, after which the instrument-outcome associations are 

regressed upon the instrument-exposure associations including an intercept. 

The interpretation of estimates and corresponding plots using this approach essentially 

mirrors MR-Egger regression, though each observation represents a different strata-specific 

subgroup as opposed to a unique genetic instrument4. However, whilst this approach does 

allow for estimation using publicly available GWAS summary data it has two primary 

limitations. Initially, it relies upon specification of an interaction-covariate without a readily 

applicable measure of interaction strength. Second, ambiguity surrounding the definition of 

interaction-covariate strata can potentially have a substantial impact on causal effect 

estimates7. Applying MR-GxE in an individual level data setting avoids these issues and 

allows for additional information to be incorporated into effect estimation. Further, such an 

approach is increasingly applicable with the emergence of large-scale studies with genetic 

data such as the UK Biobank. 

A reduced form model for 𝑌𝑖 given 𝐺𝑖 and 𝑍𝑖 incorporating equations (5-6) can be written as 

 

𝑌𝑖 = 𝛼0 + 𝛼1𝐺𝑖 + 𝛼2𝑍1𝑖 + 𝛼3𝐺𝑖𝑍1𝑖 + 𝜖𝑖                                                    (7) 

 

Note that a 𝐺𝑖 × 𝑍1𝑖 term is omitted from the second-stage model given in equation (6) due to 

its role as an instrument, whilst the inclusion of 𝐺𝑖 allows for estimation of a horizontal 

pleiotropic effect on the outcome, denoted by 𝛽2. Using equation (5) and equation (7) we can 

define the MR-GxE estimand as 

 

𝛽1 =
𝑐𝑜𝑣(𝑌,𝐺𝑍1)−𝛼1𝑐𝑜𝑣(𝐺,𝐺𝑍1)−𝛼2𝑐𝑜𝑣(𝑍1,𝐺𝑍1)

𝑐𝑜𝑣(𝑋,𝐺𝑍1)−𝛾1𝑐𝑜𝑣(𝐺,𝐺𝑍1)−𝛾2𝑐𝑜𝑣(𝑍1,𝐺𝑍1)
                                                (8) 

 

The MR-GENIUS Approach 

The MR-GENIUS approach is an adapted form of Robins' G-estimation which is robust to 

additive confounding and pleiotropic bias12, 21, 22. This essentially involves leveraging 

differences in the variance of a given exposure 𝑋𝑖 across subgroups of a genetic instrument 

𝐺𝑖, which are likely the consequence of one or more gene-by-covariate interactions. In the 
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case of a binary instrument and exposure, and using notation from equations 1-5, the MR-

GENIUS estimator can be written as: 

 

�̂�1 =
ℙ𝑛[{𝐺𝑖−ℙ𝑛(𝐺)}{𝑋𝑖−�̂�(𝑋𝑖|𝐺𝑖)}𝑌𝑖]

ℙ𝑛[{𝐺𝑖−ℙ𝑛(𝐺𝑖)}{𝑋−�̂�(𝑋𝑖|𝐺𝑖)}𝑋𝑖]
                                                         (9) 

 

where ℙ𝑛 = 𝑛−1 ∑ [∙]𝑖
𝑛
𝑖=1  and �̂�(𝑋𝑖|𝐺𝑖 = 𝑔) = ℙ𝑛[𝑋𝑖1(𝐺𝑖 = 𝑔)]/ℙ𝑛[1(𝐺𝑖 = 𝑔)]12. 

MR-GENIUS is implemented by first regressing 𝑋𝑖 upon 𝐺𝑖 and obtaining a set of residuals 

𝜖�̂�𝑖. These residuals are then used to create an instrument (𝐺𝑖 − �̅�)𝜖�̂� which is incorporated 

within a TSLS model, as a single instrument for 𝑋𝑖
12. Estimates of �̂�1 remain unbiased, 

provided the instrument 𝐺𝑖 is associated with the exposure of interest, the effect does not 

change across values of the unmeasured confounders, and the MR-GENIUS model is 

identified such that the change in variance across levels of the instrument is non-zero12. In the 

binary exposure case, this means that the MR-GENIUS model is identified when 

𝑐𝑜𝑣(𝐺𝑖, 𝑣𝑎𝑟(𝑋𝑖|𝐺𝑖)) ≠ 0, and for a continuous exposure the MR-GENIUS model when the 

residual error 𝜖𝑋 is heteroskedastic, that is, not constant across levels of 𝐺𝑖
12. This can be 

evaluated using a Breusch-Pagan test for heteroskedasticity12, 19. 

These conditions also restrict the degree of joint effect modifiers of both 𝑋𝑖 and 𝑌𝑖. 

Importantly, it should be noted that the interaction covariate need not be explicitly identified 

using MR-GENIUS, illustrated by the absence of any 𝑍𝑘𝑖 in equation 9. However, 

identification of the MR-GENIUS model implicitly relies upon the presence of one or more 

gene-by-covariate interactions to induce the desired dependence between 𝐺𝑖 and 𝑣𝑎𝑟(𝑋|𝐺). 

 

GxE1: Interaction strength 

The MR-GxE estimator can be viewed as an extension of the Wald ratio, including an 

adjustment for the direct effects of 𝐺𝑖 and 𝑍𝑘𝑖. Thus, in the special case where 𝐺𝑖 and 𝑍𝑘𝑖 are 

marginally independent of the exposure and outcome (but their interaction via a single 

covariate 𝑍𝑘𝑖 is not), the MR-GxE estimator collapses to: 

 

𝑐𝑜𝑣(𝑌𝑖,𝐺𝑖𝑍𝑘𝑖)

𝑐𝑜𝑣(𝑋𝑖,𝐺𝑖𝑍𝑘𝑖)
                                                                    (10) 

 

MR-GxE is clearly reliant upon a strong first-stage interaction, such that 𝛾𝑘3 ≠ 0 in order to 

make the denominator of (10) non-zero (GxE1). As in the conventional MR setting it is 

possible to assess interaction strength using the F-statistic for the interaction term in the first-

stage model, however, the use of a single instrument precludes relating the F-statistic to the 

magnitude of relative bias (at least three instruments would be required in this case for the 

asymptotic formula to be valid). Therefore, whilst an F-statistic of 10 may satisfy the 

standard threshold for sufficient instrument strength, it is not possible to relate this to a 10% 

relative bias towards the OLS estimate. Further, as in the conventional MR setting, 
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interaction strength does not mitigate bias from violations of assumptions GxE 2-323. Where 

possible, candidate interactions should be identified in separate samples to avoid issues 

related to Winner’s curse, as is the case with instrument selection in conventional MR. 

At this point it is important to highlight several features of gene-by-covariate interactions 

which require careful consideration prior to performing MR-GxE. Firstly, interactions are 

scale dependent, and as a result applying transformations can create spurious associations24.  

As such spurious associations can exist as an artefact of the data, estimates leveraging such 

information can potentially be unreliable. A related concern is that the interaction may not be 

linear, as is assumed in equation 5. A potential solution to this issue is to fit flexible models 

(e.g., fractional polynomial models, which include varying exponents with respect to 𝐺𝑖𝑍𝑘𝑖) 

to allow for non-linear interactions to be identified25.  

As MR-GENIUS does not require gene-by-covariate interactions to be identified, testing for 

identification is performed globally by evaluating heteroskedasticity with respect to the 

residuals 𝜖𝑋𝑖. Specifically, MR-GENIUS relies upon the residual error in a regression of the 

exposure upon the instrument to be heteroskedastic, such that (𝑋|𝐺) = 𝐸(𝜖𝑋
2|𝐺)12. 

 

GxE2: Interaction exogeneity 

In previous work we show how assumption GxE2 is most likely violated when certain 

confounding structures exist, specifically, where 𝐺𝑖 and 𝑍𝑖 are simultaneously downstream of 

a confounder 𝑈𝑖 or where there is an open path between the two variables through 𝑈𝑖
7. These 

confounding structures are illustrated in Figure 5, where scenarios (a), (b), and (d) represent 

pathways which can result in bias. In contrast, scenario (c) represents a blocked path which 

does not necessarily result in bias.  
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Figure 5: A panel showing a set of 4 DAGs wherein the instrument 𝐺 and interaction covariate 𝑍 are simultaneously 

associated with one or more confounders 𝑈. In this case, DAGs (a), (b), and (d) would likely result in biased causal effect 

estimates using MR-GxE, in contrast to confounding structure (c). 

 

To understand why scenarios (a)-(c) induce bias into MR-GxE estimates, we can extend the 

MR-GxE estimand to allow for violation of GxE 2, by including covariance terms between 𝑈𝑖 

and (𝑍𝑖 , 𝐺𝑖𝑍𝑖)𝑈𝑖, such that were it possible to include 𝑈𝑖 in the TSLS model, the resulting 

estimate could be written as: 

 

�̂�1 =
𝑐𝑜𝑣(𝑌,𝐺𝑍)−𝛽𝑌𝐺

∗ 𝑐𝑜𝑣(𝐺,𝐺𝑍)−𝛽𝑌𝑍
∗ 𝑐𝑜𝑣(𝑍,𝐺𝑍)−𝛽𝑌𝑈

∗ 𝑐𝑜𝑣(𝑈,𝐺𝑍)

𝑐𝑜𝑣(𝑋,𝐺𝑍)−𝛽𝑋𝐺
∗ 𝑐𝑜𝑣(𝐺,𝐺𝑍)−𝛽𝑋𝑍

∗ 𝑐𝑜𝑣(𝑍,𝐺𝑍)−𝛽𝑋𝑈
∗ 𝑐𝑜𝑣(𝑈,𝐺𝑍)

                                (11) 

 

where each 𝛽∗indicates a multivariable regression estimate pertaining to the second subscript 

variable when regressed upon the first, including the unmeasured confounder 𝑈𝑖. As it is not 

possible to directly measure and adjust for 𝑈𝑖, we rely upon independence between 𝑈𝑖 and 

𝐺𝑖𝑍𝑖 for equation (11) to be equivalent to the MR-GxE estimator in equation (8). 

Violation of GxE2 and subsequent bias can result from specific configurations of 𝐺𝑖, 𝑍𝑖, and 

𝑈𝑖 associations. For example, a pathway from 𝐺𝑖 to 𝑍𝑖 through 𝑈𝑖 (see Figure 5a) would 

result in bias, though the converse is less likely where genetic variants are used as 

instruments7.  

A more serious concern is the potential for collider bias when estimating fitted values �̂�𝑖 in 

the first-stage MR-GxE model. As shown in equation (5), it is necessary to include the 

interaction covariate in the first-stage model. However, in cases where 𝐺𝑖 and 𝑈𝑖 are both 

simultaneously upstream associated with 𝑍𝑖, conditioning on 𝑍𝑖 will induce collider bias in 
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the first-stage MR-GxE model, such that the estimate of pleiotropic effect �̂�2 and subsequent 

adjustment will be inaccurate. This case is illustrated in Figure 6. 

 

Figure 6: A DAG showing a situation in which conditioning on 𝑍 when 𝐺 and 𝑋 are simultaneously upstream associated 

with 𝑍 would induce collider bias in a regression of 𝑋 upon 𝐺 and 𝑍 outlined in equation 5. 

 

We present two strategies for limiting the impact of such bias. As an initial test, it is possible 

to estimate the correlation between 𝐺𝑖 and 𝑍𝑖, with observed independence serving as 

evidence against violation of GxE2. Specifically, with reference to Figure 5 scenarios (a), (b), 

and (d) can in principle lead to observed correlations between 𝐺𝑖 and 𝑍𝑖 which can be 

identified. However, it is important to emphasise that independence cannot necessarily be 

interpreted as GxE2 being satisfied. This would primarily be the case where a three-way 

interaction exists between the instrument 𝐺𝑖, interaction covariate 𝑍𝑖, and one or more 

confounders 𝑈𝑖. Rather than removing the possibility, an observed correlation between 𝐺𝑖 and 

𝑍𝑖 can highlight a potential issue in the analysis which warrants further consideration. 

A second and potentially more robust approach would be to adopt a genetic proxy variable 

for the interaction covariate 𝑍𝑖, as this would share the same benefits with regard to causal 

direction as 𝐺𝑖 with respect to environmental confounders. For example, when estimating the 

association between alcohol and SBP using education as an interaction covariate, adopting a 

PRS for education would in principle utilise the explained variation in education excluding 

environmental confounders such as socio-economic status. 

 

GxE3: Constant pleiotropy 

The third MR-GxE assumption requires pleiotropic effects of 𝐺𝑖 upon 𝑌𝑖 to remain constant 

across values of 𝑍𝑖, with the gene-by-covariate interaction being independent of 𝑌𝑖 when 

conditioning on 𝑋𝑖. Where this is not the case estimates of causal effect will exhibit bias, such 

that the degree of bias in the MR-GxE estimate will be equal to: 

 

𝑏𝑖𝑎𝑠 =
𝛽4

𝑐𝑜𝑣(𝑋,𝐺𝑍)−𝛽𝑋𝐺𝑐𝑜𝑣(𝐺,𝐺𝑍)−𝛽𝑋𝑍𝑐𝑜𝑣(𝑍,𝐺𝑍)
                                          (12) 
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To illustrate how over-identification tests can be applied in the context of MR-GxE, consider 

an extension of equations 5 and 6 to include an arbitrary number of sub-instruments, wherein 

a single instrument 𝑮𝒊 is comprised of 𝑚 ∈ {1,2, . . . , 𝑀}  sub-instruments. Where 𝐺𝑚𝑖 denotes 

the 𝑚𝑡ℎ sub-instrument in 𝑮𝒊, we can rewrite the data generating models presented in 

equations (3-4) as: 

 

𝑋𝑖 = 𝛾0 + ∑ (𝛾1𝑚𝐺𝑚𝑖 + ∑ (𝛾2𝑘𝑍𝑘𝑖 + 𝛾3𝑘𝑚𝐺𝑚𝑖𝑍𝑘𝑖)𝐾
𝑘=1 ) + 𝛾4𝑈𝑖 + 𝜖𝑋𝑖

𝑀
𝑚=1                 (13) 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + ∑ (𝛽2𝑚𝐺𝑚𝑖) + ∑ (𝛽3𝑘𝑍𝑘𝑖) + ∑ ∑ (𝛽4𝑘𝑚𝐺𝑚𝑖𝑍𝑘𝑖) + 𝛽5𝑈𝑖 + 𝜖𝑌𝑖
𝐾
𝑘=1

𝑀
𝑚=1

𝐾
𝑘=1

𝑀
𝑚=1 (14)  

 

Sargan tests can then be used to compare different MR-GxE estimates of the same causal 

parameter provided we have more instruments of sufficient strength than we need to 

consistently estimate the parameter14.  
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