1	Body mass index multiple regression formula testable by
2	all nine Bradford Hill causality criteria: Artificial
3	intelligence analytics applied to worldwide ecological
4	BMI and risk factor data to model obesity
5	
6	David K Cundiff, MD (0000-0002-3206-9665), independent researcher, ^{1 3} Chunyi Wu, PhD
7	(0000-0002-2186-3433), Research Epidemiologist/Statistician ^{2 3}
8	¹ Long Beach, California, USA
9	² Area Specialist Lead in Epidemiology and Statistics, Michigan Medicine, Ann Arbor,
10	Michigan, USA
11	³ Volunteer collaborators with the Institute of Health Metrics and Evaluation, Seattle,
12	Washington, USA
13	Correspondence to: David K Cundiff <u>davidkcundiff@gmail.com</u> Phone: 1-562-438-880
14	Word count: abstract=350, text=2984
15	

16	Key Points
17	Question: Can worldwide global burden of disease (GBD) data analysis derive a body mass
18	index (BMI) multiple regression formula testable by Bradford Hill causality criteria?
19	Findings: A multiple regression derived formula including population attributable fractions
20	(PAFs) of 20 dietary risk factors, physical activity, childhood severe underweight, and sex
21	satisfied all nine Bradford Hill causality criteria. The BMI formula also plausibly predicted the
22	long-term BMI outcomes related to various dietary and physical activity scenarios.
23	Meaning: GBD data analysis of BMI and associated risk factors may infer causality with
24	overweight/obesity and possibly for health outcomes in nutritional epidemiology generally.

26 Abstract

27	Importance	Artificial int	elligence anal	vtics may]	be applied to	global burden o	of disease ((GBD)
<i>_</i> ,	mportance	1 in chille full fille	emgenee unui	yereb may	oe uppneu to	Slooul ourach	or arbeabe (ODD

28 data on body mass index (BMI) and associated risk factors.

29 **Objective** Rigorously quantify the interactions of dietary and other risk factors that result in

30 adult BMI

31 **Design** We formatted global burden of disease data relevant to body mass index and associated

32 risk factors. We empirically explored the univariate and multiple regression correlations of BMI

risk factors with worldwide BMI to derive a BMI multiple regression formula (BMI formula).

34 Setting Worldwide

35 **Participants** Institute of Health Metrics and Evaluation staff and volunteer collaborators

36 analyzed over 12,000 GBD risk factor surveys of people from 195 countries and synthesized the

37 data into representative cohort BMI and risk factor values.

38 Main outcome measures the performances of the BMI formula when tested with all nine

39 Bradford Hill causality criteria each scored on a 0-5 scale: 0=negative to 5=very strong support

40 **Results** In the BMI formula derived, all foods were expressed in kilocalories/day (kcal/day). We

41 adjusted BMI formula risk factor coefficients to equate with their population attributable

42 fractions (PAFs in percent's) relating to worldwide mean BMI. BMI increasing foods had "+"

43 signs and BMI decreasing foods had "-" signs. Total PAF of BMI formula=80.96%. BMI

44 formula=(0.37% *processed meat + 4.23% *red meat + 0.02% *fish + 2.24% *milk +

45 5.67% *poultry + 1.77% *eggs + 0.34% *alcohol + 0.99% *sugary beverages + 0.04% *corn +

46 0.72% *potatoes + 8.48% *saturated fatty acids + 3.89% *polyunsaturated fatty acids +

47 0.27% *trans fatty acids - 2.99% *fruit - 4.07% *vegetables - 0.37% *nuts and seeds -

48 0.45% * whole grains - 1.49% * legumes - 8.62% * rice - 0.10% * sweet potatoes - 7.45% physical

49	activity (METs/week) - 20.38% *child underweight + 6.02% *sex (male=1, female=2))*0.05012
50	+ 21.77. (BMI formula versus BMI: r=0.907 (95% CI: 0.903 to 0.911) p<0.0001, Bradford Hill
51	causality criteria test scores (0-5): (1) strength=5, (2) experimentation=5, (3) consistency=5, (4)
52	dose-response=5, (5) temporality=5, (6) analogy=4, (7), plausibility=5, (8) specificity=5, and (9)
53	coherence=5. Total score=44/45.
54	Conclusions and relevance Nine Bradford Hill causality criteria strongly supported a causal
55	relationship between the BMI formula derived and mean BMIs of worldwide cohorts. The
56	artificial intelligence methodology introduced could inform individual, clinical, and public health
57	strategies regarding overweight/obesity prevention/treatment and other health outcomes.

59 Introduction

According to IBM Cloud Education, "At its simplest form, artificial intelligence is a 60 61 field, which combines computer science and robust datasets, to enable problemsolving."¹ The analysis dataset here formatted from 1.4 gigabytes of global burden of 62 63 disease (GBD) worldwide data and the BMI multiple regression derived risk factor 64 formula (BMI formula) satisfy this definition of artificial intelligence. 65 In an editorial in the BMJ titled, "Implausible results in human nutrition research", influential 66 67 Stanford University meta researcher, Dr. John Ioannidis detailed why, in his words, "definitive solutions won't come from another million observational papers or small randomized trials."² Dr. 68 69 Ioannidis called for radical reform of nutritional epidemiology methodologies used to influence food/agricultural policies and to produce dietary guidelines for clinicians and the public.³ This 70 71 study analysing GBD worldwide data of dietary and other risk factors for BMI attempts to 72 answer Dr. Ioannidis' call. 73 74 This paper will use formatted, population weighted GBD data to derive a multiple regression 75 BMI formula (BMI formula). The BMI formula modeled will be comprised of dietary and other 76 risk factors with coefficients equated to their population attributable fractions (PAFs) related to 77 the mean BMIs of worldwide cohorts.

78

We used Bradford Hill causality criteria to test the BMI formula. Satisfying Bradford Hill
 causality criteria is considered validating in epidemiological research.⁴ We hypothesized that AI
 analytics would significantly contribute to understanding the risks for obesity.

82 Methods

83 As volunteer collaborators with the Institute of Health Metrics and Evaluation (IHME), we 84 received raw GBD ecological data (≈1.4 Gigabytes) on mean BMIs of male and female cohorts 85 15-49 years old and 50-69 years old from each year 1990-2017 from 195 countries and 365 86 subnational locations (n=1120 cohorts). We also utilized GBD data on exposures to 32 risk 87 factors and covariates potentially related to BMI. 88 89 Food risk factors came from surveys of individuals as g/day. IHME dietary covariate data 90 originally came from Food and Agriculture Organization data on animal and plant food 91 commodities available percapita in countries worldwide—as opposed to consumption data from participant interviews.⁵ Supplementary Table 1 lists the relevant GBD risk factors, covariates, 92 and other available variables with definitions of those risk factor exposures.⁶ 93 94 95 GBD worldwide citations of over 12,000 surveys constituting ecological data inputs for this analysis are available from IHME.⁵ The main characteristics of IHME GBD data sources for 96 97 BMI, the protocol for the GBD study, and all risk factor values have been published by IHME GBD data researchers and discussed elsewhere.⁷⁻¹⁰ These included detailed descriptions of 98 99 categories of input data, potentially important biases, and methodologies of analysis. We did not 100 clean or pre-process any of the GBD data. GBD cohort risk factor and BMI data from the IHME 101 had no missing records. The updated 2019 raw data with variables we used for this analysis may be obtained by volunteer researchers collaborating with IHME.¹¹ 102

103

To maximally utilize the available data, we averaged the values for ages 15-49 years old together with 50-69 years old for BMI and for each risk factor exposure for each male and female cohort for each year. Finally, for each male and female cohort, data from all 28 years (1990-2017) on mean BMI and on each of the risk factor exposures were averaged using the computer software program R.

109

110 To weigh the country and subnational data according to population, internet searches (mostly

111 Wikipedia) yielded the most recent population estimates for countries and subnational states,

112 provinces, and regions. World population data from the World Bank and the Organisation for

113 Economic Co-operation and Development could not be used because they did not include all 195

114 countries or any subnational data.

115

Using the above-described formatted dataset of risk factors, covariates, and BMIs, a software program in R generated a population-weighted analysis dataset. Each male or female cohort in the population-weighted analysis dataset represented approximately 1 million people (range: < 100,000 to 1.5 million). The analysis dataset had n=7846 cohorts (rows of data), half male and half female, representative of over seven billion people.

121

Supplementary Table 2 details how we converted omega-3 fatty acid g/day to fish g/day using data on the omega-3 fatty acid content of frequently eaten fish from the National Institutes of Health Office of Dietary Supplements (USA).¹² As shown in Supplementary Table 3, we converted all of the animal and plant food data, including alcohol and sugary beverage consumption, from g/day to kcal/day. For the g to kcal conversions, we used the Nutritionix track

127	app, ¹³ which tracks types and quantities of foods consumed. Saturated fatty acids (SFA) risk
128	factor (0-1 portion of the entire diet) was not available with GBD data from 2017, so GBD SFA
129	risk factor data from 2016 was used. Polyunsaturated fatty acid (PUFA) and trans fatty acid
130	(TFA) GBD risk factor data from 2017 (0-1 portion of the entire diet) were also utilized. These
131	fatty acid data were converted to kcal/day by multiplying the fatty acid 0-1 portion of the entire
132	diet by the kcal/day available for each cohort.
133	
134	Statistical methods
135	To determine the strengths of the risk factor correlations with mean BMIs of population
136	weighted worldwide cohorts (7846 cohorts) or subgroups of cohorts (e.g., continents, socio-
137	demographic quartiles, etc.), we utilized Pearson correlation coefficients: r, 95% confidence
138	intervals (95% CIs), and p values.
139	
140	In seeking to derive the optimal BMI multiple regression formula from worldwide data, we
141	determined our methodology as we proceeded by experimenting with strategies to optimize the
142	functioning of candidate BMI formulas derived by
143	
144	1. including as many as possible of the available dietary variables,
145	2. combining dietary variables if appropriate, and
146	3. including physical activity and other plausibly informative variables.
147	
148	Appendix 1 explains the use of Bradford Hill causality criteria to assess whether the risk factors
149	in the BMI formula derived accurately modeled the worldwide mean BMI. Briefly, we tested the

- 150 BMI formula output with the Bradford Hill causality criteria (1) strength, (2) experimentation,
- 151 (3) consistency, (4) dose response, (5) temporality, (6 analogy, (7) plausibility, (8) specificity,
- and (9) coherence. For each criterion, we used a 0-5 scale to assess the magnitude of support of
- the BMI formula output being causally related to the BMIs worldwide (0=no support of causality
- 154 to 5=very strong support of causality, total possible points=45).
- 155
- 156 In determining the variables to include and exclude in worldwide BMI formula, we set the
- 157 statistical threshold for a variable to enter and to remain in the formula at p < 0.25. We used SAS
- and SAS Studio statistical software 9.4 (SAS Institute, Cary, NC) for the data analysis.
- 159
- 160

161 **Results**

162	Table 1 shows the basic statistics and univariate correlations of mean cohort BMI worldwide
163	with mean dietary and other risk factor values. Whole grains, legumes, rice, and sweet potatoes
164	negatively correlated with BMI. We designated them, "BMI decreasing foods." The six animal
165	foods (processed meat, red meat, fish, milk, poultry, and eggs), alcohol, sugary beverages, corn
166	availability, potato availability, added SFA, added PUFA, and added TFA all positively
167	correlated with BMI. We designated them, "BMI increasing foods."
168	
169	In Supplementary Table 4, which shows BMI risk factor to risk factor correlations, corn
170	availability (kcal/day percapita, a covariate) correlated moderately strongly with sugary
171	beverages (r=0.419, 95% CI 0.400 to 0.437, p <0.0001), suggesting that high fructose corn syrup
172	may have accounted for the unexpected positive correlation of corn with BMI.
173	
174	According to the International Potato Center, potato availability (a covariate), which positively
175	correlated with BMI, included \geq 50% highly processed potato products worldwide, ¹⁴ likely
176	accounting for the positive correlation of potatoes with BMI.
177	
178	The strong positive correlations of fruits, vegetables, and nuts and seeds with BMI (Table 1)
179	were unexpected. These findings suggested likely multicollinearity of fruits, vegetables, and nuts
180	and seeds with BMI increasing foods (when an independent variable is highly correlated with
181	one or more known or unknown other independent variables). Supplementary Table 4 shows the
182	univariate correlations of each of the BMI formula risk factors with each other risk factor. Fruits,
183	vegetables and nuts and seeds strongly positively correlated with 10 of the 13 dietary variables

184	that positively correlated with BMI (six animal-based foods, alcohol, SFA, PUFA, and TFA).
185	Fruits, vegetables and nuts and seeds negatively correlated with the four other plant-based foods
186	(whole grains, legumes, rice, and sweet potatoes), except fruits was not significantly correlated
187	with whole grains. Together, these findings strongly suggested that multicollinearities accounted
188	for the positive correlations of fruits, vegetables, and nuts and seeds with BMI.
189	
190	Supplementary Table 5 shows the Excel spreadsheet calculations, which were coordinated with
191	SAS multiple regressions involved in the derivation of the worldwide BMI formula. Appendix 2
192	detailed the steps in the BMI (dependent variable) versus BMI risk factors (independent
193	variables) multiple regression formula derivation. As seen in Supplementary Table 5, described
194	in Appendix 2, and contrasted with the current method of deriving PAFs, ¹⁵⁻¹⁷ the BMI formula
195	versus BMI variance (R^2 =0.8096) * 100 determined the total PAF (80.96%) accounted for by the
196	BMI formula. The 23 risk factor coefficients could then be equated to the PAFs of those risk
197	factors. The resulting BMI formula is shown below (all foods in kcal/day):
198	
199	BMI formula = (0.37% * processed meat + 4.23% * red meat + 0.020% * fish + 2.24% *
200	milk + 5.67% * poultry + 1.77% * eggs + 0.338% * alcohol + 0.99% * sugary beverages
201	+ 0.04% * corn + 0.72% * potatoes + 8.48% * saturated fatty acids + 3.89% *
202	polyunsaturated fatty acids + 0.27% * trans fatty acids - 2.99% * fruit - 4.07% *
203	vegetables - 0.37% * nuts and seeds - 0.45 * whole grains - 1.49% * legumes - 8.62% *
204	rice - 0.10% * sweet potatoes - 7.45% * physical activity (METs/week) - 20.38% * child
205	underweight (≥2 SD below mean BMI) + 6.02% * sex (male=1, female=2)) * 0.05012 +
206	21.77.
207	

208 BMI formula output analyzed by Bradford Hill causality criteria

- 209 As mentioned in the methods and detailed in Appendix 1, the nine Bradford Hill causality
- 210 criteria tested the functionality of the BMI formula:
- 1. Strength score=5 for r>0.500, p<0.0001—The BMI formula's output regressed with
- 212 mean BMI of worldwide cohorts gave r = 0.907 (95% CI: 0.903 to 0.911) p < 0.0001),
- 213 R^2 =0.8096, total percent weight=80.96%.
- 214 **2.** Experiment score=5 for all 20 bootstrap trial BMI formulas with r>0.500, p<0.0001)—
- 215 Table 2 shows bootstrapping the BMI formula related to mean worldwide BMI with 20
- 216 trials (repeated sampling from the worldwide analysis dataset with replacements¹⁸). Each
- trial had 100 randomly selected cohorts to generate a unique BMI formula. As Table 2
- shows, the mean values for BMI and the risk factor PAFs were all quite close to the mean
- 219 values for BMI and BMI risk factors in the worldwide BMI formula (last column).
- **3.** Consistency score=5 for the mean of absolute differences of BMI formula outputs and
- 221 mean BMI < 0.300 kg/M^2 —In Table 3, we used 37 subsets of worldwide BMI and risk
- factor data to test the consistency of BMI formula outputs, utilizing the 20 bootstrap trials
- 223 (#2 Experiment) to generate 80% confidence intervals for each subset. Table 3 shows the
- 224 average absolute difference between the 37 subgroups mean BMIs and BMI formula

225 outputs was 0.252 kg/M^2 .

4. Dose-response (Biological gradient) score=5 for the mean of absolute differences of BMI
 formula outputs and mean BMI for the dose-response quartiles< 0.300 kg/M²—Table 3
 also shows that the mean of the BMI absolute differences between the BMI formula
 estimates and mean BMIs in the four dose-response quartiles was 0.220 kg/M².

230	5.	Temporality score=5 for the BMI trend formula versus BMI trend r>0.500,
231		p < 0.0001—As is shown in Supplementary Table 6 and detailed in Appendix 1, a
232		multiple regression analysis with the worldwide BMI trend 1990-2007 (dependent
233		variable) versus 22 of the 23 risk factor trends (independent variables excluding sex)
234		generated a BMI trend formula (All foods are in Kcal/day.):
235		
236		BMI trend formula= -0.00 * processed meat + 2.52 * red meat - 0.15 * fish +
237		0.22 * milk + 5.46 * poultry + 1.89 * eggs + 0.07 * alcohol + 0.12 * sugary
238		beverages - 0.02 * corn + 0.49 * potatoes - 0.01 * saturated fatty acids + 1.01 *
239		polyunsaturated fatty acids - 0.01 * trans fatty acids + 3.89 * fruit + 5.92 *
240		vegetables + 0.11 * nuts and seeds + 0.05 * whole grains - 0.88 * legumes + 3.28
241		* rice + 3.09 * sweet potatoes + 4.91 * physical activity (METs/week) - 0.93 *
242		child underweight (≥ 2 SD below mean BMI).
243		
244		As with the BMI formula, the coefficients of the BMI risk factor trends formula were
245		equated to their PAFs. BMI trend formula r=0.592, 95% CI: 0.577 to 0.606,
246		<i>p</i> <0.0001, and total PAF=35.02%.
247	6.	Analogy score=4—The three metabolic risk factors correlated with BMI to test
248		analogy were systolic blood pressure (SBP), low density lipoprotein cholesterol
249		(LDL-C), and fasting plasma glucose (FPG).
250		• BMI correlated with SBP: r=0.102, 95% CI: 0.080 to 0.124, <i>p</i> <0.0001.
251		• BMI correlated with FPG: r=0.558, 95% CI: 0.542 to 0.573, <i>p</i> <0.0001.
252		• BMI correlated with LDL-C: r=0.756, 95% CI: 0.746 to 0.765, <i>p</i> <0.0001.
253		Since BMI versus SBP r<0.500, Bradford Hill causality score=4.

254	7.	Plausibility: Score=5—Based on systematic medical literature reviews, physical
255		activity inversely correlated with BMI, ¹⁹ and BMI directly correlated with intakes
256		of sugary beverages, ²⁰ alcohol, ²¹ and animal foods. ²² The relationship of adult
257		BMI with early childhood severe underweight has not been reported worldwide.
258		Since people in poor countries with high infant/childhood malnutrition have fewer
259		resources to obtain animal foods, fatty acids, and alcohol and more need for
260		physical exercise than in developed countries, it is highly plausible that childhood
261		severe underweight negatively correlated with lower BMI in adulthood.
262	8.	Specificity: Score=5 for the BMI formula being unique.—The BMI formula was
263		specific to worldwide BMI and would have been different from risk factor
264		formulas modeling SBP, FPG, LDL-C, or any health outcome.
265	9.	Coherence: Score=5—As evidenced by the near perfect score 39/40 on the first eight
266		criteria, the BMI formula accurately modeled worldwide mean BMI-total causality
267		criteria score: 44/45.
268		
269	Table	5 shows BMI formula estimates for various patterns of diet and/or other BMI formula risk
270	factor	s. For instance, increasing physical activity by adding a run for 1 hour/day at six miles/hour
271	on ave	erage along with decreasing BMI increasing foods by isocalorically shifting 25% of BMI
272	increa	sing foods (Kcal/day) to BMI decreasing foods was projected to reduce the mean cohort
273	BMI f	rom 26.66 kg/M ² to mean BMI=22.26 kg/M ² .
274		

276 **Discussion**

277 Appendix 2 discusses the derivation of PAFs with comparable risk assessment (CRA) methodology by the World Health Organization¹⁵ and the IHME¹⁶ based on systemic literature 278 279 reviews. Appendix 2 details the steps in the derivation of the GBD data based BMI formula 280 (Supplemental Table 5), which precisely calculate 23 risk factor PAFs, totaling the BMI formula 281 PAF. Appendix 1 provides the metrics for validation by the nine Bradford Hill causality criteria. 282 283 A review of the literature on food costs relative to nutrient quality found that the median costs of 284 starches ($\notin 0.14/100$ kcal) was quite low relative to fruits and vegetables ($\notin 0.82/100$ kcal), meat/eggs/fish ($\notin 0.64/100$ kcal), fresh dairy ($\notin 0.32/100$ kcal), and nuts ($\notin 0.25/100$ kcal).²³ This 285 286 suggests that people who can afford fruits, vegetables and nuts and seeds are people who also 287 can afford high quantities of the BMI increasing foods—animal foods, sugary beverages, high 288 fructose corn syrup, alcohol, and highly processed foods (e.g., potato chips and fries). The 289 economics of food, including the high cost of fruits, vegetables, and nuts and seeds, may 290 contribute to overweight and obesity in the USA and in other affluent countries. 291 292 The Supplemental Nutrition Assistance Program (SNAP—formerly Food Stamps) spent an estimated 22.6% of its \$73 billion/year budget²⁴ on payments to low-income Americans for 293 "sweetened beverages, prepared desserts, salty snacks, candy, and sugar."²⁵ Additionally, the US 294 295 Department of Agriculture (USDA) has subsidized crops that go primarily for animal feed or that are processed into sugars while not subsidizing fruits and vegetables.²⁶ While the USDA 296

297 recognizes the relatively low intake of fruits and vegetables in the USA and sponsors a publicity

298	campaign to increase fruits and vegetables consumption, ²⁷ USDA expenditures should promote
299	reduced prices of BMI decreasing foods and increased prices of BMI increasing foods.
300	

- 301 Following a low-carbohydrate, high-fat diet has been demonstrated to cause modest short term
- 302 weight loss in obese people,²⁸ However, the BMI formula projects that the long-term effect of a

303 low-carb, high fat diet would be a mean cohort BMI of 29.05 kg/ M^2 (Table 5).

304

305 Limitations

306 The GBD data on animal foods, plant foods, alcohol, and fatty acids were not comprehensive and 307 comprised only 1191.4 Kcal/day on average worldwide. Subnational data were available on only 308 four countries. Because the data formatting and statistical methodology were new, this was 309 necessarily a post hoc analysis and no pre-analysis protocol or Bradford Hill causality criteria scoring system was possible. As detailed in the Foresight Report on obesity,²⁹ obesity is affected 310 311 by a complex system of interacting factors besides diet, physical activity, and childhood feeding patterns, and sex. So genes,³⁰ gut microbiome,³¹ ultra-processing of food,^{32, 33} and other 312 313 influences on BMI were outside of the purview of this analysis.

314

315 Generalizability

Given the strength and consistency of the relationship of the mean cohort BMI with the BMI formula estimates (Tables 1- 4), the findings should be generalizable to people all over the world. The results could be further refined for relatively high SDI countries by deriving a BMI formula from the four countries that have subnational data (UK, USA, Mexico, and Japan).

320 Conclusion

- 321 Nine Bradford Hill causality criteria strongly supported that the worldwide obesity epidemic is
- 322 causally related, in large part but not exclusively to 23 risk factors in proportion to their PAFs in
- 323 the BMI formula. The findings in this study should be considered by health policymakers
- 324 drafting dietary guidelines for healthy weight management. While this study dealt only with
- 325 dietary and other available risk factors for BMI (overweight/obesity), the AI methodology
- 326 introduced could easily apply to estimating PAFs of multiple dietary and other risk factors that
- 327 pertain to dozens of non-communicable diseases, for which the IHME have GBD data.

328

329

Table 1. BMI risk factor basic statistics (n=7846)

BMI versus BMI risk factors worldwide n=7846	Mean	SD	Min	Max	r	95% CI low	95% CI high	р	\mathbf{R}^2
BMI kg/M ²	21.77	2.290	17.95	29.39					
Processed meat Kcal/day	5.334	9.720	0.20	68.77	0.5939	0.579	0.608	<.0001	0.3527
Red meat Kcal/day	50.27	45.13	3.21	235.95	0.6561	0.643	0.668	<.0001	0.4304
Fish Kcal/day	9.985	36.52	0.40	370.36	0.1021	0.080	0.124	<.0001	0.0104
Milk Kcal/day	25.04	27.05	1.06	146.8	0.6762	0.664	0.688	<.0001	0.4573
Poultry Kcal/day available	44.32	50.08	1.06	411.9	0.8086	0.801	0.816	<.0001	0.6539
Eggs Kcal/day available	19.36	14.71	0.79	69.64	0.6835	0.672	0.695	<.0001	0.4672
Alcohol Kcal/day	81.03	57.33	4.25	429.8	0.1461	0.124	0.168	<.0001	0.0213
Sugary beverages Kcal/day	298.4	152.4	72.91	1472	0.1305	0.109	0.152	<.0001	0.0170
Corn Kcal/day available	34.72	48.28	0.16	305.2	0.0760	0.054	0.098	<.0001	0.0058
Potatoes Kcal/day available	84.04	74.60	3.07	533.9	0.2095	0.188	0.231	<.0001	0.0439
Saturated fatty acids Kcal/day	190.6	63.94	70.79	481.1	0.7033	0.692	0.714	<.0001	0.4946
PUFAs Kcal/day	81.10	73.44	2.93	381.3	0.7301	0.720	0.740	<.0001	0.5330
Trans fatty acids Kcal/day	13.23	13.65	1.99	77.76	0.4749	0.458	0.492	<.0001	0.2256
Fruits Kcal/day	40.21	22.50	3.58	161.4	0.6163	0.602	0.630	<.0001	0.3798
Vegetables Kcal/day	79.76	43.12	9.48	304.2	0.5111	0.495	0.527	<.0001	0.2612
Nuts and seeds Kcal/day	8.414	8.357	0.05	103.0	0.4741	0.457	0.491	<.0001	0.2248
Whole grains Kcal/day	55.65	30.93	1.14	235.1	- 0.2029	-0.224	-0.182	<.0001	0.0412
Legumes Kcal/day	51.74	32.23	0.51	194.7	- 0.3836	-0.402	-0.364	<.0001	0.1471
Rice Kcal/day available	141.9	116.3	1.42	461.8	0.5572	-0.572	-0.542	<.0001	0.3104
Sweet potatoes Kcal/day available	22.76	35.95	0.02	364.7	- 0.1476	-0.169	-0.126	<.0001	0.0218
Physical activity METs	4714	1368	1609	7669	0.4431	-0.461	-0.425	<.0001	0.1964
Child underweight by >2SD	0.1862	0.1707	0.0039	0.5300	0.7941	-0.802	-0.786	<.0001	0.6306
Sex male 1 and female 2	1.50	0.500	1.00	2.00	0.1236	0.102	0.145	<.0001	0.0153
Total Kcal/day available	2574	418	1579	3898	0.8402	0.834	0.847	<.0001	0.7059
Stop breast feeding <6 months	0.1193	0.0555	0.0159	0.2400	0.7989	0.791	0.807	<.0001	0.6383
Sodium g/d	4.45	2.34	1.33	9.21	0.0170	-0.039	0.005	0.1268	0.0000
Calcium g/d	0.301	0.179	0.081	1.04	0.7650	0.756	0.774	<.0001	0.5850
Dietary fiber g/d	9.21	3.15	2.72	22.68	0.3090	0.289	0.329	<.0001	0.0960
Fasting plasma glucose mmol/L	4.30	0.350	3.32	5.58	0.5570	0.542	0.572	<.0001	0.3110
LDL cholesterol mmol/L	2.35	0.400	1.27	3.25	0.7560	0.746	0.765	<.0001	0.5710
Systolic BP mm Hg	133.9	4.320	123.4	147.9	0.1020	0.080	0.124	<.0001	0.0100
Socio-demographic index (0-1)	0.543	0.174	0.112	0.900	0.7330	0.722	0.743	<.0001	0.5370

332

333 \Box See Supplementary Table 1 for definitions

												conor .	
Worldwide BMI and BMI risk factors										DOT	DOT	DOT	DOT
DIVITI TISK factors	DOT1	DOTA	DOT	DCTA	DOT	DOTO	DOTT	DOTO	DCTO	RCT 10	RCT 11	RCT 12	RCT 12
	KCII	RC12	KCI3	RC14	RC15	RC16	KCI 7	KC18	RC19	10	11	12	13
	21./1	22.04	21.68	21.92	21.57	21.42	21.79	22.18	21.75	21.85	21.49	21.88	21./1
Processed meat	0.33	0.32	0.34	0.34	0.28	0.31	0.32	0.39	0.57	0.36	0.21	0.26	0.28
Red meat	3.95	3.73	4.92	3.47	3.80	3.70	3.45	4.89	5.61	3.69	3.56	3.20	3.16
Fish	0.03	0.02	0.03	0.01	0.64	0.03	0.03	0.03	0.04	0.02	0.02	0.03	0.49
Milk	2.13	2.29	2.40	2.19	2.04	1.95	1.89	2.39	2.66	2.14	1.68	1.83	1.43
Poultry	6.62	6.24	6.60	4.82	5.36	4.33	5.92	6.72	5.41	4.84	4.48	6.55	4.15
Eggs	1.81	1.68	1.84	1.45	2.17	1.70	1.57	1.85	2.10	1.65	1.59	1.46	1.39
Alcohol	0.09	0.74	0.03	0.28	0.05	0.04	0.77	0.59	1.65	0.38	0.04	0.00	0.01
Sugary beverages	1.90	2.25	6.36	0.78	4.79	2.44	0.43	3.96	0.30	1.55	2.04	3.43	2.90
Corn	0.04	0.00	0.09	0.01	0.26	0.02	0.14	0.27	0.00	0.01	0.32	0.28	0.32
Potatoes	0.23	0.10	0.60	0.67	0.69	0.15	0.11	1.77	1.26	0.68	1.39	0.02	1.34
SFA	8.56	7.14	8.55	6.96	9.12	9.81	7.44	8.52	8.80	7.75	6.66	7.10	5.97
PUFA	4.30	3.97	4.31	3.16	4.09	3.59	4.09	4.12	3.96	3.66	2.84	3.30	2.84
TFA	0.33	0.29	0.23	0.23	0.26	0.14	0.29	0.30	0.38	0.26	0.19	0.35	0.14
Fruits	3.18	2.55	3.99	3.25	3.88	2.39	1.95	3.38	2.44	2.00	2.31	2.82	2.65
Vegetables	3.22	3.39	4.70	5.83	3.67	2.95	4.38	3.79	5.06	4.04	5.51	4.46	1.87
Nuts and seeds	0.22	0.32	0.51	0.30	0.55	0.24	0.36	0.59	0.60	0.25	0.07	0.13	0.13
Whole grains	0.14	0.40	0.24	0.85	0.26	0.68	0.18	0.01	0.12	0.29	1.32	0.53	0.17
Legumes	2.86	1.41	0.71	1.38	1.44	1.82	1.44	1.06	1.65	1.48	1.12	1.71	1.33
Rice	7.24	6.91	7.76	9.80	10.26	8.25	6.35	9.19	5.84	4.31	12.17	8.20	7.82
Sweet potatoes	0.05	0.29	0.12	0.20	0.04	0.07	0.22	0.12	0.17	0.17	0.02	0.30	0.05
Physical activity	6.65	10.11	3.69	9.29	0.66	5.71	14.65	2.63	3.81	10.17	7.80	7.37	6.38
Child underweight	8.86	8.41	5.17	5.47	9.68	21.13	23.33	15.63	20.69	27.27	22.28	15.50	23.20
Sex M=1, F=2	21.20	19.02	13.78	18.92	15.67	9.49	1.65	7.23	5.06	4.36	4.29	10.32	9.07
Total % weights	83.94	81.57	76.96	79.67	79.66	80.95	80.97	79.45	78.17	81.35	81.91	79.14	77.11
Worldwide BMI and								Mean		80%	80%	World	
BMI risk factors	RCT	RCT	RCT	RCT	RCT	RCT	RCT	RCTs	SD	CI	CI	mean	
	14	15	16	17	18	19	20	1-20		low	high	n=7846	5
BMI kg/M2	21.79	21.65	21.81	21.81	22.01	21.76	21.79	21.78	0.13	21.49	22.04	21.77	
Processed meat	0.30	0.53	0.37	0.41	0.28	0.31	0.55	0.36	0.09	0.26	0.55	0.37	
Red meat	2.65	4.77	3.57	4.55	2.47	3.49	5.71	3.95	0.84	2.65	5.61	4.23	
Fish	0.02	0.02	0.01	0.03	0.02	0.56	0.70	0.12	0.23	0.01	0.64	0.02	
Milk	1.84	2.29	1.79	2.51	1.58	1.80	2.50	2.10	0.33	1.58	2.51	2.24	
Poultry	4.55	4.91	4.87	5.66	4.66	4.52	6.87	5.43	0.87	4.33	6.72	5.67	
Eggs	1.47	1.51	1.33	2.01	1.32	1.61	2.08	1.69	0.25	1.33	2.10	1.77	
Alcohol	0.01	2.10	0.66	0.67	0.01	0.19	1.32	0.46	0.56	0.01	1.65	0.34	
Sugary beverages	2.58	1.31	0.79	1.11	0.99	0.61	0.29	1.90	1.55	0.30	4.79	0.99	
Corn	0.37	0.00	0.54	0.11	0.22	0.35	0.00	0.15	0.16	0.00	0.37	0.04	
Potatoes	0.49	0.06	1 49	0.26	0.16	1.71	0.00	0.68	0.56	0.06	1 71	0.72	
SFA	6.28	7.85	6.26	9.46	5.28	5 56	10.62	7 77	1 41	5.56	9.81	8.48	
PUFA	3.09	3.93	3.53	4.87	2.99	2.81	5.02	3.73	0.62	2.84	4.87	3.89	
TEA	0.36	0.29	0.46	0.31	0.34	0.28	0.29	0.28	0.02	0.14	0.38	0.27	
Fruits	2.93	3.55	3.77	2.45	2.58	2.01	2.41	2.88	0.61	2.00	3.88	2.99	
Vegetables	2.95	3.07	2.00	2.45	3.26	1 20	1.73	3.88	1.15	1.87	5.51	4.08	_
Nute and coode	0.32	0.30	0.38	0.32	0.26	0.27	0.33	0.33	0.14	0.13	0.50	0.37	_
THUES AND SECUS	0.54	0.57	U.JO	/	0.20	0.27	0.55	0.55	0.14	0.13	0.39	0.57	-
Whole grains	0.25	0.74	0.06	0.01	0.11	0.26	0.27	0.20	0.22	-0.01	0.95	0.45	
Whole grains	0.35	0.74	0.06	0.01	0.11	0.36	0.27	0.39	0.33	0.01	0.85	0.45	_
Whole grains Legumes	0.35	0.74	0.06	0.01 2.30 2.52	0.11	0.36	0.27	0.39	0.33	0.01 0.68	0.85	0.45	
Whole grains Legumes Rice	0.35 0.68 10.38	0.74 1.18 6.31	0.06 0.55 11.98	0.01 2.30 3.53	0.11 0.95 5.90	0.36 0.78 10.30	0.27 1.61 9.13	0.39 1.39 8.26	0.33 0.52 2.25	0.01 0.68 4.31	0.85 2.30 11.98	0.45 1.49 8.62	
Whole grains Legumes Rice Sweet potatoes	0.35 0.68 10.38 0.12	0.74 1.18 6.31 0.11	0.06 0.55 11.98 0.03	0.01 2.30 3.53 0.18	0.11 0.95 5.90 0.12	0.36 0.78 10.30 0.10	0.27 1.61 9.13 0.18	0.39 1.39 8.26 0.13	0.33 0.52 2.25 0.08	0.01 0.68 4.31 0.03	0.85 2.30 11.98 0.29	0.45 1.49 8.62 0.10	
Whole grains Legumes Rice Sweet potatoes Physical activity	0.35 0.68 10.38 0.12 8.54	0.74 1.18 6.31 0.11 8.15	0.06 0.55 11.98 0.03 7.04	0.01 2.30 3.53 0.18 8.47	0.11 0.95 5.90 0.12 12.49	0.36 0.78 10.30 0.10 7.95	0.27 1.61 9.13 0.18 5.06	0.39 1.39 8.26 0.13 7.48	0.33 0.52 2.25 0.08 3.10	0.01 0.68 4.31 0.03 2.63	0.85 2.30 11.98 0.29 12.49	0.45 1.49 8.62 0.10 7.45	
Whole grains Legumes Rice Sweet potatoes Physical activity Child underweight	0.35 0.68 10.38 0.12 8.54 19.16	0.74 1.18 6.31 0.11 8.15 19.70	0.06 0.55 11.98 0.03 7.04 22.65	0.01 2.30 3.53 0.18 8.47 22.31	0.11 0.95 5.90 0.12 12.49 28.86	0.36 0.78 10.30 0.10 7.95 24.16	0.27 1.61 9.13 0.18 5.06 12.46	0.39 1.39 8.26 0.13 7.48 18.18	0.33 0.52 2.25 0.08 3.10 6.77	0.01 0.68 4.31 0.03 2.63 5.47 4.20	0.85 2.30 11.98 0.29 12.49 27.27	0.45 1.49 8.62 0.10 7.45 20.38	
Whole grains Legumes Rice Sweet potatoes Physical activity Child underweight Sex M=1, F=2	0.35 0.68 10.38 0.12 8.54 19.16 10.56	0.74 1.18 6.31 0.11 8.15 19.70 6.31	0.06 0.55 11.98 0.03 7.04 22.65 5.80	0.01 2.30 3.53 0.18 8.47 22.31 7.13	0.11 0.95 5.90 0.12 12.49 28.86 6.59	0.36 0.78 10.30 0.10 7.95 24.16 6.62	0.27 1.61 9.13 0.18 5.06 12.46 10.47	0.39 1.39 8.26 0.13 7.48 18.18 9.21	0.33 0.52 2.25 0.08 3.10 6.77 5.20	0.01 0.68 4.31 0.03 2.63 5.47 4.29	0.85 2.30 11.98 0.29 12.49 27.27 19.02	0.45 1.49 8.62 0.10 7.45 20.38 6.02	

334 Table 2. Bootstrap validation experiment: 20 BMI formulas each with 100 random cohorts

337	Table 3. Consistency	measured with 37 su	ibgrouns of v	worldwide	GBD data
557	Table 5. Consistency	measured with 57 su	ingi oups or v	wor iu wiuc	UDD uata

Subsets of worldwide data on risk factors related to BMI	Final BMI formula n	Mean BMI	BMI formula output	Absolute differ- ences	RCT 1- 20 Mean	80% CI low	80% CI high	BMI output out of 80% CI
SDI quartile 1	1926	24.486	24.496	0.010	24.455	24.138	24.738	
SDI quartile 2	2096	21.827	22.158	0.331	22.185	21.900	22.523	1
SDI quartile 3	2220	20.401	19.931	0.471	19.976	19.584	20.338	1
SDI quartile 4	1604	20.306	20.546	0.240	20.554	20.329	20.903	1
Africa	1682	21.666	21.429	0.237	21.447	21.121	21.772	
Asia	4188	20.478	20.492	0.014	20.515	20,180	20.780	
Europe	880	24.313	24.604	0.292	24.557	24.356	24.730	1
North America	558	25.912	25,494	0.418	25,477	25.016	25.810	1
Oceana	54	24.433	25.205	0.772	25.033	24.721	25.430	1
South America	468	23.463	24.128	0.665	24.222	23.788	24,594	1
Four countries with subnational data	730	24.848	24.795	0.052	24.775	24.296	25.110	
Quartile 1 BMI increasing foods	1967	24.089	24.365	0.275	24.362	24.120	24.584	1
Q2	1834	21.962	21.961	0.000	21.943	21.639	22.290	
Q3	2050	20.607	20.167	0.440	20.188	19.885	20.462	1
Q4	1995	20.494	20.682	0.188	20.738	20.446	21.066	
Quartile 1 BMI decreasing foods	1475	20.612	20.273	0.339	20.312	19.955	20.650	
Q2	2275	21.125	21.049	0.076	21.056	20.731	21.345	
Q3	2171	22.405	22.377	0.028	22.410	22.117	22.772	
Q4	1925	22.695	23.084	0.389	23.067	22.846	23.411	
Quartile 1 physical activity	2371	20.480	20.311	0.169	20.314	20.062	20.555	
Q2	1573	21.663	21.881	0.217	21.912	21.658	22.230	
Q3	1998	21.325	21.324	0.001	21.343	21.026	21.727	
Q4	1904	23.923	23.963	0.039	23.974	23.553	24.369	
Male	3923	21.485	21.420	0.065	21.388	21.138	21.566	
Female	3923	22.051	22.120	0.068	22.180	21.858	22.501	
Bootstrap trial 1	100	21./15	21.741	0.025	21.755	21.503	22.013	
Bootstrap trial 2	100	22.040	21.986	0.055	22.011	21.724	22.254	
Bootstrep trial 3	100	21.070	21.744	0.008	21.709	21.479	22.019	
IIK	66	21.920	21.244	0.010	21.934	21.039	22.200	
USA	376	26.017	25.809	0.208	25.684	25.177	26.352	
Japan	158	21.892	22.888	0.996	22.898	22.254	23.327	1
Mexico	130	24.985	23.953	1.032	24.222	23.679	24.977	1
Quartile 1 Dose- response: BMI formula versus BMI	1928	24.763	24.949	0.186	24.936	24.617	25.230	
Q2	1469	22.568	22.480	0.088	22.525	22.187	22.805	
Q3	2647	20.872	21.069	0.197	21.069	20.884	21.325	1
Q4	1802	19.227	18.818	0.409	18.859	18.443	19.220	1
Mean of BMI - BMI				0.252				
formula absolute val				0.232				
Mean of BMI-BMI formula dose response				0.220				
Total out of range								13

340 **Table 4. Trends of BMI and the BMI risk factors (1990-2017)**

BMI trend versus risk factor trends, n=7846 cohorts	Mean	SD	Min	Max	R	95% CI	95% CI	Р	\mathbf{R}^2
BMI trend	0.076	0.031	-0.018	0.216					
Processed meat Kcal/day trend	-0.051	0.156	-0.812	1.680	-0.009	-0.031	0.013	0.44	0.000
Red meat Kcal/day trend	0.556	1.084	-3.291	4.731	0.410	0.392	0.428	<.0001	0.168
Fish Kcal/day trend	-0.224	0.953	-0.130	9.790	-0.158	-0.180	-0.137	<.0001	0.025
Milk Kcal/day trend	0.190	0.299	-2.018	2.503	0.206	0.185	0.227	<.0001	0.043
Poultry Kcal/day trend	1.146	1.042	-0.871	7.655	0.420	0.402	0.439	<.0001	0.177
Eggs Kcal/day trend	0.300	0.492	-0.877	1.275	0.484	0.467	0.501	<.0001	0.234
Alcohol Kcal/day trend	0.031	0.164	-0.914	1.993	0.289	0.268	0.309	<.0001	0.083
Sugary beverages Kcal/day trend	0.289	1.139	-5.401	14.001	0.125	0.103	0.147	<.0001	0.016
Corn Kcal/day available trend	-0.028	0.606	-4.355	2.809	0.141	0.119	0.162	<.0001	0.020
Potatoes Kcal/day available trend	0.246	1.837	-12.59	11.031	0.272	0.251	0.292	<.0001	0.074
SFA Kcal/day trend	0.210	0.925	-3.660	2.095	-0.050	-0.072	-0.028	<.0001	0.002
PUFA Kcal/day trend	0.996	0.959	-3.026	5.473	0.286	0.266	0.306	<.0001	0.082
TFA kcal/day trend	-0.210	0.446	-2.681	0.013	-0.066	-0.088	-0.044	<.0001	0.004
Fruits Kcal/day trend	0.623	0.604	-2.078	4.104	0.481	0.464	0.498	<.0001	0.232
Vegetables Kcal/day trend	1.399	1.614	-7.961	8.465	0.396	0.377	0.415	<.0001	0.157
Nuts and seeds Kcal/day trend	0.276	0.265	-0.338	3.124	0.123	0.101	0.144	<.0001	0.015
Whole grains Kcal/day trend	0.173	0.586	-2.604	8.463	0.104	0.082	0.126	<.0001	0.011
Legumes Kcal/day trend	0.370	0.979	-3.240	5.401	-0.298	-0.318	-0.277	<.0001	0.089
Rice Kcal/day available trend	-0.787	1.292	-5.051	3.496	-0.393	-0.412	-0.374	<.0001	0.155
Sweet potatoes Kcal/day available trend	-0.460	1.339	-4.818	3.905	-0.499	-0.516	-0.482	<.0001	0.249
Physical activity METs trend	4.724	6.826	-33.86	28.629	0.379	0.360	0.398	<.0001	0.144
Child underweight >2SD trend	-0.004	0.004	-0.014	0.001	0.045	0.023	0.067	<.0001	0.002

Risk factor scenario	BMI kg/M ²	BMI kg/M ² predicted	80 % CI low	80 % CI high
World (n=7846 cohorts mean 1990- 2017)	21.77	21.77	21.33	22.13
World with all children severely underweight		16.90	15.79	18.05
World with no children severely underweight		22.88	22.35	23.38
USA	26.67	26.08	25.30	26.43
USA 25% kcal shifted to BMI decreasing foods†		23.41	22.31	23.93
USA physical activity mean plus 1 hour/day run		24.94	24.05	25.67
USA physical activity mean + 1 hour run and 25% shift to BMI decreasing foods [†]		22.26	21.63	23.00
USA no red or processed meat		25.36	24.67	25.72
USA no sugary beverages		26.03	25.17	26.34
USA vegetarian		24.13	23.44	24.47
USA vegan		23.47	22.67	23.97
EAT-Lancet diet		22.86	21.67	23.53
Low Carb Mediterranean Diet		29.05	27.92	29.54

542 Table 5. Divit for mula predictions with different diet of other fisk factor scenarios
--

343 β BMI formula estimates based on 28 years of following dietary and risk factor patterns

344 † Kcal/day 13 BMI increasing foods isocalorically shifted to the 7 BMI decreasing foods in the
 345 BMI formula, distributed proportionally.

348 Supplementary Table 1. Definitions of IHME GBD risk factors and covariates related to BMI

Variables	Definition
Alcohol	Any alcohol consumption (g/day)
Body-mass index	Body mass index (BMI) (kg/m ²)—the dependent variable of interest
Child underweight	Proportion of children – 3 SD to – 2 SD of the WHO 2006 standard weight-for-
_	age curve (0-1)
Corn	Corn availability percapita (g/day), a covariate
Discontinued breast	Proportion of children aged 6-23 months who do not receive any breast milk
feeding	
Eggs	Eggs availability percapita (g/day) a covariate
Fasting plasma glucose	Fasting plasma glucose (mmol/L)
Fish	This variable expressed in g/day was derived by determining the weight of fish
	in g corresponding to 1 g of omega-3 fatty acids (eicosapentaenoic acid and
	docosahexaenoic acid) by averaging the fish g per 1 g of omega-3 fatty acids 20
	species of fish= 117.04 g/day fish/1 g/day omega-3 fatty acids (Supplementary
	Table 2)
Fruits	Consumption of fruits (includes fresh, frozen, cooked, canned, or dried fruit but
	excludes fruit juices and salted or pickled fruits) (g/day)
Kilocalories available /day	The mean number of kilocalories percapita available per day to people in each
	location (kcal/day available), a covariate
LDL cholesterol	Serum low-density lipoprotein cholesterol (mmol/L)
Legumes	Consumption of beans, lentils, pulses (g/day)
Milk	Consumption of milk including non-fat, low-fat, and full-fat milk but excluding
	soy milk and other plant derivatives (g/day)
Nuts and seeds	Consumption of nuts and seeds (g/day)
Physical activity	Average weekly physical activity at work, home, transport-related and
	recreational measured by MET min per week. Less than 3000 METs per week
	constitutes low physical activity.
Poultry	Poultry availability percapita (g/day), a covariate
Potatoes	Potatoes availability percapita (g/day), a covariate
Processed meat	Consumption of any processed meat (includes meat preserved by smoking,
	curing, salting, or addition of chemical preservatives, including bacon, salami,
	sausages, or deli or luncheon meats like ham, turkey, and pastrami (g/day)
Red meat	Consumption of red meat (includes beef, pork, lamb, and goat but excludes
	poultry, fish, eggs, and all processed meats) (g/day)
Rice	Rice availability percapita (g/day), a covariate
Seafood omega-3 fatty	Seafood omega-3 fatty acids (eicosapentaenoic acid and docosahexaenoic acid)
acids	in tablet or fish form (g/day)
Socio-demographic index	SDI is a composite indicator of development status that was originally
	constructed for GBD 2015, and is derived from components that correlate
	strongly with health outcomes. It is the geometric mean for indices of the total
	fertility rate among women younger than 25 years, mean education for those
	aged 15 years or older, and lag-distributed income per capita. The resulting
	metric ranges from 0 to 1, with nigher values corresponding to higher levels of
Sugar grantered	Consumption of any hoverage with >50 calories of succe per one sure service.
Sugar-sweetened	Consumption of any deverage with ≥ 00 calories of sugar per one-cup serving,
Deverages	100% fruit and vegetable juices (g/day)
Sweet potetoos	Sweet notate availability perceptite (g/day) a covariate
Systelia blood prossure	Systelic blood pressure $(mm \ \Pi a)$
Total sugar	Total sugar availability percapita (g/day), a covariate
i viai sugai	i otai sugai avanaonity percapita (g/uay), a covariate

Vegetables	Consumption of frozen, cooked, canned, or dried vegetables (including legumes
	but excluding salted or pickled, juices, nuts and seeds, and starchy vegetables
	such as potatoes or corn) (g/day)
Whole grains	Consumption of whole grains (bran, germ, and endosperm in their natural
_	proportions) from breakfast cereals, bread, rice, pasta, biscuits, muffins,
	tortillas, pancakes, and others (g/day)

349

Fish	DHA g/3 ounce fish	EPA g/3 ounce fish	Omega-3 Fatty Acids (DHA _ EPA) g/3 ounce fish mean	Fish 3 ounces = 85.02 g	Fish (g) per omega-3 Fatty Acids (g)=columns E/F
Salmon Atlantic farmed	1.24	0.59			
Salmon Atlantic wild	1.22	0.35			
Herring Atlantic	0.94	0.77			
Sardines canned in tomato sauce drained	0.74	0.45			
Mackerel Atlantic	0.59	0.43			
Salmon pink canned drained	0.63	0.28			
Trout rainbow wild	0.44	0.40			
Oysters eastern wild	0.23	0.30			
Sea bass	0.47	0.18			
Shrimp	0.12	0.12			
Lobster	0.07	0.10			
Tuna light canned in water drained	0.17	0.02			
Tilapia	0.11				
Scallops	0.09	0.06			
Cod Pacific	0.1	0.04			
Tuna yellowfin	0.09	0.01			
Mean DHA and EPA	0.4531	0.2733			
Omega-3 Fatty Acids g/3 ounce fish					
Calculations total Omega-3 FA g to fish g			0.7264	85.02	117.043

351 Supplementary Table 2. Omega-3 Fatty Acid g to fish g calculation¶

- 352 ¶ Data on omega-3 fatty acid content of varieties of fish came from the National Institutes of
- 353 Health Office of Dietary Supplements (USA)
- 354

355

Foods	Food sub- categories	kcal/serving	g/serving	kcal/g			
Milk (2% fat)		122	244	0.5			
Fish		218	170	1.28			
Eggs		72	50	1.44			
Poultry		187	85	2.91			
Red meat		247	85	2.91			
Processed							
meat							
	Salami	222	59	3.76			
	Pastrami	104	71	1.46			
	Ring baloney	86	28	3.07			
	Pepperoni	94	100	0.94			
Average processed meat		126.5	64.5	1.96			
Fruits		97	162	0.60			
Vegetables		59	91	0.65			
Legumes		249	179	1.39			
Nuts		172	28	6.14			
Seeds							
	Flax seeds	55	10	5.5			
	Chia seeds	58	12	4.83			
	Fennel seeds	34.5	10	3.45			
	Hemp seeds	55.3	10	5.53			
Average of seeds		50.7	10.5	4.83			
Average of nuts and seeds		111.4	19.25	5.78			
Corn		99	103	0.96			
Potatoes		161	173	0.93			
Sweet potatoes		115	151	0.76			
Rice		205	158	1.3			
Whole grains		120	52	2.31			

357 Supplementary Table 3. Calculations of kcal/day from g/day of animal and plant foods¶

Source: NutritionIX app

358 359

360

362 Supplementary Table 4. Pearson correlations between BMI formula risk factors from 363 Table 1

Correlations between BMI	Red meat	Fish	Milk	Poul- try	Eggs	Alco- hol	Sug- ary bever-	Corn	Pota- toes	SFA	PUFA
risk factors (r)							ages				
Processed meat KC/d	0.647	0.286	0.756	0.662	0.569	0.576	-0.108	-0.050	0.159	0.624	0.699
Red meat KC/d	1.000	0.118	0.676	0.664	0.784	0.466	0.046	-0.143	0.123	0.704	0.694
Fish KC/d	0.118	1.000	0.109	0.163	0.393	0.294	-0.163	-0.018	-0.058	0.038	0.163
Milk KC/d	0.676	0.109	1.000	0.673	0.525	0.385	0.072	-0.107	0.202	0.766	0.680
Poultry KC/d	0.664	0.163	0.673	1.000	0.628	0.351	0.142	0.011	0.102	0.701	0.837
Eggs KC/d	0.784	0.393	0.525	0.628	1.000	0.341	0.021	-0.099	0.030	0.595	0.631
Alcohol KC/d	0.466	0.294	0.385	0.351	0.341	1.000	-0.090	-0.107	-0.011	0.287	0.379
Sugary beverages KC/d	0.046	-0.163	0.072	0.142	0.021	-0.090	1.000	0.419	-0.025	0.045	0.113
Corn KC/d	-0.143	-0.018	-0.107	0.011	-0.099	-0.107	0.419	1.000	0.158	-0.133	-0.034
Potatoes KC/d	0.123	-0.058	0.202	0.102	0.030	-0.011	-0.025	0.158	1.000	0.211	0.086
SFA KC/d	0.704	0.038	0.766	0.701	0.595	0.287	0.045	-0.133	0.211	1.000	0.635
PUFAs KC/d	0.694	0.163	0.680	0.837	0.631	0.379	0.113	-0.034	0.086	0.635	1.000
TFA KC/d	0.187	-0.008	0.428	0.446	0.203	0.152	0.198	0.269	-0.091	0.233	0.433
Fruits KC/d	0.371	0.098	0.490	0.606	0.366	0.058	0.198	0.102	0.243	0.470	0.589
Vegetables KC/d	0.382	0.272	0.349	0.345	0.513	0.191	-0.167	-0.203	-0.047	0.224	0.385
Nuts and seeds KC/d	0.386	0.072	0.579	0.504	0.333	0.232	-0.146	-0.112	0.187	0.471	0.527
Whole grains KC/d	-0.112	0.091	-0.254	-0.023	-0.077	0.066	0.204	0.428	-0.058	-0.165	-0.063
Legumes KC/d	-0.404	0.061	-0.194	-0.220	-0.416	0.140	0.197	0.269	0.019	-0.389	-0.145
Rice KC/d	-0.351	-0.070	-0.565	-0.389	-0.271	-0.129	-0.148	-0.250	-0.377	-0.378	-0.368
Sweet potatoes KC/d	0.005	-0.074	-0.395	-0.240	0.049	-0.063	-0.218	-0.028	0.239	-0.130	-0.234
Physical activity METs	-0.068	-0.163	-0.430	-0.396	-0.114	0.105	-0.103	0.028	0.022	-0.309	-0.431
Child underweight	-0.736	-0.189	-0.403	-0.618	-0.803	-0.131	-0.065	-0.083	-0.215	-0.584	-0.622

	TFA	Fruits	Veget-	Nuts-	Whole	Le-	Rice	Sweet	Physi-	Child	sex
Correlations between BMI risk factors (r)			ables	seeds	grains	gumes		pota- toes	cal activity	under weight	m/f
Processed meat KC/d	0.463	0.379	0.290	0.504	-0.023	-0.197	-0.391	-0.194	-0.212	-0.411	-0.086
Red meat KC/d	0.187	0.371	0.382	0.386	-0.112	-0.404	-0.351	0.005	-0.068	-0.736	-0.230
Fish KC/d	-0.008	0.098	0.272	0.072	0.091	0.061	-0.070	-0.074	-0.163	-0.189	-0.023
Milk KC/d	0.428	0.490	0.349	0.579	-0.254	-0.194	-0.565	-0.395	-0.430	-0.403	-0.018
Poultry KC/d	0.446	0.606	0.345	0.504	-0.023	-0.220	-0.389	-0.240	-0.396	-0.618	0.000
Eggs KC/d	0.203	0.366	0.513	0.333	-0.077	-0.416	-0.271	0.049	-0.114	-0.803	0.000
Alcohol KC/d	0.152	0.058	0.191	0.232	0.066	0.140	-0.129	-0.063	0.105	-0.131	-0.432
Sugary beverages KC/d	0.198	0.198	-0.167	-0.146	0.204	0.197	-0.148	-0.218	-0.103	-0.065	-0.311
Corn KC/d	0.269	0.102	-0.203	-0.112	0.428	0.269	-0.250	-0.028	0.028	-0.083	0.000
Potatoes KC/d	-0.091	0.243	-0.047	0.187	-0.058	0.019	-0.377	0.239	0.022	-0.215	0.000
SFAKC/d	0.233	0.470	0.224	0.471	-0.165	-0.389	-0.378	-0.130	-0.309	-0.584	0.007
PUFAs KC/d	0.433	0.589	0.385	0.527	-0.063	-0.145	-0.368	-0.234	-0.431	-0.622	-0.013
TFA KC/d	1.000	0.387	0.284	0.312	0.087	0.044	-0.261	-0.322	-0.412	-0.121	0.096
Fruits KC/d	0.387	1.000	0.386	0.579	0.012	-0.028	-0.319	-0.096	-0.391	-0.493	0.116
Vegetables KC/d	0.284	0.386	1.000	0.547	-0.349	-0.157	-0.230	-0.095	-0.208	-0.453	-0.066
Nuts and seeds KC/d	0.312	0.579	0.547	1.000	-0.211	-0.023	-0.352	-0.074	-0.302	-0.293	-0.030
Whole grains KC/d	0.087	0.012	-0.349	-0.211	1.000	0.100	0.548	-0.039	0.268	0.089	-0.064
Legumes KC/d	0.044	-0.028	-0.157	-0.023	0.100	1.000	-0.050	-0.054	-0.068	0.506	-0.142
Rice KC/d	-0.261	-0.319	-0.230	-0.352	0.548	-0.050	1.000	0.070	0.386	0.374	0.000
Sweet potatoes KC/d	-0.322	-0.096	-0.095	-0.074	-0.039	-0.054	0.070	1.000	0.327	-0.167	0.000
Physical activity	-0.412	-0.391	-0.208	-0.302	0.268	-0.068	0.386	0.327	1.000	0.135	-0.257
Child underweight	-0.121	-0.493	-0.453	-0.293	0.089	0.506	0.374	-0.167	0.135	1.000	-0.017

³⁶⁴ Red: Fruits, vegetables, and nuts and seeds correlated positively with BMI increasing foods

367

³⁶⁵ Blue: Fruits, vegetables, and nuts and seeds correlated positively with themselves

³⁶⁶ Green: Fruits, vegetables, and nuts and seeds correlated negatively with BMI decreasing foods

369 Supplementary Table 5. Derivation of the BMI formula

370

		Column A		Column B		Column C		Column D		Column E		Column I
Row		BMI risk factors		Mean		BMI v RF R ²		Adjust for fatty acids		Multiple regression parameter estimates		Column B Column C Column D Column I
1	+	Processed meat	*	5.334	*	0.3527	*	1	*	0.0034	=	0.0064
2	+	Red meat	*	50.27	*	0.4304	*	1	*	0.0034	=	0.0736
3	+	Fish	*	9.985	*	0.0104	*	1	*	0.0034	=	0.0004
4	+	Milk	*	25.04	*	0.4573	*	1	*	0.0034	=	0.0389
5	+	Poultry available	*	44.32	*	0.6539	*	1	*	0.0034	=	0.0985
6	+	Eggs available	*	19.36	*	0.4672	*	1	*	0.0034	=	0.0308
7	+	Alcohol	*	81.03	*	0.0213	*	1	*	0.0034	=	0.0059
8	+	Sugary beverages	*	298.36	*	0.0170	*	1	*	0.0034	=	0.0173
9	+	Corn available	*	34.72	*	0.0058	*	1	*	0.0034	=	0.0007
10	+	Potatoes available	*	84.04	*	0.0439	*	1	*	0.0034	=	0.0125
11	+	SFA	*	190.58	*	0.4946	*	0.46	*	0.0034	=	0.1474
12	+	PUFAs	*	81.096	*	0.5330	*	0.46	*	0.0034	=	0.0676
13	+	TFA	*	13.23	*	0.2256	*	0.46	*	0.0034	=	0.0047
14	+	Fruits	*	40.21	*	0.3798	*	1	*	0.0034	=	0.0519
15	+	Vegetables	*	79.76	*	0.2612	*	1	*	0.0034	=	0.0708
16	+	Nuts and seeds	*	8.414	*	0.2248	*	1	*	0.0034	=	0.0064
17	-	Whole grains	*	55.65	*	0.0412	*	1	*	0.0034	=	0.0078
18	-	Legumes	*	51.74	*	0.1471	*	1	*	0.0034	=	0.0259
19	-	Rice available	*	141.86	*	0.3104	*	1	*	0.0034	=	0.1497
20	-	Sweet potatoes available	*	22.76	*	0.0218	*	1	*	0.0034	=	0.0017
21	-	Physical activity METs							*	0.12949	=	0.1295
23	-	Child underweight by >2SD							*	0.35420		0.3542
22	+	Sex male 1 and female 2							*	0.10455	=	0.1046
24		Sum of parameter estimates										1.4071
25		R² of BMI formula										0.8585
26		R ² of BMI formula / Sum of parameter estimates										0.6101
27		F1-F23 * F27 * 100 to convert to percent weights										61.01

373 Supplementary Table 5. Derivation of the BMI formula continued

		Column G		Column H		Column I		Column J
Row						BMI risk factors		Percent
				Un-		with fruits,		weights
				adjusted		vegetables, and nuts		(J1- J23)
				Percent		and seeds with		* 0.94299
1		BMI risk factors		weights		negative signs		(J27)
1	+	Processed meat	*	0.3903	+	Processed meat	*	0.3680
2	+	Red meat	*	4.4882	+	Red meat	*	4.2324
3	+	Fish	*	0.0216	+	Fish	*	0.0204
4	+	Milk	*	2.3753	+	Milk	*	2.2399
5	+	Poultry available	*	6.0115	+	Poultry available	*	5.6688
6	+	Eggs available	*	1.8764	+	Eggs available	*	1.7694
7	+	Alcohol	*	0.3585	+	Alcohol	*	0.3381
8	+	Sugary beverages	*	1.0532	+	Sugary beverages	*	0.9932
9	+	Corn available	*	0.0416	+	Corn available	*	0.0392
10	+	Potatoes available	*	0.7654	+	Potatoes available	*	0.7218
11	+	SFA	*	8.9947	+	SFA	*	8.4819
12	+	PUFAs	*	4.1245	+	PUFAs	*	3.8893
13	+	TFA	*	0.2848	+	TFA	*	0.2685
14	+	Fruits	*	3.1683	-	Fruits	*	2.9877
15	+	Vegetables	*	4.3224	-	Vegetables	*	4.0760
16	+	Nuts and seeds	*	0.3923	-	Nuts and seeds	*	0.3700
17	-	Whole grains	*	0.4751	-	Whole grains	*	0.4480
18	-	Legumes	*	1.5789	-	Legumes	*	1.4889
19	-	Rice available	*	9.1354	-	Rice available	*	8.6146
20	-	Sweet potatoes	*	0.1029	-	Sweet potatoes	*	0.0970
		available				available		
21	-	Physical activity	*	7.9004	-	Physical activity	*	7.4500
22		METS Child un dermeight	*	21 6105		MEIS Child undermeight	*	20.2794
22	-	Child underweight		21.6105	-	Child underweight		20.5784
23	+	Sex male 1 and	*	6 3 7 8 8	+	Sex male 1 and	*	6.0151
23		female 2		0.0700		female 2		0.0101
24		Sum of parameter		85.8512		Sum of parameter		80.9568
		estimates				estimates		
25		r of unadjusted BMI		0.9266		r of adjusted BMI		0.8998
		formula				formula		
26		R² of unadjusted		0.8585		R² of adjusted BMI		0.8096
07		BMI formula				formula		0.4200
27						Sum percent weights		0.4299
						(J24) / ullaujusted		
						(H24)		
28		H26 * 100 to convert		85.8512		J26 * 100 to convert		80.9560
-		to total percent				to percent		
		weights=H24				weights=J24		

374

Supplementary Table 6. BMI trend versus risk factor trends formula derivation (all variables standardized)

		Column A		Column B		Column C		Column D		Column E		Column F
Row		BMI trend and risk factor trends (change/year)		Mean		BMI trend v RF trends R ²		Adjust- ment for fatty acids		Multiple regression parameter estimates		Column B * Column C * Column D * Column E
		BMI kg/M ² trend		0.07603								
1	-	Processed meat KC/d trend	*	0.0513	*	0.0001	*	1.00	*	1.1427	=	0.0000
2	+	Red meat KC/d trend	*	0.5556	*	0.1682	*	1.00	*	1.1427	=	0.1068
3	-	Fish KC/d trend	*	0.2244	*	0.0251	*	1.00	*	1.1427	=	0.0064
4	+	Milk KC/d trend	*	0.1901	*	0.0425	*	1.00	*	1.1427	=	0.0092
5	+	Poultry KC/d trend	*	1.1457	*	0.1768	*	1.00	*	1.1427	=	0.2315
6	+	Eggs KC/d trend	*	0.2996	*	0.2340	*	1.00	*	1.1427	=	0.0801
7	+	Alcohol KC/d trend	*	0.0307	*	0.0833	*	1.00	*	1.1427	=	0.0029
8	+	Sugary beverages KC/d trend	*	0.2890	*	0.0156	*	1.00	*	1.1427	=	0.0051
9	-	Corn KC/d trend	*	0.0284	*	0.0198	*	1.00	*	1.1427	=	0.0006
10	+	Potatoes KC/d trend	*	0.2461	*	0.0740	*	1.00	*	1.1427	=	0.0208
11	-	SFA KC/d trend	*	0.2101	*	0.0025	*	0.46	*	1.1427	=	0.0003
12	+	PUFA KC/d trend	*	0.9963	*	0.0820	*	0.46	*	1.1427	=	0.0429
13	+	TFA trend	*	0.2096	*	0.0044	*	0.46	*	1.1427	=	0.0005
14	+	Fruits KC/d trend	*	0.6234	*	0.2317	*	1.00	*	1.1427	=	0.1651
15	+	Vegetables KC/d trend	*	1.3992	*	0.1570	*	1.00	*	1.1427	=	0.2511
16	+	Nuts and seeds KC/d trend	*	0.2762	*	0.0150	*	1.00	*	1.1427	=	0.0047
17	+	Whole grains KC/d trend	*	0.1729	*	0.0108	*	1.00	*	1.1427	=	0.0021
18	-	Legumes KC/d trend	*	0.3696	*	0.0886	*	1.00	*	1.1427	=	0.0374
19	+	Rice KC/d trend	*	0.7869	*	0.0886	*	1.00	*	1.1427	=	0.1389
20	+	Sweet potatoes KC/d trend	*	0.4603	*	0.0886	*	1.00	*	1.1427	=	0.1311
21	+	Physical activity METs trend	*						*	0.20825	=	0.20825
22	-	Child underweight >2SD trend	*						*	0.03926	=	0.03926
23												1.48519

		Column G		Column H		Column I		Column J
Row		BMI trend and risk factor trends		Prelimin- ary risk factor coefficients (Column F repeated)		BMI trend and risk factor trends		Column H: H26 * (H1- H22) = BMI trend formula percent weights
	+	BMI kg/M ² trend		0.0760	+	BMI kg/M ² trend		0.0760
1	-	Processed meat KC/d trend	*	0.0000	-	Processed meat KC/d trend	*	0.00
2	+	Red meat KC/d trend	*	0.1068	+	Red meat KC/d trend	*	2.52
3	-	Fish KC/d trend	*	0.0064	-	Fish KC/d trend	*	0.15
4	+	Milk KC/d trend	*	0.0092	+	Milk KC/d trend	*	0.22
5	+	Poultry KC/d trend	*	0.2315	+	Poultry KC/d trend	*	5.46
6	+	Eggs KC/d trend	*	0.0801	+	Eggs KC/d trend	*	1.89
7	+	Alcohol KC/d trend	*	0.0029	+	Alcohol KC/d trend	*	0.07
8	+	Sugary beverages KC/d trend	*	0.0051	+	Sugary beverages KC/d trend	*	0.12
9	-	Corn KC/d trend	*	0.0006	-	Corn KC/d trend	*	0.02
10	+	Potatoes KC/d trend	*	0.0208	+	Potatoes KC/d trend	*	0.49
11	-	SFA KC/d trend	*	0.0003	-	SFA KC/d trend	*	0.01
12	+	PUFA KC/d trend	*	0.0429	+	PUFA KC/d trend	*	1.01
13	+	TFA trend	*	0.0005	+	TFA trend	*	0.01
14	+	Fruits KC/d trend	*	0.1651	+	Fruits KC/d trend	*	3.89
15	+	Vegetables KC/d trend	*	0.2511	+	Vegetables KC/d trend	*	5.92
16	+	Nuts and seeds KC/d trend	*	0.0047	+	Nuts and seeds KC/d trend	*	0.11
17	+	Whole grains KC/d trend	*	0.0021	+	Whole grains KC/d trend	*	0.05
18	-	Legumes KC/d trend	*	0.0374	-	Legumes KC/d trend	*	0.88
19	+	Rice KC/d trend	*	0.1389	+	Rice KC/d trend	*	3.28
20	+	Sweet potatoes KC/d trend	*	0.1311	+	Sweet potatoes KC/d trend	*	3.09
21	+	Physical activity METs trend	*	0.20825	+	Physical activity METs trend	*	4.91
22	-	Child underweight >2SD trend	*	0.03926	-	Child underweight >2SD trend	*	0.93
23		Sum		1.48519		Total percent weights		35.02
24		BMI trend formula R ²		0.35020				
25		BMI trend formula R ² /sum		0.23579				
26		H25 * 100 for percent weights		23.57947				

380 Supplementary Table 6. BMI trend versus risk factor trends formula derivation continued

381

382

384 Appendix 1. Bradford Hill causality criteria based

assessment methodology for BMI formula detailed

386 The Bradford Hill causality criteria, enumerated by the English occupational physician and

387 epidemiologist Sir Austin Bradford Hill, are the gold standard assessment tools to test causality

388 of risk factors related to health outcomes.³ The relevant causality criteria included #1 strength, #2

389 experimentation, #3 consistency, #4 dose-response (biological gradient), #5 temporality, #6

analogy, #7 plausibility, (8) specificity, and #9 coherence.

391

392 A literature search revealed no published methodological precedents for statistically modeling 393 and validating the relationship between mean cohort BMIs of worldwide countries and 394 subnational regions/provinces/states and their corresponding dietary and other risk factors. In 395 considering many candidate methodologies involving univariate and multiple regression 396 analysis, we sought a methodology with good performance with as many Bradford Hill causality 397 criteria as possible. Of the candidate statistical modeling strategies, the methodology for deriving 398 the BMI multiple regression formula that will be detailed in Appendix 2 functioned best. So, 399 after deriving the BMI formula, we formulated the following Bradford Hill causality criteria 400 scoring methodology for this unprecedented purpose.

401

402 **Bradford Hill causal criteria testing methodology applied to current study**

- 403 The nine original Bradford Hill criteria were each scored as:
- "5" very strongly supporting causality,
- "4" strongly supporting causality,

406	•	"3" moderately strongly supporting causality,
407	•	"2" supporting causality,
408	•	"1" weakly supporting causality, and
409	•	"0" not supporting causality
410		
411	The sc	coring for each Bradford Hill causal criterion was as follows:
412	1.	Strength: The correlation coefficient, r, of the worldwide multiple regression derived
413		BMI formula with BMI (dependent variable) and BMI risk factors (independent
414		variables) assessed strength.
415		Scoring of strength:
416		5=BMI formula regressed with BMI r \geq 0.50 and p<0.0001
417		4=BMI formula regressed with BMI 0.50>r \geq 0.40 and p <0.0001
418		3=BMI formula regressed with BMI 0.40>r \geq 0.30 and <i>p</i> <0.0001
419		2=BMI formula regressed with BMI 0.30>r \geq 0.20 and <i>p</i> <0.0001
420		1=BMI formula regressed with BMI 0.20>r \geq 0.10 and p <0.0001
421		0=BMI formula regressed with BMI r< 0.10 or $p \ge 0.0001$
422		
423	2.	Experiment: Dr. Hill thought that evidence drawn from experimentation, including in
424		epidemiologic studies, may lead to the strongest support for causal inference. ³ We used
425		the bootstrap method to test Hill's "experiment" criterion. Random number generation of
426		20 subgroups each with 100 cohorts (with replacements) derived 20 standardized BMI
427		formulas to compare with the standardized worldwide BMI formula.
428		Scoring of experiment:

429		5=In all 20 bootstrap trials each with 100 random cohorts, RCT1-RCT20 of BMI
430		formulas regressed with RCT1-RCT20 of BMIs, respectively: $r \ge 0.50$ and $p < 0.0001$
431		4= In at least 15 out of 20 bootstrap trials each with 100 random cohorts, RCT1-RCT20
432		of BMI formulas regressed with RCT1-RCT20 of BMIs, respectively: $r \ge 0.50$ and
433		<i>p</i> <0.0001.
434		3= In at least 15 out of 20 bootstrap trials each with 100 random cohorts, RCT1-RCT20
435		of BMI formulas regressed with RCT1-RCT20 of BMIs, respectively: $r \ge 0.40$ and
436		<i>p</i> <0.0001.
437		2= In at least 10 out of 20 bootstrap trials each with 100 random cohorts, RCT1-RCT20
438		of BMI formulas regressed with RCT1-RCT20 of BMIs, respectively: $r \ge 0.30$ and
439		<i>p</i> <0.0001.
440		1= In at least 5 out of 20 bootstrap trials each with 100 random cohorts, RCT1-RCT20 of
441		BMI formulas regressed with RCT1-RCT20 of BMIs, respectively: $r \ge 0.30$ and
442		<i>p</i> <0.0001.
443		0=None of the above.
444	3.	Consistency: For the purposes of this study, consistency between BMI and BMI formula
445		output was determined by comparing the mean BMI and the mean BMI formula output in
446		each of the following 37 subgroups:
447		A. We divided the world's population by quartiles of socio-demographic index (SDI)—
448		see Supplementary Table 1 for definition of SDI.
449		B. A variable, "continents," allowed for analyses of the cohorts from countries from
450		each of the six inhabited continents.

- 451 C. The four countries (UK, USA, Mexico, and Japan) with subnational data on BMI and 452 the risk factors were grouped together to compare the BMI formula output with the 453 overall mean BMI in those four countries.
- D. Based on the total kcal/day of the 13 foods that increased BMI (six animal foods,
- 455 sugary beverages, alcohol, corn, potatoes, SFA, PUFA, and TFA), a combination
- 456 variable was constructed and the world's population divided into quartiles from the
- 457 highest to lowest total kcal/day of BMI increasing foods.
- E. Similarly to D above, based on the total kcal/day of all seven foods that decreased
- 459 BMI (fruits, vegetables, nuts and seeds, whole grains, legumes, rice, and sweet
- 460 potatoes), we divided the world's population into quartiles from the highest to lowest
- 461 in BMI decreasing foods (kcal/day).
- 462 F. Based on physical activity (METs/week), we divided the world's population into463 quartiles from the highest to the lowest.
- 464 G. We evaluated dose response by dividing the BMI formula output into quartiles from465 the highest to lowest.
- 466 H. The four countries with subnational data were individually evaluated.
- 467 I. The first four of the 20 random number generated database subgroups were included468 in the consistency analysis.
- 469 J. Male and female cohorts were individually assessed.
- 470 K. We assessed dose-response with the BMI formula outputs after the BMI formula was
- 471 harmonized with the mean and SD of worldwide mean BMI. BMI formula outputs
- 472 were divided into quartiles.

473

474		For each of the 37 subgroups, the absolute differences between the means of BMI and the
475		BMI formula output were totaled (e.g., continent Africa BMI formula output – mean BMI
476		for Africa, etc.).
477		
478		Scoring of consistency for mean cohort BMI compared with BMI formula output for each
479		of the 37 subgroups:
480		5=The mean of the absolute differences between mean BMI and BMI formula output was
481		$\leq 0.30 \text{ kg/M}^2.$
482		4=The mean of the absolute differences between mean BMI and BMI formula output was
483		$\leq 0.40 \text{ kg/M}^2.$
484		3=The mean of the absolute differences between mean BMI and BMI formula output was
485		$\leq 0.50 \text{ kg/M}^2.$
486		2=The mean of the absolute differences between mean BMI and BMI formula output was
487		$\leq 0.60 \text{ kg/M}^2.$
488		1=The mean of the absolute differences between mean BMI and BMI formula output was
489		$\leq 1.0 \text{ kg/M}^2.$
490		0=The mean of the absolute differences between mean BMI and BMI formula output was
491		$> 1.0 \text{ kg/M}^2.$
492		
493	4.	Dose-response (biological gradient): Dr. Hill thought that a clear dose-response effect on
494		the incidence of disease with exposure to a single risk factor was the clearest evidence of
495		a causal relationship. In this analysis levels of a multivariable regression derived BMI

496		formula outputs in quartiles were related to mean BMIs in those quartiles (Table 3.
497		subgroups #34-#37).
498		As with consistency, scoring of dose-response was based on this mean absolute
499		difference of BMI and BMI formula output when the BMI formula output was divided
500		into quartiles:
501		5= The BMI formula output versus mean BMI absolute differences from each of the four
502		quartiles averages $\leq 0.30 \text{ kg/M}^2$.
503		4= The BMI formula output versus mean BMI absolute differences from each of the four
504		quartiles averages $\leq 0.40 \text{ kg/M}^2$.
505		3= The BMI formula output versus mean BMI absolute differences from each of the four
506		quartiles averages $\leq 0.50 \text{ kg/M}^2$.
507		2= The BMI formula output versus mean BMI absolute differences from each of the four
508		quartiles averages $\leq 0.60 \text{ kg/M}^2$.
509		1= The BMI formula output versus mean BMI absolute differences from each of the four
510		quartiles averages ≤ 1.0 BMI units.
511		0= The BMI formula output versus mean BMI absolute differences from each of the four
512		quartiles averages $> 1.0 \text{ kg/M}^2$.
513	5.	Temporality: Dr. Hill said, "Temporality refers to the necessity that the cause precedes
514		the effect in time." ³ Dr. Hill was an occupational physician before the current availability
515		in nutritional epidemiology of data on trends over 28 years of 20 components of
516		worldwide diets along with the global BMI trend. Consequently, now it is fair to test
517		temporality by deriving a standardized multiple regression formula with BMI trend,
518		measured by the slope of the least squared regression line (LSRL) over 1990-2017, as the

519	dependent variable. The independent variables consisted of the LSRL trends over 1990-
520	2017 of the same dietary components, physical activity, and childhood underweight as in
521	the original BMI formula—but not sex. The signs of the risk factors in the BMI trend
522	formula were determined as follows:
523	a. If the sign of the risk factor in Table 4 (BMI basic trend statistics) was "+" and
524	the r was "+", then the sign in the BMI trend formula was +.
525	b. If the sign of the risk factor in Table 4 was "-" and the r was "-," then the sign in
526	the BMI trend formula was "+". If the risk factor mean value was trending down
527	and the correlation coefficient of the risk factor with the BMI trend was negative,
528	this risk factor tread would be in alignment with an up-trending BMI.
529	c. If the sign of the risk factor in Table 4 was "-" and the r was "+," then the sign in
530	the BMI trend formula was "-".
531	d. If the sign of the risk factor in Table 4 was "+" and the r was "-," then the sign in
532	the BMI trend formula was "-".
533	Supplementary Table 6 shows the derivation of the BMI trend formula with standardized
534	BMI trend (dependent variable) versus standardized risk factor trends (independent
535	variables). As with the derivation of the BMI formula (Supplementary Table 5), the
536	coefficients of the risk factors in the formula were adjusted to equate to the trend percent
537	weights.
538	Scoring of temporality: The multiple regression derived BMI trend formula output versus
539	the BMI trend r (correlation coefficient) determined the score:
540	$5=r \ge 0.50$ and $p < 0.0001$.
541	$4=0.50>r \ge 0.40$ and $p<0.0001$.

542		$3=0.40>r \ge 0.30$ and $p<0.0001$.
543		$2=0.30>r \ge 0.20$ and $p<0.0001$.
544		$1=0.20>r \ge 0.10$ and $p<0.0001$.
545		$0=r<0.10 \text{ or } p \ge 0.0001$
546		
547	6.	Analogy: High BMI was among the four metabolic risk factors that were strongly associated
548		with cardiovascular diseases, cancers, and other non-communicable diseases. The other
549		major metabolic risk factors for non-communicable diseases were high fasting plasma
550		glucose (FPG). low density lipoprotein cholesterol (LDL-C), and high systolic blood pressure
551		(SBP).
552		
553		We tested analogy by the strength of the correlations of BMI with FPG, BMI with LDL-C,
554		and BMI with SBP in univariate analysis.
555		Scoring of analogy:
556		5=BMI correlated with all three other metabolic risk factors showed r \geq 0.500, p<0.0001
557		for all three.
558		4= BMI correlated with the three other metabolic risk factors showed r \geq 0.500, p<0.0001
559		for two of the three.
560		3= BMI correlated with the three other metabolic risk factors showed r \geq 0.400, p<0.0001
561		for two of the three.
562		2= BMI correlated with the three other metabolic risk factors showed r \geq 0.300, p<0.0001

563 for two of the three.

564	1=BMI correlated with the three other metabolic risk factors showed r \geq 0.200, p<0.0001
565	for two of the three.

- 566 0 = None of the above.
- 567 7. Plausibility: To test plausibility that the BMI formula could accurately predict mean BMI
- of cohorts, we looked to find if any of our findings were at variance with the
- 569 preponderance of studies published. We searched the medical literature particularly for
- 570 systematic reviews of the relationships of foods and other variables with BMI.
- 571 Scoring of plausibility:
- 572 5=None of the BMI formula risk factor percent weight coefficients was at variance with

573 the preponderance of the medical literature about risk factors for high BMI.

- 4= One of the BMI formula risk factor percent weight coefficients was at variance with
- 575 the preponderance of the medical literature about risk factors for high BMI.
- 576 3= Two of the BMI formula risk factor percent weight coefficients were at variance with

577 the preponderance of the medical literature about risk factors for high BMI.

578 2=Three of the BMI formula risk factor percent weight coefficients were at variance with

579 the preponderance of the medical literature about risk factors for high BMI.

- 580 1=Four of the BMI formula risk factor percent weight coefficients were at variance with
- 581 the preponderance of the medical literature about risk factors for high BMI.
- 582 0= Five or more of the BMI formula risk factor percent weight coefficients were at
- 583 variance with the preponderance of the medical literature about risk factors for high BMI.
- 584 8. Specificity: Either the BMI formula derived is unique or not. Scoring of specificity:
- 585 5=The BMI formula derived is unique and can model no other metabolic risk factor, other
- risk factor, or health outcome.

- 587 0= The BMI formula derived is not unique and can model at least one other metabolic risk
 588 factor, other risk factor, or health outcome.
- 589 9. Coherence: According to Dr. Hill, "...cause and effect interpretation of our data should not
- seriously conflict with the generally known facts of the natural history and biology of the
- 591 disease."³ In this analysis of BMI associated with BMI formula estimates, coherence was the
- 592 numerical total score of the above eight relevant causality criteria each on a 0-5 scale. The
- 593 maximum score was 40.
- 594 Scoring of coherence:
- 595 5=Score on the first eight Bradford Hill causation criteria=35-40.
- 596 4=Score on the first eight Bradford Hill causation criteria=30-34.
- 597 3=Score on the first eight Bradford Hill causation criteria=25-29.
- 598 2=Score on the first eight Bradford Hill causation criteria=20-24.
- 599 1=Score on the first eight Bradford Hill causation criteria=15-24.
- 600 0=Score on the first eight Bradford Hill causation criteria<15.
- 601
- 602
- 603

604	Appendix 2.	The derivation	of the	BMI formula	a
-----	-------------	----------------	--------	--------------------	---

605 **Population attributable fraction (PAF) derivation methodology by WHO and IHME**

606 Because of wide variations in definitions of risk factors and health outcomes in reports of risk

607 factor-health outcome correlations, the World Health Organization in 2002 published a new

608 framework, termed comparative risk assessment (CRA), for quantifying deaths and burden of

609 disease caused by risk factors.¹⁵ Goals were to increase the rigor of population health estimates

610 and to improve the compatibility of the estimates of different groups of investigators studying

611 different populations. CRA can be divided into six key steps:¹⁶

612

613 1. Inclusion of risk–outcome pairs in the analysis;

614 2. estimation from literature reviews of relative risk as a function of exposure;

615 3. estimation from literature reviews of exposure levels and distributions;

616 4. determination from literature reviews of the counterfactual level of exposure, the

- 617 level of exposure with minimum risk called the theoretical minimum risk exposure618 level (TMREL);
- 619 5. computation of population attributable fractions (PAFs) and attributable burden; and
- 6. estimation from literature reviews of mediation of different risk factors through otherrisk factors
- 622

Originally, most PAFs were calculated for single risk factors related to single health outcomes
(e.g., cigarette smoking and lung cancer). This methodology has now evolved to encompass 550
risk factor-health outcome pairs in the latest risk factor article published by the IHME.¹⁶
Additionally, multiple risk factors with PAFs for the same health outcome have been reported.

Data inputs for CRAs have depended on systematic literature reviews rather than GBD data onrisk factors and health outcomes.

629

- 630 For the purposes of risk factor-health outcome pair analysis, high BMI has been considered a risk
- 631 factor for cardiovascular outcomes, cancer outcomes, etc., but not itself a health outcome for
- modeling with CRA. The methodology in this paper is offered as an alternative to CRA to model
- 633 PFAs for the risk factors for BMI. The case will be made that PAFs can be derived directly from
- 634 IHME GBD data. For validation, the BMI formula derived were tested with the nine Bradford
- 635 Hill causality criteria (Appendix 2).
- 636

637 Population attributable fraction (PAF) derivation methodology for this analysis

- 638 Supplementary Table 5 shows the BMI multiple regression formula derivation with mean cohort
- 639 BMI (dependent variable) versus
- 640 1. a 20 dietary risk factor combination variable,
- 641 2. physical activity,
- 642 3. child underweight, and
- 643 4. sex (independent variables).

To maximize the functionality of the BMI formula when tested with the nine Bradford Hill causality criteria, all 20 dietary variables underwent the following four empirically derived adjustments:

- 647 1. multiplied times their mean kcal/day values (Column B),
- 648 2. multiplied times their R^2 values in univariate correlation with BMI (Column C),

649	3.	SFA, PUFA, and TFA multiplied times 0.46, an adjustment for fatty acids extracted (i.e.,
650		oils and solid fats) versus coming from within dietary foods (Column D) In determining
651		the portion of SFA, PUFA, and TFA added in addition to these fatty acids in the animal
652		and plant foods, we used an adjustment factor (fatty acids * 0.46), adapted from the
653		website "Our World in Data." ¹⁷ This adjustment factor differentiated the fatty acids in
654		individual foods (54% of the total) from the added fatty acids (46% of the total), and
655	4.	the parameter estimates from the BMI versus risk factors multiple regression analysis
656		(Column F).
657		
658	To der	ive the PAFs of each of the risk factors in the BMI formula, we used the following steps:
659	1.	Assign the signs of the risk factors in Column A according to the signs of the risk factor
660		correlations with BMI, including leaving positive signs for fruits, vegetables, and nuts
661		and seeds.
662	2.	Calculate the adjusted dietary risk factor coefficients (Column F (F1-F23) = Column B
663		(B1-B23) * Column C (C1-C23 * Column D (D1=D23) * Column E (E1-E23)).
664	3.	Copy Column F coefficients (F1-F23) to Column H (H1-H23) for a further adjustment.
665	4.	Multiply the copied coefficients in Column H (H1-H23) times the R ² value of the entire
666		BMI formula correlated with BMI (F26=H26=0.8585) and divide the result by the sum of
667		the 23 adjusted coefficients from step 3=1.4071 (F24) to get the BMI formula adjustment
668		factor (F26=0.6101).
669	5.	Multiply (F26=0.6101) * 100 to give a multiplier (F27=61.01) to derive PAFs for the
670		coefficients in Column H (H1-H23).

671	6. Multiply (F27=61.01) times the coefficients in Column H to get the risk factor PAFs (H1-
672	H23) and the not multicollinearity adjusted BMI formula total percent weight
673	(H24=85.85%).
674	Note that the above BMI formula contains the multicollinearities of fruits, vegetables, and
675	nuts and seeds (i.e., fruits, vegetables, and nuts and seeds correlate positively with 10 BMI
676	increasing foods and correlate negatively with the four other plant foods). Consequently, we
677	need to adjust the BMI formula to account for these multicollinearities by the following:
678	1. Add Column I and Column J that initially have the same BMI risk factors and
679	coefficients as Column G and Column H.
680	2. Switch the signs on fruits, vegetables, and nuts and seeds from "+" in Column H to
681	"-" in Column J to adjust for the multicollinearities.
682	3. Run the multicollinearities adjusted BMI formula in step 2 on SAS software.
683	4. Check the r of the resulting multicollinearity adjusted BMI formula correlated with
684	BMI (r=0.8998 (J25)).
685	5. Calculate the multicollinearity adjusted BMI formula R^2 by squaring the r
686	$(R^2=0.8096 (J26)).$
687	6. Multiply J26=0.8096 times 100 to derive an adjusted total PAF for the final BMI
688	formula (J28=80.96%).
689	7. Divide the final BMI formula total percent weight (J28=80.96%) by the sum of the
690	non-collinearity adjusted BMI formula Column H coefficients (H24=85.85) to derive
691	a BMI formula coefficient multiplier (J27=0.9432) to account for the
692	multicollinearities.

693	8.	Multiply the Column J coefficients (J1-J23) by the multicollinearity adjusting BMI
694		formula coefficient multiplier (J27=0.9432) to derive the final BMI formula
695		coefficients (J1-J23) as PAFs, totaling the final BMI formula total percent weight
696		(J24=80.96%).
697	9.	Test the validity of the BMI formula with the nine Bradford Hill causality criteria
698		(Appendix 1).
699		
700		
701		
702		
703		

704	Article	Infor	mation

705 Corresponding Author: David K. Cundiff, Independent researcher,

706 davidkcundiff@gmail.com

- 707• Authors' contributions: DKC acts as guarantor; conceived and designed the study, acquired
- and analysed the data, interpreted the study findings, drafted the manuscript, critically reviewed
- and edited the manuscript and tables, and approved the final version for publication.

710

- 711 CW designed software programs in R to format and population weight the data,
- aided with the SAS statistical analysis, critically reviewed the manuscript, and

713 approved the final version for publication.

714

715• Conflict of Interest Disclosures: None reported. Both authors have completed the ICMJE

via niform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any

717 organisation for the submitted work; no financial relationships with any organisations that might

have an interest in the submitted work in the previous three years; no other relationships or

activities that could appear to have influenced the submitted work.

720

Funding/Support: This research received no specific grant from any funding agency in the
public, commercial or not-for-profit sectors. The Bill and Melinda Gates Foundation funded the
acquisition of the data for this analysis by the IHME. The data were provided to the authors as
volunteer collaborators with IHME.

725•

726

727	Role of the Funder/Sponsor: While IHME GBD faculty and staff by virtue of the Bill and
728	Melinda Gates Foundation grants provided the raw data for this analysis, they did not vet the
729	analysis or sponsor the manuscript.
730 731	Additional Contributors: Martin Sebera, from the Department of Kinesiology, Faculty of
732	Sports Studies Masaryk University, Czech Republic, critiqued statistical aspects of the
733	manuscript and provided useful input. Pavel Grasgruber, from Masaryk University, Czech
734	Republic, provided suggestions after reviewing the manuscript. We thank Scott Glenn and Brent
735	Bell from IHME who supplied us with the GBD risk factor exposure data for the risk factors and
736	for BMI data.
737	
738	Data sharing statement: The raw, unformatted data used in this analysis is now out of date. The
739	2019 GBD data on all the variables in this analysis may be obtained from the IHME by volunteer
740	collaborating researchers. The formatted database, SAS codes and Excel spreadsheets on which
741	this analysis is based are posted on the Mendeley data repository:
742	https://data.mendeley.com/v1/datasets/publish-confirmation/g6b39zxck4/6
743	
744	STROBE checklist: This report follows the STrengthening the Reporting of OBservational
745	studies in Epidemiology (STROBE) guidelines for reporting global health estimates. ³⁴
746	
747	
748	
749	

750 **References**

751 Artificial Intelligence (AI). IBM Cloud Education. Accessed August 7, 2021, 1. 752 https://www.ibm.com/cloud/learn/what-is-artificial-intelligence 753 Ioannidis JPA. Implausible results in human nutrition research. BMJ : British Medical 2. 754 Journal. 2013;347doi:10.1136/bmj.f6698 755 Ioannidis JA. The challenge of reforming nutritional epidemiologic research. JAMA. 3. 756 2018;320(10):969-970. doi:10.1001/jama.2018.11025 757 Hill AB. THE ENVIRONMENT AND DISEASE: ASSOCIATION OR CAUSATION? 4. 758 Proc R Soc Med. 1965;58(5):295-300. 759 Global Burden of Disease Study 2017 (GBD 2017) Data Input Sources Tool. Institute of 5. 760 Health Metrics and Evaluation. Updated 2019. Accessed August 10, 2019, 761 http://ghdx.healthdata.org/gbd-2017/data-input-sources 762 6. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk 763 assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of 764 risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of 765 Disease Study 2017: Table of risk factor definitions. The Lancet. 2018;392(10159):1923-94. 766 7. PROTOCOL FOR THE GLOBAL BURDEN OF DISEASES, INJURIES, AND RISK 767 FACTORS STUDY (GBD) Version 3.0; Issue 26. Institute for Health Metrics and Evaluation. 768 Updated February 2018. Accessed August 2, 2019, 769 http://www.healthdata.org/sites/default/files/files/Projects/GBD/GBD_Protocol.pdf 770 8. Naghavi M, Abajobir AA, Abbafati C, et al. Global, regional, and national age-sex 771 specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global 772 Burden of Disease Study 2016. The Lancet. 2017;390 (10100):1151-1210. 773 Flaxman AD, Lee YY, Vos T, et al. An Integrative Metaregression Framework for 9. 774 Descriptive Epidemiology. University of Washington Press; 2015. 775 http://www.guilles.website/wp-content/uploads/2017/11/Metaregression-AFlaxman.pdf 776 10. GBD 2017 Risk Factor Collaborators. Global, regional, and national comparative risk 777 assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of 778 779 Disease Study 2017. . The Lancet. 2018;392(10159):1923-94. 780 Call for Collaborators. . Institute for Health Metrics and Evaluation at the University of 11. Washington. Updated 2019. Accessed April 25, 2019, http://www.healthdata.org/gbd/call-for-781 782 collaborators 783 12. Omega 3 Fatty Acids: Fact Sheet for Health Professionals (The Office of Dietary 784 Supplements) (2018). 785 13. Nutritionix Track App. Syndigo LLC Updated 2019. Accessed April 25, 2019, 786 https://www.nutritionix.com/ 787 14. POTATO PROCESSING AND USES. International Potato Center. Updated 2020. 788 Accessed May 28, 2020, https://cipotato.org/potato/potato-processing-uses/ 789 Murray C, Lopez A, Rodgers A, et al. The World Health Report 2002: Reducing Risks, 15. 790 Promoting Healthy Life. World Health Organization. 791 https://apps.who.int/iris/bitstream/handle/10665/42510/WHR_2002.pdf 792 Murray CJL, Aravkin AY, Zheng P, et al. Global burden of 87 risk factors in 204 16. 793 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease 794 Study 2019. The Lancet. 2020;396(10258):1223-1249. doi:10.1016/S0140-6736(20)30752-2

- 795 17. Ritchie H, Roser M. Diet Compositions. *Our World in Data*. 2017;
- 18. Bloom JOJ. Bootstrap confidence intervals (Class 24, 18.05). MIT. Accessed July 25,
- 797 2021, <u>https://ocw.mit.edu/courses/mathematics/18-05-introduction-to-probability-and-statistics-</u>
 798 spring-2014/readings/MIT18_05S14_Reading24.pdf
- 799 19. Ruotsalainen H, Kyngäs H, Tammelin T, Kääriäinen M. Systematic review of physical
- 800 activity and exercise interventions on body mass indices, subsequent physical activity and
- 801 psychological symptoms in overweight and obese adolescents. *Journal of Advanced Nursing*.
- 802 2015;71(11):2461-2477. doi:10.1111/jan.12696
- Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review
 and meta-analyses of randomised controlled trials and cohort studies. *BMJ* 2013;346:e7492.
 doi:10.1136/bmj.e7492
- Traversy G, Chaput J-P. Alcohol Consumption and Obesity: An Update. *Curr Obes Rep.*2015;4(1):122-130. doi:10.1007/s13679-014-0129-4
- 808 22. Turner-McGrievy G, Mandes T, Crimarco A. A plant-based diet for overweight and 809 obesity prevention and treatment. *J Geriatr Cardiol*. 2017;14(5):369-374.
- 810 doi:10.11909/j.issn.1671-5411.2017.05.002
- 811 23. Darmon N, Drewnowski A. Contribution of food prices and diet cost to socioeconomic 812 disparities in diet quality and health: a systematic review and analysis. *Nutrition reviews*.
- 813 2015;73(10):643-660. doi:10.1093/nutrit/nuv027
- 814 24. United States Department of Agriculture FY 2019 BUDGET SUMMARY (US Office of
 815 Budget and Program Analysis) (2019).
- 816 25. Why is Government Subsidizing Junk Food?--22.6 percent of SNAP dollars are spent on
- 817 unhealthy food. Foundation for Economic Education. Updated February 25, 2017. Accessed
 818 August 11, 2019, <u>https://fee.org/articles/why-is-government-subsidizing-junk-food/</u>
- 819 26. Wakamo B. We Subsidize the Wrong Kind of Agriculture. Inequality.org. Updated JUNE
- 820 21, 2018. <u>https://inequality.org/great-divide/subsidize-wrong-kind-agriculture/</u>
- 821 27. Fruits and Veggies Now Chock Full of Marketing Power (2017).
- 822 28. Ebbeling CB, Feldman HA, Klein GL, et al. Effects of a low carbohydrate diet on energy 823 expenditure during weight loss maintenance: randomized trial. *BMJ*. Nov 14 2018;363:k4583.
- 824 29. FORESIGHT--Tackling Obesities: Future Choices –Follow Up Actions. Government
 825 Office for Science (UK). Updated 2019. Accessed August 5, 2019,
- <u>https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file</u>
 /295885/07-1526-obesity-action-plan.pdf
- 828 30. Mărginean CO, Mărginean C, Meliț LE. New Insights Regarding Genetic Aspects of
- 829 Childhood Obesity: A Minireview. Front Pediatr. 2018;6:271-271.
- 830 doi:10.3389/fped.2018.00271
- 831 31. Castaner O, Goday A, Park Y-M, et al. The Gut Microbiome Profile in Obesity: A
- 832 Systematic Review. Int J Endocrinol. 2018;2018:4095789-4095789. doi:10.1155/2018/4095789
- 833 32. Monteiro CA, Moubarac J-C, Levy RB, Canella DS, Louzada MLdC, Cannon G.
- 834 Household availability of ultra-processed foods and obesity in nineteen European countries.
- 835 Public Health Nutrition. 2017;21(1):18-26. doi:10.1017/S1368980017001379
- 836 33. Monteiro CA, Cannon G, Levy RB, et al. Ultra-processed foods: what they are and how
- to identify them. *Public Health Nutrition*. 2019;22(5):936-941.
- 838 doi:10.1017/S1368980018003762
- 839 34. Stevens GA, Alkema L, Black PRE, et al. Guidelines for Accurate and Transparent
- 840 Health Estimates Reporting: the GATHER statement. *The Lancet*. 2016;388(10062):e19-e23.