Abstract
It has become increasingly clear that the COVID-19 epidemic is characterized by overdispersion whereby the majority of the transmission is driven by a minority of infected individuals. Such a strong departure from the homogeneity assumptions of traditional well-mixed compartment model is usually hypothesized to be the result of shortterm super-spreader events, such as individual’s extreme rate of virus shedding at the peak of infectivity while attending a large gathering without appropriate mitigation. However, heterogeneity can also arise through long-term, or persistent variations in individual susceptibility or infectivity. Here, we show how to incorporate persistent heterogeneity into a wide class of epidemiological models, and derive a non-linear dependence of the effective reproduction number Re on the susceptible population fraction S. Persistent heterogeneity has three important consequences compared to the effects of overdispersion: (1) It results in a major modification of the early epidemic dynamics; (2) It significantly suppresses the herd immunity threshold; (3) It significantly reduces the final size of the epidemic. We estimate social and biological contributions to persistent heterogeneity using data on real-life face-to-face contact networks and age variation of the incidence rate during the COVID-19 epidemic, and show that empirical data from the COVID-19 epidemic in New York City (NYC) and Chicago and all 50 US states provide a consistent characterization of the level of persistent heterogeneity. Our estimates suggest that the hardest-hit areas, such as NYC, are close to the persistent heterogeneity herd immunity threshold following the first wave of the epidemic, thereby limiting the spread of infection to other regions during a potential second wave of the epidemic. Our work implies that general considerations of persistent heterogeneity in addition to overdispersion act to limit the scale of pandemics.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
Our calculations would have been impossible without the data kindly provided by the Illinois Department of Public Health through a Data Use Agreement with Civis Analytics. This work was supported by the University of Illinois System Office, the Office of the Vice-Chancellor for Research and Innovation, the Grainger College of Engineering, and the Department of Physics at the University of Illinois at Urbana-Champaign. Z.J.W. is supported in part by the United States Department of Energy Computational Science Graduate Fellowship, provided under Award No. DE-FG02-97ER25308. This work made use of the Illinois Campus Cluster, a computing resource that is operated by the Illinois Campus Cluster Program (ICCP) in conjunction with the National Center for Supercomputing Applications (NCSA) and which is supported by funds from the University of Illinois at Urbana-Champaign. This research was partially done at, and used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No.∼DE-SC0012704.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This manuscript does not involve research on human subjects. The public data used in this study contains no identifiable private information.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The manuscript uses data provided by the Illinois Department of Public Health through a Data Use Agreement with Civis Analytics. The source code for the model is freely available online at https://github.com/uiuc-covid19-modeling/pydemic https://github.com/uiuc-covid19-modeling/pydemic