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Abstract

Since the SARS-CoV-2 virus outbreak has been recognized as a pan-
demic on March 11, 2020, several models have been proposed to forecast
its evolution following the governments’ interventions. In particular, the
need for fine-grained predictions, based on real-time and fluctuating data,
has highlighted the limitations of traditional SEIR models and parame-
ter fitting, encouraging the study of new models for greater accuracy. In
this paper we propose a novel approach to epidemiological parameter fit-
ting and epidemic forecasting, based on an extended version of the SEIR
compartmental model and on an auto-differentiation technique for par-
tially observable ODEs (Ordinary Differential Equations). The results on
publicly available data show that the proposed model is able to fit the
daily cases curve with greater accuracy, obtaining also a lower forecast
error. Furthermore, the forecast accuracy allows to predict the peak with
an error margin of less than one week, up to 50 days before the peak
happens.

1 Introduction

The SARS-CoV-2 virus is a new strain of the Severe Acute Respiratory Syn-
drome (SARS) species that causes COVID-19. Its long incubation period and
the fact that infected individuals are often asymptomatic or exhibit mild symp-
toms are distinctive features that make spreading the virus relatively easy. The
COVID-19 fatality and hospitalization rates are reported to be substantially
higher than the regular flu [1] and thus can overwhelm the health services of
even advanced developed countries. Thus, to control the spread of the virus,
forecasting models for COVID-19 are required for planning and decision mak-
ing. Despite the online release of daily data from most of the affected countries
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it has become clear that predicting the future trajectory of the pandemic is a
very challenging task [2]. In particular, traditional epidemiological models are
less effective when applied to very fine-grain, partial observations, than when
applied to historical smooth data.

Many epidemiological parameters are used to model the progress of an epi-
demic and forecast its future evolution. One important parameter is the basic
reproduction number R0, which defines the average number of new infections
resulting from one individual carrying the virus in a completely susceptible
population. It has been shown that the measured R0 as well as other epi-
demiological parameters vary widely across different countries and studies. As
a result, current estimation of R0 for COVID-19 epidemic ranges from 1.4 to
6.49[3]. Moreover, the fact that the countries have responded in different man-
ners to prevent its spread makes it difficult to infer the effective reproduction
number and other transmission parameters either before or after intervention.
One of the limits of traditional compartmental models (e.g., SEIR) is the as-
sumption that the epidemic parameters do not change over time. In practice,
most countries have imposed lockdowns and restrictions to mobility, together
with physical distancing guidelines, which affected the average number of con-
tacts and the transmissibility of the virus. Models that do not consider the
change in transmissibility resulting from lockdowns have not produced accurate
predictions [2, 4].

Once the transmission parameters are accurately estimated, SEIR models
can be applied to simulate the evolution of the epidemic. One key challenge in
this process is simulating the SEIR compartments while the only available data
are the newly reported cases and standard compartments are not observable.
Since the newly reported cases are only a fraction of the real infected individuals,
in some studies the population has been artificially reduced to a much lower
value in order to obtain reasonable results from an SIR model [5]. Moreover,
confirmed cases are usually reported a long time after the infection occurs, which
explains why the effect of intervention (reduction of new infections) is only
observable after at least two weeks. Unless we choose an incorrect incubation
period of around two weeks [6], which is much longer than the estimated median
of five days [7], it is not possible to fit the observed data with a standard
SEIR model. A time gap can be manually fixed [5, 8], for example shifting the
prediction or the original data, although an ideal solution would consider this
gap to be country-dependent and it should learn the gap length automatically
from the data. In general, traditional models need to be extended to cope with
all the above challenges.

In this paper, we propose a new extended SEIR model with machine learning
parameter fitting, we call AutoSEIR. The main contributions of AutoSEIR are:
(i) we propose a new compartment-based model to capture the unique char-
acteristic of COVID-19. In particular we extend the classical SEIR model by
introducing two additional compartments, Tested and Untested. The Untested
compartment is not observable as the proportion of the population that is being
tested continues to be relatively small; (ii) we introduce a testing delay parame-
ter and a confirmed compartment to capture the reporting delay, which usually
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Figure 1: Diagram of AutoSEIR. Only the confirmed compartment is observed.

occurs between the infection and the reporting stage of each case; (iii) we con-
sider two different transmissibility values, before and after intervention, while
fitting the whole time series, conversely to other methods that fit each period
separately, obtaining a discontinuous result [9]; and finally (iv) we extend a re-
cently introduced proximal optimization framework for parameter inference for
ODEs, using automatic differentiation, to account for interventions and state
variables that are not observable. In this study, we evaluate the method for accu-
racy in parameter fitting, forecast capabilities, peak prediction, and robustness
to outliers in the data. The results and daily-updated forecasts are publicly
available on our website (https://covid-research.qcri.org/seir/).

2 Material and Methods

2.1 Proposed Extension of SEIR Model: AutoSEIR

Our proposed extended SEIR model contains seven compartments: S (Suscep-
tible), E (Exposed), I (Infected), T (Tested), U (Untested), C (Confirmed) and
R (Removed) (Figure 1). Our model accounts for the delay between symptom
onset, getting an RT-PCR test, and also the outcome of the RT-PCR test.

The dynamics of the compartments are defined by the following ordinary
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differential equations (ODEs):

dS

dt
= −βS I

N
(1)

dE

dt
= βS

I

N
− αE (2)

dI

dt
= αE − γI (3)

dU

dt
= pUγI −

U

DU
(4)

dT

dt
= pT γI −

T

DT
with pU + pT = 1 (5)

dC

dt
=

T

DT
− C

DR
(6)

dR

dt
=

U

DU
+

C

DR
(7)

The model contains several parameters, fully described in the following sec-
tion. In the above equations and in Figure 1 we can separate our parameters in
three categories: (1) the transmissibility β that controls the rate of susceptible
individuals getting infected after getting in contact with an infected individ-
ual, (2) the time rate parameters {α, γ,DT , DR, DU} that control the timing of
moving from a compartment to the next, and (3) the ratios pT and pU to split
between tested and untested compartments. Since we have two different rates
before and after the social distancing is enforced, the β parameter is the only
parameter that varies with time.

2.2 Parameter Fitting

A distinct feature of our approach is that we can estimate the parameters even
when several ODE equations are un-observable. In practice, we will assume
that only the compartment of confirmed cases is observable, which happens
after individuals have been tested.

Given the defined ODE system, the complete state over the seven compart-
ments at time t is X(t) = xS(t), xE(t), xI(t), xU (t), xT (t), xC(t), xR(t). The
state depends on two sets of parameters. One set has fixed values, and one set
must be estimated. The vector θ is the vector of free parameters that we infer
through optimization and it includes the following:

1. I0: the initial infected, i.e., xI(0) = I0.

2. R0: basic reproduction number, assuming a completely susceptible popu-
lation.

3. Rt: basic reproduction number resulting from social distancing, also as-
suming a completely susceptible population.
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Figure 2: Diagram of the full approach for parameter fitting using backpropa-
gation.

4. DT : delay of testing, i.e., time from the end of infectious period to the
time the case is officially reported.

5. pT : probability of an infected case to be tested. This is equal to 1 − pU ,
where pU is the probability of unreported cases.

The fixed parameters are:

1. DU : recovery duration for the unreported cases, from the end of the in-
fectious period to the removed/recovered compartment.

2. DR: recovery duration for the reported cases, from the reporting of the
case to the removed/recovered compartment.

3. 1/α: incubation period.

4. 1/γ: infectious period.

5. ts: timestep when social distancing measures becomes effective.

The rationale of fixing the above parameters is that the time of social dis-
tancing is a known datum, while the timing of recovery compartment was not
crucial to the scope of this work and can be more easily estimated from re-
ported data. In a scenario where the estimation of recovery time is a key factor,
such as in policy-making for hospital capacity management, xR should be also
observable and DU , DR can be included in the parameter vector θ.

The initial timestep t0 is variable, given by tobs − (α + γ + DT ), thus it
depends on the current parameter values.
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ODE Solver

In order to obtain the number of cases, given the defined system of ODEs and the
current parameters vector θ, we solve numerically the ODEs using the midpoint
method. The solver takes as input the initial state X(0), the system of ODEs
fθ(Xt, t), and iterates over t, approximating each X(t + 1) using the midpoint
rule:

X(t+ 1) = X(t) + hfθ(X(t) +
h

2
fθ(X(t), t), t+

h

2
) (8)

The initial X(0) = {xS(0), xE(0), xI(0), xU (0), xT (0), xC(0), xR(0)} is set as
{N − I0, 0, I0, 0, 0, 0, 0}, where N is the total population of the considered coun-
try or area, and I0 ∈ θ, the initial number of infectious subjects, is part of the
parameters vector that will be fitted.

Loss function

A loss function is defined to measure the error of the simulated results with
respect to the real acquired data. In the real data, not all the compartments of
X are observable, instead only the ground truth for the new reported cases is
always available, which we call y(t). Note that the corresponding variable in our
system is not directly available, as we simulate the state of currently infected,
but we do not keep track of the newly confirmed cases at time t. This variable
can be defined as:

xN (t) = xC(t)− xC(t− 1) + pT (xR(t)− xR(t− 1)), (9)

that is the new cases are given by the current number of confirmed cases xC(t),
removing the previous step confirmed cases xC(t−1), and adding the cases that
left the confirmed department, pT (xR(t)− xR(t− 1)).

The loss function over all the states is

L(xN , y) =
1

T

T∑
t

(xN (t)− y(t))2 +
1

T
(

T∑
t

xN (t)−
T∑
t

y(t))2 (10)

where y(t) is the observed confirmed cases at discretized timestep t and T is the
entire dataset period. In this function we are considering the point-wise error
of prediction as well as the cumulative error so that we optimize for both the
daily cases and the total cumulative cases.

The loss surface as a function of the parameters pair {Rt, pT } on the Italian
dataset is shown in Figure 3. In this dataset the number of new cases started
to decrease when 0.1% of the population was confirmed as infected, as a result
of the imposed restrictions. This decreasing curve can only be fitted either by
having an Rt smaller than 1, or by considering that in reality a high percentage
of the population has been infected but not tested, that is having a very small
value for pT . This is reflected in the surface plot where the fitting loss increase
exponentially for Rt > 1 and high pT . The lowest loss is instead obtained when
Rt is around 0.8 and the probability of testing is around 0.2.
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A B

Figure 3: Loss surface (A) and loss gradients (B) with respect to the parameters
{Rt, pT}. Data of Italy daily cases is used to measure the loss.

Constrained optimization

The optimization problem is defined by the constrained minimization objective

argmin
θ

L(xN , y) s.t. cl,i ≤ θi ≤ cu,i (11)

where cl,i and cu,i are lower and upper bounds enforced on the parameter
θi. To compute the gradient of the objective function with respect to the model
parameters, we use the automatic differentiation python package autograd.
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Figure 4: Timings of ODE model and observed data. The ODE’s first timestep
t0 depends on the given observed data’s t0 and the durations of incubation
period, infectious period and testing delay. Time periods and initial infected I0
are all optimized parameters.

A unique feature of the proposed method is that, in the ODE solver, the sim-
ulation starts a period of time before the first observed cases. This is required
in order to match the confirmed compartment’s count to the confirmed cases
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in the observed data, given that the defined ODE implies a sequence of move-
ments that starts from the susceptible compartment and reaches the confirmed
compartment after a period of time. The average duration of this time period
is given by the sum of the average periods between the infection compartment
and the confirmed compartment, given by the latent/incubation period, the in-
fectious period, and the test delay, which is 1

α + 1
γ + DT . Note that, contrary

to other approach where a time gap is manually fixed [8], in our approach the
duration is automatically set based on the fitting of DT . The time discrepancy
between the ODE and the observed data is illustrated in Figure 4. In this chart,
which represents the Hubei province initial cases, the first observed data point
in the dataset is on January 22. Nevertheless, to fit such data, the infection
simulation of the ODE solver starts on January 10 (i.e., 12 days before). This
time shift accommodates the period of time needed to go from the first, yet
unobserved cases, to the 400+ cases first observed after almost two weeks.

2.3 Experimental data and setup

The data used in our experiments are collected from the three sources shown in
Table 1 with the corresponding areas of interest. Lockdown intervention dates
have been extracted from newspaper sources of each country, summarized on
the related Wikipedia page of COVID-19 pandemic lockdowns
(https://en.wikipedia.org/wiki/COVID-19 pandemic lockdowns).

Data Source Area Repository URL

New York Times New York state https://github.com/nytimes/covid-19-data

Italy Civil Protection Italy https://github.com/pcm-dpc/COVID-19

Johns Hopkins

Hubei
S. Korea
Spain
Germany
France
India
U.K.

https://github.com/CSSEGISandData/COVID-19

Table 1: Data source repositories used for experiments, by area.

For all the experiments, we setup the same upper and lower bounds con-
straints and initial values (Table 2). The constraints are enforced in order to
avoid negative values as well as unrealistic high values. Initial values are rea-
sonable values to start the numerical optimization. Both initial values and
constraint ranges are shown in Table 2. All values are constant except for the
initial number of infected (i.e., the observed cases at the first time step y(0)).
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I0 R0 Rt DT pT

Initial y(0) 3.5 1 4 0.1
Lower bound 1 0.5 0.01 1 0.001
Upper bound 2000 10 10 10 0.3

Table 2: Initial values, lower bound and upper bound constraint for all the free
parameters of the optimization.
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Figure 5: Results of ablation experiments on fitting for UK, Italy, New York
and U.S. All the features combined (full model) produce the best fitting while
using more reasonable parameters.

3 Results

3.1 Ablation Study

We perform ablation experiments to investigate the impact of each proposed
extension of the SEIR model that makes up our complete approach. Specifically,
we evaluate the accuracy of the model under the following five configurations:
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1. Full model. This is the full model presented in Section 2.

2. No pT . In this model we remove the probability of testing, assuming that
all the infected cases are tested and observable.

3. No DT . This model has no test delay, thus all the infected cases are
reported as soon as they are tested.

4. No Rt, DT . In this model the intervention does not have any effect, thus
all parameters learned for data points before and after intervention are
the same. Additionally, the model has no test delay feature, meaning that
all the infected cases are reported as soon as they are tested.

5. No pT , DT . In this model both the probability of testing and the test
delay are removed. All infected cases are tested, and reported without
any delay.

We evaluate the described models in two different experiments:

• Fitting. In this experiment we evaluate the ability of the models of fitting
the observed data. The complete data up to a recent date is provided for
training, and the fitting of the training data is evaluated. The purpose
of this experiment is to show that without any of the missing feature the
model would not be capable of fitting real data, with the exception of
fitting parameters with non-realistic values.

• Forecast. We design this experiment to evaluate the predicting capability
of the models. We train the models with data spanning from the start
of the epidemic until one to six weeks after the intervention date. For
testing, we consider the week following the end of the training data, and
we measure the prediction accuracy of each model on this unseen 7-points
time series.

The above experiments are carried out on the datasets of U.K., Italy, U.S.,
and New York. Results of the ablation and forecast experiments are shown in
Figure 5 and 6, respectively. Fitting results of the full model are shown in the
first row. For each fitting, the root mean square error (RMSE) is given for the
whole time series. In all the experiments except one, the result of the full model
has the lowest error among the models without one or more extensions. Only
the ’No DT ’ model for the Italy dataset has a slightly lower error. However, the
inferred rate of testing parameter was unrealistic (0.7%), for a country where
the testing ratio has been estimated to be in the range of 10%-33% [10, 11]. The
same ’No DT ’ model yields a good fitting for the rest of the datasets as well,
with the downside of estimating an R0 parameter to be higher than the known
value. The rest of the models were not capable of reasonably fitting all the
datasets. In particular, the UK dataset could not be fitted without using the
testing ratio pT or the after-intervention Rt parameter. For the U.S. dataset,
only the model ’No Rt, DT ’ failed to fit the observed data by a large margin.
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Figure 6: Error on next week forecast for Italy, Germany, and UK datasets.
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For the forecast experiment, we show the RMSE of the five models for each
period used as training set (week from 1 to 6). The full model result, represented
with a solid blue line, exhibits the lowest error in most of the configurations.
The performance of the remaining models vary widely across different countries
datasets and periods of time without any particular pattern. Logically, our
results show that the full model has a decreasing trend in error with respect
to the increase of the training data, showing that the more historical data is
available to the model, the better it predicts future points. This suggests that
the full model is good at generalizing the epidemic dynamic, while the remaining
models are overfitting the observed data in an unpredictable manner, lacking a
robust underlying model.

3.2 Robustness

Figure 7: Hubei validation. Training data up to February 18. Note: despite
the peak on February 12, resulted from a change in the confirmation policy, the
model show robustness to outliers.

The availability of almost real-time data for the ongoing COVID-19 epidemic
has resulted in the occurrence of several fluctuations, outliers and anomalies in
the public datasets, which represents an issue for parameter fitting among other
challenges. One example of these anomalies is the 600% surge in cases observed
on February 12 for the contagion data in Hubei province, where 13,332 cases
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were observed in one day. The anomaly was caused by a policy change on the
counting of cases, when the co-presence of symptoms and chest infection from
CT scan was reported as confirmed case. To test the robustness of our model
to these contexts, we train on the Hubei province data until February 18, thus
including the spike, and we generate the forecast of 6 weeks to validate both
fitting and prediction accuracy. In Figure 7, the results are shown together
with the overlapping observed data represented with a red solid line. The figure
shows that the fitting of the observed data is not misled by the outlier, moreover
the resulting forecast has been reasonably accurate.

3.3 Peak prediction

Peak prediction error (relative deviation of forecast from real peak) 
Daily cases on the day when prediction is performed

Figure 8: Peak prediction on Qatar cases. Starting from 60 days before the peak,
we forecast the peak date every day. Relative error on forecast is provided as a
bar for each day. Solid line represents the daily new cases. The prediction has
high accuracy except when close to a deceitful peak, which happened around
-30 days with respect to the real peak.

In this experiment we evaluate the ability to predict the date when the peak
occurs. Given the predicted new cases for each time step, xN (t), we obtain the
predicted peak timestep as

argmax
t

xN (t). (12)

We select the COVID-19 new cases dataset of Qatar as a case study. We
run the parameter fitting using as training data starting from 2 months before
the peak up to the day before the peak, and we measure the difference with the
actual peak date. This difference is defined as

13

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 28, 2020. ; https://doi.org/10.1101/2020.07.25.20159715doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.25.20159715


argmax
t

xN (t)− argmax
t

y(t). (13)

In Figure 8 we show the result for each day. For example, 35 days before
the real peak happened (-35 on the figure) the method was able to predict with
exact accuracy the peak date. The accuracy is high on average, with a mean
absolute error of 10 days. The model has been fooled by a false peak around
30 days before the real peak, however it managed to well re-tune its prediction
after more days of data has become available.

4 Conclusions and Discussion

We have proposed a novel approach that combines an extended compartmental
model, to address the unique features of COVID-19 pandemic and of the avail-
able data, with a novel machine learning technique for parameter fitting on ODE
systems with partial observations. This approach allowed us to obtain a state-of-
the-art forecast accuracy and peak prediction. The resulting forecasts have been
used in government settings and international media outlets as a trusted source
for the outbreak projections. Machine learning has been successfully applied
to epidemic curve prediction in the past, with methods that treat the problem
as a standard supervised time series forecasting task [12] and a wide literature
on estimating the epidemic parameters for predicting the future of an ongoing
outbreak, especially for influenza [13]. The COVID-19 emergence, together with
the readiness and availability of related data, has attracted great attention on
epidemic modeling research, in the pursuit of an accurate method to predict
the future outcome of the pandemic. Several approaches have been proposed in
the recent literature to fit the confirmed cases observed in public datasets. In
general, it has been shown that epidemic forecasting and peak prediction is a
very challenging task that leads to very inaccurate results with traditional SEIR
optimization approaches, especially when interventions are involved [2, 4].

In [14], an architecture composed of a neural network and a time integrator is
trained to to fit infected and deaths data in a traditional SIRD model, however
this is not used to produce forecasts. Also a full library has been presented,
named PyRoss [15], to model the epidemic and fitting the data using Bayesian
parameter inference and model selection. To cope with the artificial factors
that influence the daily data, the SUQC model (Susceptible, Un-quarantined,
infected, Confirmed infected) has been proposed instead of SEIR [16], with a
loss function optimized using the interior-point method. In [9], an extension of
SEIR is proposed, to additionally model unreported infections and hospitalized
subjects. The observed time series is split into several period, to account for
the change given by restrictions, and the parameters of each subset are fitted
in isolation. This results in a discontinuous fitting and inaccurate long-term
forecast than using a unified contiguous approach as we propose. More complex
extensions to SEIR for COVID-19 include the SEIQRDC model [17], where the
exposed population is able to infect during the latent period, confirmed cases
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are quarantined and susceptible are partially confined, and a compartmental
model that represents mild, severe and critical infections separately, as well as
severe and critical disease [18].

Other than SEIR models, more simple models combining power law and
exponential law have been used for fitting, which obtain more accurate results
than non-extended compartmental models for forecasting [19]. Monte Carlo
simulations have been also applied to model the cumulative cases and predict
the reduction of fatalities [20].

The problem of the unconfirmed cases and the time lag in case confirma-
tion has been addressed in other works by reducing the initial population to
a small fraction and shifting the date of the first cases [5, 8]. With the pro-
posed approach, both the real and confirmed cases are simulated, while only
the confirmed cases are used to compute the fitting error.

Automatic differentiation of ODE solvers has been used for parameter fit-
tings [21], however, conversely to our method, it is assumed that the values of
all the variables in the ODEs, for all the time steps, are available. In the prob-
lem we address, only one of the variable can be observed, this required a novel
solution.

As a future direction, more compartments can be included in the SEIR model
(e.g., Hospitalized, Vaccinated). Other important demographic factors can be
also integrated in the model such as age, sex, mobility data flows, between areas
in a city and regions in a country, to model the effect of urban mobility and
national transportation lockdowns, with the final goal of supporting the decision
making surrounding the enforcement and the lifting of restrictions.
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