Smoking is associated with significantly increased green autofluorescence intensity

and asymmetry of the skin and the fingernails of natural populations, population high-

risk of developing stroke, and population of acute ischemic stroke

Mingchao Zhang^{1,2,*}, Yue Tao^{1,2,*}, Danhong Wu³, Weihai Ying^{1,2,#}

¹Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao

Tong University, Shanghai 200030, P.R. China; ²Collaborative Innovation Center for

Genetics and Development, Shanghai 200043, P.R. China; ³Department of Neurology,

Shanghai Fifth People's Hospital, Fudan University, Shanghai, P.R. China

* These two authors contributed equally to this work.

#: Corresponding author

Weihai Ying, Ph.D.

Professor, School of Biomedical Engineering and Med-X Research Institute

Shanghai Jiao Tong University

1954 Huashan Road

Shanghai, 200030, P.R. China

E-mail: weihaiy@sjtu.edu.cn

Abstract

Tobacco smoking is an important risk factor for numerous diseases. It is

critically needed to search for the biomarkers of smoking for non-invasive and rapid

monitoring of the pathological changes of smokers' body. Our current study has

indicated that green autofluorescence (AF) of the fingernails and certain locations of

the skin is a novel biomarker for smoking: First, for the natural population at age

between 20 - 50 years of old, both the green AF intensity and the AF asymmetry of the

Index Fingernails and the skin of Dorsal Index Fingers of the smokers were remarkably

higher than those of the non-smokers. Second, for the natural population, the population

at risk of developing acute ischemic stroke (AIS) and the AIS population at age between

50 - 80 years of old, both the AF intensity and the AF asymmetry of the Index

Fingernails and the skin of Dorsal Index Fingers of the smokers were also remarkably

higher than those of the non-smokers. Third, ROC analyses using the green AF

intensity of the Index Fingernails showed that the AUC values were 0.796 to 0.889 for

differentiating the smokers and the non-smokers in these three populations.

Collectively, our study has indicated that increased green AF intensity of the fingernails

and certain locations of the skin is a novel biomarker for smoking. Based on this finding,

pathological alterations of smokers' body may be monitored non-invasively and

efficiently, which could be highly valuable for the health management of the large

2

population of tobacco smokers.

Keywords: Smoking; Biomarker; Autofluorescence; Fingernails; Skin

Introduction

Tobacco smoking is an important risk factor for multiple major diseases including

cancer, AIS and cardiovascular diseases (1-3). In many Western countries smoking is

responsible for one third of all cancer deaths (4). It is of significance to search for the

biomarker of smoking for non-invasive and rapid monitoring of the pathological

changes of smokers' body, which is highly valuable for the health monitoring of a large

population of smokers. However, there has been no non-invasive method for

monitoring the pathological changes of smokers.

Human autofluorescence (AF) has been used for non-invasive diagnosis of

diabetes and diabetes-related pathology (5). The AF originates from the advanced

glycation end-product (AGE)-modified collagen and elastin of dermis. NADH, FAD,

keratins and melanin are major epidermal fluorophores (6, 7). It is established that such

molecules as NADH and FAD can be significantly affected by oxidative stress.

Since tobacco smoking can induce oxidative stress in the body (8, 9), we

hypothesized that tobacco smoking-induced changes of the skin's AF may become a

novel biomarker for tobacco smoking. In this study we tested this hypothesis, showing

that smokers had significantly increased green AF intensity and asymmetry of the Index

Fingernails and the skin of Dorsal Index Fingers in natural populations, the population

3

high-risk of developing stroke and the population of AIS.

Methods and Materials

Studies on Human Subjects

The study was conducted according to a protocol approved by the Ethics

Committee of Shanghai Fifth People's Hospital affiliated to Fudan University. The

human subjects of the age group between 20 - 50 years of old came from 郑州新密队

列。 The age of group was 34.40 ± 7.59 years of old. The human subjects of the age

group between 50 - 80 years of old were divided into four groups: Group 1: The natural

populations; Group 2: The healthy population; Group 3: The population high-risk of

developing stroke; and Group 4: The population of the AIS patients who were

hospitalized in the Department of Neurology, Shanghai Fifth People's Hospital

affiliated to Fudan University. The age of Group 1, Group 2, Group 3 and Group 4 was

 66.10 ± 6.42 , 62.86 ± 5.73 , 66.12 ± 5.18 , and 64.01 ± 8.20 years of old, respectively.

Determinations of the AF of human subjects' skin and fingernails

A portable AF imaging equipment was used to determine the skin' AF of the

human subjects. The excitation wavelength was 485 nm, and the emission wavelength

was 500 - 550 nm.

Statistical analyses

All data are presented as mean + SEM. Data were assessed by Kruskal-Wallis

test, followed by Student - Newman - Keuls post hoc test, except where noted. P values

4

less than 0.05 were considered statistically significant.

Results

1) Both the green AF intensity and the AF asymmetry of the fingernails and the

skin of Dorsal Index Fingers of the smokers in natural populations were

significantly higher than those of the non-smokers

We determined the green AF intensity of the fingernails and twelve positions of the

skin of natural populations of the age group between 20 - 50 years of old and the age

group between 50 - 80 years of old. For both of these age groups, compared with the

green AF intensity of the Index Fingernails and the skin of Dorsal Index Fingers of the

non-smokers, the green AF intensity of both the Index Fingernails and the skin of

Dorsal Index Fingers of the smokers was significantly higher (Figs. 1A and 1B). There

was no significant difference between the AF intensity of the left Index Fingernails and

skin of Dorsal Index Fingers and that of the right Index Fingernails and skin of Dorsal

Index Fingers (Figs. 1A and 1B). In contrast, no significant difference was observed

between the green AF intensity of the non-smokers and that of the smokers of these two

age groups at other examined positions of the skin (Supplemental Figs. 1A, 1B, 1C, 1D,

and 1E).

For both of these two age groups, compared with the green AF asymmetry of the

fingernails and the skin of Dorsal Index Fingers of the non-smokers, the green AF

asymmetry of both the Index Fingernails and the skin of Dorsal Index Fingers of the

smokers was significantly higher (Figs. 2A and 2B). In contrast, no significant

difference was observed between the green AF asymmetry of the non-smokers and that

of the smokers of these two age groups at other examined positions of the skin

5

(Supplemental Figs. 2A, 2B, 2C, 2D, and 2E).

2) The green AF intensity of the Index Fingernails and the skin of Dorsal Index

Fingers of the smokers in both the population high-risk of developing stroke and

the AIS population was significantly higher than that of the non-smokers

We also determined the green AF intensity of the Index Fingernails and twelve

positions of the skin of the population high-risk of developing stroke and the AIS

population. For these two populations, the green AF intensity of both the fingernails

and the skin of Dorsal Index Fingers of the smokers was significantly higher, compared

with the green AF intensity of the Index Fingernails and the skin of Dorsal Index

Fingers of the non-smokers (Figs. 3A and 3B). In contrast, no significant difference

was observed between the green AF intensity of the non-smokers and that of the

smokers at other examined positions of the skin (Supplemental Figs. 3A, 3B, 3C, 3D,

and 3E).

3) The green AF asymmetry of the Index Fingernails and the skin of Dorsal Index

Fingers of the smokers in both the population high-risk of developing stroke and

the AIS population was significantly higher than that of the non-smokers

We also determined the green AF asymmetry of the Index Fingernails and twelve

positions of the skin of the population high-risk of developing stroke and the AIS

population. For these two populations, the green AF asymmetry of both the fingernails

and the skin of Dorsal Index Fingers of the smokers was significantly higher, compared

with the green AF intensity of the Index Fingernails and the skin of Dorsal Index

Fingers of the non-smokers (Figs. 4A and 4B). In contrast, no significant difference

was observed between the green AF asymmetry of the non-smokers and that of the

6

smokers at other examined positions of the skin (Supplemental Figs. 4A, 4B, 4C, 4D, and 4E).

4) The green AF intensity of Index Fingernails and the skin of Dorsal Index

Fingers holds great potential for differentiating smokers and non-smokers in

natural populations, the population high-risk of developing stroke, and AIS

patients

ROC analyses using the green AF intensity of either right or left Index Fingernails showed that the AUC was 0.889 and 0.866, respectively, for differentiating the smokers and the non-smokers in the natural populations at age between 20 - 50 years of old (Fig. 5A). ROC analyses using the green AF intensity of either right or left Dorsal Index Fingers showed that the AUC was 0.819 and 0.774, respectively, for differentiating the smokers and the non-smokers in the natural populations at age between 20 - 50 years of old (Fig. 5B). ROC analyses using the green AF intensity of either right or left Index Fingernails showed that the AUC was 0.825 and 0.864, respectively, for differentiating the smokers and the non-smokers in the natural populations at age between 50 - 80 years of old (Fig. 5C). ROC analyses using the green AF intensity of either right or left Dorsal Index Fingers showed that the AUC was 0.648 and 0.742, respectively, for differentiating the smokers and the non-smokers in the natural populations at age between 50 - 80 years of old (Fig. 5D).

ROC analyses using the green AF intensity of either right or left Index Fingernails showed that the AUC was 0.796 and 0.836, respectively, for differentiating the smokers and the non-smokers in the population high-risk of developing stroke (Fig. 5E). ROC analyses using the green AF intensity of the skin of either right or left Dorsal Index Fingers showed that the AUC was 0.643 and 0.591, respectively, for differentiating the smokers and the non-smokers in the population high-risk of developing stroke (Fig. 5F). ROC analyses using the green AF intensity of either right or left Index Fingernails showed that the AUC was 0.874 and 0.821, respectively, for differentiating the smokers and the non-smokers in the AIS population (Fig. 5G). ROC analyses using the green AF intensity of the skin of either right or left Dorsal Index Fingers showed that the AUC was 0.609 and 0.694, respectively, for differentiating the smokers and the non-smokers in the AIS population (Fig. 5H).

Discussion

The major findings of our current study include: First, for the natural population at age between 20 - 50 years of old, both the green AF intensity and the AF asymmetry of the Index Fingernails and the skin of Dorsal Index Fingers of the smokers were remarkably higher than those of the non-smokers. Second, for the natural population, the population at risk of developing stroke and the AIS population at age between 50 - 80 years of old, both the green AF intensity and the AF asymmetry of the Index Fingernails and the skin of Dorsal Index Fingers of the smokers were also remarkably higher than those of the non-smokers. Third, ROC analyses using the green AF intensity of the Index Fingernails showed that the AUC values were 0.796 to 0.889 for differentiating the smokers and the non-smokers in the natural population, the population at risk of developing stroke and the AIS population. Collectively, our study has indicated that increased green AF intensity of the fingernails and certain locations of the skin is a novel biomarker for smoking.

Tobacco smoking is a major risk factor of multiple major diseases (1-3). It is of critical importance to search for the biomarkers of smoking for non-invasive and rapid monitoring of the pathological changes of smokers' body. The search is highly valuable for the health monitoring of a large population of smokers, which is a crucial part of health management of the general population. However, there has been no non-invasive method for monitoring the health state of smokers.

Our current study has provided evidence indicating that the green AF intensity of the Index Fingernails and the skin of certain locations such as Dorsal Index Fingers is a novel biomarker for smokers of natural populations, the population at risk of developing stroke, and AIS patients: ROC analyses using the green AF intensity of these positions showed highly promising AUC values for differentiating the smokers and the non-smokers in these populations. Based on this finding, approaches for non-invasive, economic and efficient monitoring the heathy state of the smokers may be established, which may generate tremendous health benefits. With future studies on the AF of the skin and fingernails of smokers and non-smokers as well as applications of AI technology, it is expected that increasingly precise evaluations on the smokers' health status could be established.

Our previous studies have suggested that the 'Pattern of AF' is a novel biomarker that can be used for non-invasive diagnosis of several major diseases, which forms a basis for establishing a new biomedical imaging technology (10-12). In order to improve this new technology, it is critical to further investigate the factors that can influence the AF in natural populations, populations high-risk of developing major diseases as well as patient populations. Our current study has indicated that smoking is an important factor that is associated with increased AF intensity and AF asymmetry

of the fingernails and certain positions of the skin in these populations. These findings

are highly valuable for understanding the mechanisms underlying the changes of the

AF in these populations, which is required for establishing the AF-based models for

disease diagnosis and evaluations of the health conditions of natural populations.

Our previous study has shown that both inflammation and oxidative stress can

dose-dependently increase the epidermal green AF (10). It is established that smoking

can cause increased inflammation and oxidative stress in human body (8, 9, 13, 14).

Therefore, we propose that the capacity of smoking to increase the AF in these

populations may result from the capacity of smoking to increase inflammation and

oxidative stress in the body of these populations.

It is noteworthy that in these populations, smoking was selectively associated

with increased AF intensity of the fingernails and the skin of Dorsal Index Fingers.

Since it takes a significant duration of time for the growth of nails, we propose that

increased AF of the nails is a biomarker for the levels of chronic exposures of the nails

to inflammation and oxidative stress in the body. Based on this proposal, it is

reasonable to observe the increased AF in the fingernails of the people in these

populations. Future studies are required to investigate the mechanisms underlying the

AF of the nails.

Based on the observations of our previous studies, we have proposed that the

positions with increased AF in the skin are associated with the 'channels' (or called

Meridian) in traditional Chinese medicine. According to the Meridian theory, the skin

of Dorsal Index Fingers is close to the Large Intestine Meridian. Therefore, our finding

that smoking increases the AF of the skin of Dorsal Index Fingers has implicated that

10

smoking may increase the inflammation and oxidative stress of the organs that are associated with the Large Intestine Meridian.

Our study has found that smoking can enhance not only the green AF intensity but also the AF asymmetry of the fingernails and certain positions of the skin in these populations. Our previous study has indicated that high levels of AF asymmetry are associated with major vascular diseases such as AIS (11). Therefore, we propose that smoking may have particularly strong capacity to increase vascular damage, which is consistent with previous reports (9).

Acknowledgment

The authors would like to acknowledge the financial support by two research grants from a Major Special Program Grant of Shanghai Municipality (Grant # 2017SHZDZX01) (to W.Y.).

References:

- Larsson, S. C., Burgess, S., and Michaelsson, K. (2019) Smoking and stroke: A mendelian randomization study. *Ann Neurol* 86, 468-471
- Markidan, J., Cole, J. W., Cronin, C. A., Merino, J. G., Phipps, M. S., Wozniak,
 M. A., and Kittner, S. J. (2018) Smoking and Risk of Ischemic Stroke in Young
 Men. Stroke 49, 1276-1278
- 3. Ambrose, J. A., and Barua, R. S. (2004) The pathophysiology of cigarette smoking and cardiovascular disease: an update. *J Am Coll Cardiol* **43**, 1731-1737
- 4. Sasco, A. J., Secretan, M. B., and Straif, K. (2004) Tobacco smoking and cancer: a brief review of recent epidemiological evidence. *Lung Cancer* **45 Suppl 2**, S3-9
- Moran, C., Munch, G., Forbes, J. M., Beare, R., Blizzard, L., Venn, A. J., Phan,
 T. G., Chen, J., and Srikanth, V. (2015) Type 2 diabetes, skin autofluorescence,
 and brain atrophy. *Diabetes* 64, 279-283
- 6. Pena, A., Strupler, M., Boulesteix, T., and Schanne-Klein, M. (2005)

 Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy. *Opt Express* **13**, 6268-6274
- 7. Bader, A. N., Pena, A. M., Johan van Voskuilen, C., Palero, J. A., Leroy, F., Colonna, A., and Gerritsen, H. C. (2011) Fast nonlinear spectral microscopy of in vivo human skin. *Biomed Opt Express* **2**, 365-373
- Dikalov, S., Itani, H., Richmond, B., Vergeade, A., Rahman, S. M. J., Boutaud,
 O., Blackwell, T., Massion, P. P., Harrison, D. G., and Dikalova, A. (2019)
 Tobacco smoking induces cardiovascular mitochondrial oxidative stress,

- promotes endothelial dysfunction, and enhances hypertension. *Am J Physiol Heart Circ Physiol* **316**, H639-H646
- Siasos, G., Tsigkou, V., Kokkou, E., Oikonomou, E., Vavuranakis, M., Vlachopoulos, C., Verveniotis, A., Limperi, M., Genimata, V., Papavassiliou, A. G., Stefanadis, C., and Tousoulis, D. (2014) Smoking and atherosclerosis: mechanisms of disease and new therapeutic approaches. *Curr Med Chem* 21, 3936-3948
- 10. Zhang, M, Li, Y, Maharjan D. T., He, H., Tao, Y., Wu, D., Ying, W. (2019) Keratin-based epidermal green autofluorescence is a common biomarker of organ injury. *bioRxiv* **564112**
- 11. Wu, D, Zhang, M., Tao, Y., Li, Y., Zhang, S., Chen, X., Ying, W. (2018)

 Distinct pattern of autofluorescence of the skin and fingernails of acute ischemic stroke patients: A novel diagnostic biomarker for acute ischemic stroke. *bioRxiv*,

 310904
- 12. Zhang, M., Tao, Y., Chang, Q., Li, Y., Chu, T., Ying, W. (2020) Selectively increased autofluorescence at certain locations of skin may become a novel diagnostic biomarker for lung cancer. *bioRxiv* **315440**
- McEvoy, J. W., Nasir, K., DeFilippis, A. P., Lima, J. A., Bluemke, D. A., Hundley, W. G., Barr, R. G., Budoff, M. J., Szklo, M., Navas-Acien, A., Polak, J. F., Blumenthal, R. S., Post, W. S., and Blaha, M. J. (2015) Relationship of cigarette smoking with inflammation and subclinical vascular disease: the Multi-Ethnic Study of Atherosclerosis. *Arterioscler Thromb Vasc Biol* 35, 1002-1010
- 14. Rom, O., Avezov, K., Aizenbud, D., and Reznick, A. Z. (2013) Cigarette smoking and inflammation revisited. *Respir Physiol Neurobiol* **187**, 5-10

Figure Legends:

Fig. 1. The green AF intensity of the Index Fingernails and the skin of Dorsal Index

Fingers of the smokers in natural populations was significantly higher than that

of the non-smokers. (A) For both the age group between 20 - 50 years of old and the

age group between 50 - 80 years of old, the AF intensity of the smokers in natural

populations in their right and left Index Fingernails was significantly higher than that

of the non-smokers. (B) For both the age group between 20 - 50 years of old and the

age group between 50 - 80 years of old, the AF intensity of the smokers in natural

populations in their right and left Dorsal Index Fingers was significantly higher than

that of the non-smokers. The number of the non-smokers and the smokers in the age

group between 20 - 50 years of old was 165-170 and 23, respectively. The number of

the non-smokers and the smokers in the age group between 50 - 80 years of old was

242-246 and 36-38, respectively. ***, p < 0.001; #, p < 0.05 (Mann-Whitney test); ###,

p < 0.001 (Mann-Whitney test).

Fig. 2. The green AF asymmetry of the Index Fingernails and the skin of Dorsal

Index Fingers of the smokers in natural populations was significantly higher than

that of the non-smokers. (A) For both the age group between 20 - 50 years of old and

the age group between 50 - 80 years of old, the AF asymmetry of the smokers in natural

populations in their right and left Index Fingernails was significantly higher than that

of the non-smokers. (B) For both the age group between 20 - 50 years of old and the

age group between 50 - 80 years of old, the AF asymmetry of the smokers in natural

populations in their right and left Dorsal Index Fingers was significantly higher than

that of the non-smokers. The number of the non-smokers and the smokers in the age

15

group between 20 - 50 years of old was 165-170 and 23, respectively. The number of

the non-smokers and the smokers in the age group between 50 - 80 years of old was

243-246 and 36-38, respectively. ***, p < 0.001; #, p < 0.05 (Mann-Whitney test).

Fig. 3. The green AF intensity of the Index Fingernails and the skin of Dorsal Index

Fingers of the smokers in both the population at risk of developing stroke and the

AIS population was significantly higher than that of the non-smokers. (A) In both

right and left Index Fingernails, the AF intensity of the smokers in both the population

at risk of developing stroke as well as the AIS population was significantly higher than

that of the non-smokers. (B) In the skin of both right and left Dorsal Index Fingers, the

AF intensity of the smokers in the population at risk of developing stroke as well as the

AIS population was significantly higher than that of the non-smokers. The number of

the healthy non-smokers, the non-smokers of the population high-risk of developing

stroke, the smokers of the population high-risk of developing stroke, the non-smokers

of the AIS population and the smokers of the AIS population was 49-50,76-77, 32-33

39-40 and 39-40, respectively. *, p < 0.05; **, p < 0.01; ***, p < 0.001; #, p < 0.05

(Mann-Whitney test); ##, p < 0.01 (Mann-Whitney test).

Fig. 4. The green AF asymmetry of the Index Fingernails and the skin of Dorsal

Index Fingers of the smokers in both the population high-risk of developing stroke

and the AIS population was significantly higher than that of the non-smokers. (A)

In both right and left Index Fingernails, the AF asymmetry of the smokers in both the

population at risk of developing stroke as well as the AIS population was significantly

higher than that of the non-smokers. (B) In the skin of both right and left Dorsal Index

Fingers, the AF asymmetry of the smokers in the population at risk of developing stroke as well as the AIS population was significantly higher than that of the non-smokers. The number of the healthy non-smokers, the non-smokers of the population high-risk of developing stroke, the smokers of the population high-risk of developing stroke, the non-smokers of the AIS population and the smokers of the AIS population was 49-50,76-77, 32-33 39-40 and 39-40, respectively. *, p < 0.05; ***, p < 0.01; ***, p < 0.001; ***, p < 0.0

Fig. 5. The green AF intensity of Index Fingernails and the skin of Dorsal Index Fingers holds great potential for differentiating the smokers and the non-smokers in natural populations, the population at risk of developing stroke, and AIS patients. (A) ROC analyses using the green AF intensity of either right or left Index Fingernails of the smokers and the non-smokers in the natural population at age between 20 - 50 years of old. (B) ROC analyses using the green AF intensity of either right or left Dorsal Index Fingers of the smokers and the non-smokers in the natural population at age between 20 - 50 years of old. (C) ROC analyses using the green AF intensity of either right or left Index Fingernails of the smokers and the non-smokers in the natural population at age between 50 - 80 years of old. (D) ROC analyses using the green AF intensity of either right or left Dorsal Index Fingers of the smokers and the non-smokers in the natural population at age between 50 - 80 years of old. (E) ROC analyses using the green AF intensity of either right or left Index Fingernails of the smokers and the non-smokers in the population at risk of developing AIS at age between 50 - 80 years of old. (F) ROC analyses using the green AF intensity of either right or left Dorsal Index Fingers of the smokers and the non-smokers in the population

at risk of developing AIS at age between 50 - 80 years of old. (G) ROC analyses using

the green AF intensity of either right or left Index Fingernails of the smokers and the

non-smokers in the AIS population at age between 50 - 80 years of old. (H) ROC

analyses using the green AF intensity of either right or left Dorsal Index Fingers of the

smokers and the non-smokers in the AIS population at age between 50 - 80 years of old.

The number of the non-smokers and the smokers in the age group between 20 - 50 years

of old was 165-170 and 23, respectively. The number of the non-smokers and the

smokers in the age group between 50 - 80 years of old was 242-246 and 36-38,

respectively. The number of the non-smokers of the population high-risk of developing

stroke, the smokers of the population high-risk of developing stroke, the non-smokers

of the AIS population and the smokers of the AIS population was 76-77, 32-33 39-40

and 39-40, respectively.

Legends of Supplemental Figures:

Supplemental Fig. 1. The green AF intensity of the skin at other examined

positions of the smokers in natural populations was not significantly different

from that of the non-smokers. The number of the non-smokers and the smokers in the

age group between 20 - 50 years of old was 165-170 and 23, respectively. The number

of the non-smokers and the smokers in the age group between 50 - 80 years of old was

242-246 and 36-38, respectively. ***, p < 0.001.

Supplemental Fig. 2. The AF asymmetry of the skin at other examined positions

of the smokers in natural populations was not significantly different from that of

the non-smokers. The number of the non-smokers and the smokers in the age group

between 20 - 50 years of old was 165-170 and 23, respectively. The number of the non-18

smokers and the smokers in the age group between 50 - 80 years of old was 243-246

and 36-38, respectively. ***, p < 0.001.

Supplemental Fig. 3. The green AF intensity of the skin of at other examined

positions of the smokers in the population at risk of developing AIS and the AIS

population was not significantly different from that of the non-smokers. The

number of the healthy non-smokers, the non-smokers of the population high-risk of

developing stroke, the smokers of the population high-risk of developing stroke, the

non-smokers of the AIS population and the smokers of the AIS population was 49-

50,76-77,32-3339-40 and 39-40, respectively. *, p < 0.05; **, p < 0.01; ***, p < 0.001;

#, p < 0.05 (Mann-Whitney test); ##, p < 0.01 (Mann-Whitney test); ###, p < 0.001

(Mann-Whitney test).

Supplemental Fig. 4. The AF asymmetry of the skin at other examined positions

of the smokers in the population at risk of developing AIS and the AIS population

was not significantly different from that of the non-smokers. The number of the

healthy non-smokers, the non-smokers of the population high-risk of developing stroke,

the smokers of the population high-risk of developing stroke, the non-smokers of the

AIS population and the smokers of the AIS population was 49-50,76-77, 32-33 39-40

and 39-40, respectively. *, p < 0.05; ***, p < 0.001; #, p < 0.05 (Mann-Whitney test);

19

##, p < 0.01 (Mann-Whitney test); ###, p < 0.001 (Mann-Whitney test).

Dorsal Index Finger

Dorsal Index Finger

