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Abstract: Inertial Measurement Units (IMUs) within an everyday consumer smartwatch offer a 

convenient and low-cost method to monitor the natural behaviour of hospital patients. However, 

their accuracy at quantifying limb motion, and clinical acceptability, have not yet been 

demonstrated. To this end we conducted a two-stage study: First, we compared the inertial 

accuracy of wrist-worn IMUs, both research-grade (Xsens MTw Awinda, and Axivity AX3) and 

consumer-grade (Apple Watch Series 3 and 5), relative to gold-standard optical motion tracking 

(OptiTrack). Given the moderate to strong performance of the consumer-grade sensors we then 

evaluated this sensor and surveyed the experiences and attitudes of hospital patients (N=44) and 

staff (N=15) following a clinical test in which patients wore smartwatches for 1.5– 24 hours in the 

second study. Results indicate that for acceleration, Xsens is more accurate than the Apple 

smartwatches and Axivity AX3 (RMSE 0.17±0.01 g; R2 0.88±0.01; RMSE 0.22±0.01 g; R2 0.64±0.01; 

RMSE 0.42±0.01 g; R2 0.43±0.01, respectively). However, for angular velocity, the smartwatches are 

marginally more accurate than Xsens (RMSE 1.28±0.01 rad/s; R2 0.85±0.00; RMSE 1.37±0.01 rad/s; R2 

0.82± SE 0.01, respectively). Surveys indicated that in-patients and healthcare professionals strongly 

agreed that wearable motion sensors are easy to use, comfortable, unobtrusive, suitable for long 

term use, and do not cause anxiety or limit daily activities. Our results suggest that smartwatches 

achieved moderate to strong levels of accuracy compared to a gold-standard reference and are 

likely to be accepted as a pervasive measure of motion/behaviour within hospitals.  

Keywords: healthcare; clinical monitoring; hospital; stroke; human activity recognition; natural 

movements; inertial movement unit; optical motion tracking 
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1. Introduction 

Wearable movement sensors have the potential to transform how we measure clinical status 

and wellbeing in everyday healthcare. Tracking patient movements can help characterise, quantify, 

and monitor physical disability; highlight deteriorations; and signal treatment response [1]. Remote 

patient assessment may also allow for more cost-effective monitoring and offer advantages in 

contexts where direct contact is restricted e.g. due to Covid-19 associated isolation. Currently, 

behavioural assessments in clinical settings are characterized by intermittent, time-consuming 

human observations, using inconsistent subjective descriptions [1]. With an ageing population and 

increasing health system costs, there is a growing interest in seeking low-cost, automated methods 

for observing and quantifying patient behaviours [2-7]. Presently, the two leading wearable sensors 

offered for automated motion tracking are 1) camera-based optical tracking systems and 2) 

body-worn Inertial Measurement Units (IMUs), consisting of a triaxial accelerometer, a triaxial 

gyroscope, and, frequently, a magnetometer, that record linear accelerations and angular velocities 

in a three-dimensional (3D) Cartesian space. 

 

Body-worn IMUs hold several advantages over optical systems for behaviour tracking 'in the 

wild' (i.e. free-living conditions). While optical systems are considered the gold-standard for 

high-accuracy movement tracking in controlled laboratory environments, the restriction on cameras' 

field of views, obscuration of reflective markers, and lighting confounds [4] render these systems 

impractical for clinical use. Furthermore, optical equipment is expensive, cumbersome, complex to 

calibrate and operate, and has limited usage duration [4]. In contrast, IMU sensors offer a low cost, 

highly portable, robust, and inconspicuous alternatives that are better suited to measure daily life 

activities in unconstrained environments such as hospitals and care homes [8-10].  A diverse range 

of wearable IMUs is commercially available, which can be broadly grouped into consumer-grade 

products such as wrist-worn fitness trackers or smartwatches and research-grade IMU sensors for 

research or clinical purposes [11]. Consequently, widely adopted commercial products with 

networking functionalities are increasingly being applied for motion tracking applications with 

advantages of being ubiquitous, relatively low-cost, robust, easily cleanable, and simple to 

self-apply and operate [11-13]. Both fitness bands and smartwatches fall within this wearable 

category. We focus here on smartwatches as they are more easily programmable and facilitate 

distribution and update of custom software through App stores, thus making them attractive as a 

platform for wearable research and development. Smartwatches are already increasingly employed 

for health monitoring purposes, and so there is a growing need to assess their measurement 

precision against gold-standard references.  

 

Presently, the use of consumer smartwatches in health applications is limited by the unknown 

data quality of their IMU data and their evaluation in a research or clinical setting. Previous work 

[13-20] focused on validating built-in heart rate, energy expenditure, and step count measurements 

relative against ground-truth measurements of electrocardiography, indirect calorimetry, and 

observed step counts. For instance, Wallen and colleagues [14] found that the smartwatches, Apple 

Watch (Apple Inc., Cupertino, CA), Fitbit Charge (Fitbit Inc., San Francisco, CA), Samsung Gear S 

(Samsung, Seoul, South Korea) and Mio Alpha (MioLabs Inc., Santa Clara, CA), underestimated 

outcome measurements such as step count in terms of average error range between 4% to 7%  

(Apple Watch error = -4.82%, Fitbit Charge HR error = -5.56%, and Samsung Gear S error = -7.31% 

(relative errors computed from the raw data provided in the paper).  

 

In evaluating accuracy and precision of smartwatch IMUs, however, both absolute errors (i.e. 

how much is the sensor differ from the ground-truth value) and correlations (i.e. how well does the 

sensor track the dynamic changes of ground-truth values) need to be measured. Apple Watch (r = 

0.70), Fitbit Charge HR (r = 0.67) and Samsung Gear S (r = 0.88) were shown to correlate reasonably 

well with ground-truth step count [14]. Note, out of the 3 smartwatches, the one with the highest 

average error also shows the best performance in tracking step count dynamically, so signal quality 
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rankings for the same watch differs across accuracy and precision measures. Moreover, across 

sensing modalities that were not related to kinematics, the same set of watches performed different 

in how well they captured heart rate and energy expenditure, and no single smartwatch was the best 

in overall assessed modalities.  

 

Validating smartwatch derived measures for clinical or scientific use is complicated as most 

measured outcomes recorded from consumer wearables e.g. built-in energy expenditure and step 

counts are derived from undisclosed, proprietary algorithms with unknown modelling assumptions 

that have not gone through medical certification processes. Assuming that different generations of 

the same smartwatch models are not significantly different from each other across studies, it 

suggests that experimental protocols play a considerable impact in assessing measurement quality. 

Therefore, the assessment and direct comparison of devices require a defined and reproducible 

description of the assessment process. Another study [19], compared fitness armbands and 

smartwatches to the gold-standard measurements, found that even average step count errors varied 

widely between wearable devices, such as Nike+ FuelBand (Nike Inc., Beaverton, Oregan) (error = 

18.0%), Jawbone UP (Jawbone, San Francisco, CA) (error = 1.0%), Fitbit Flex (Fitbit Inc., San 

Francisco, CA) (error = 5.7%), Fitbit Zip (Fitbit Inc., San Francisco, CA) (error = 0.3%), Yamax 

Digiwalker SW-200 (Yamasa Tokei Keiki Co. Ltd, Tokyo, Japan) (error = 1.2%), Misfit Shine (Misfit 

Wearables Inc., San Francisco, CA) (error = 0.2%), and Withings Pulse (Withings, 

Issy-les-Moulineaux, France) (error = 0.5%), showing that even wearable sensors developed 

specifically for tracking fitness activities such as walking and running activity made some errors, 

although it is unclear if a more generous counting of steps may be of fitness or commercial interest. 

 

The lingering uncertainty in the quality and usability of the underlying sensor signal quality 

motivated our work here, by first evaluating the raw IMU sensor data quality of smartwatches, and 

then second, trial the feasibility of large-scale deployment in a clinical care setting through the 

patient (PPI) and healthcare worker involvement. Clinical and care wearable applications and 

analysis rely upon quantified, regulatory acceptable measures of accuracy of the fundamental signal 

(linear acceleration for accelerometers and angular velocity for gyroscopes) that must be compared 

to gold standards derived from marker-based optical motion tracking. The quality in these 

fundamentals signal allow us to assess how well they can in principle track measures, such as body 

kinematics, but also more indirectly inferred measures, often clinically outcome measures and 

primary endpoints of clinical trials (such as step counts). To date, there has been no independent 

direct comparison between common consumer smartwatches and research-grade IMUs inertial 

accuracy relative to ground truth optical motion tracking. This is in part due to consumer 

smartwatch closed-system barriers to raw IMU data extraction, which we overcome through 

developing customised software. We also developed an easily reproducible measurement protocol 

to directly assess and compare smartwatches in naturalistic movement tasks, performed by the same 

human on all compared devices at the same time. Additionally, a separate issue for the clinical 

feasibility of smartwatches in care is the feasibility of their deployment is their practicality and 

acceptability in everyday use by both patients and healthcare workers. Research to date on patient 

and healthcare staff attitudes towards the continuous wearing of IMU sensors is scarce. While some 

studies report user-perceptions (e.g. user-friendliness and satisfaction) of smartwatch and fitness 

devices [13,21-25], these often focus on community settings, chronic disease, young/middle-age 

subjects, and healthy participants and as such are not as relevant for typical in-patient populations. 

 

We focussed among the consumer-grade smartwatches on a single smartwatch make, so we 

could evaluate the technology within a large, parallel deployment of units in the care setting while 

remaining within a reasonable budget. We used market share as a guide for deciding which 

smartwatch to evaluate: We chose the Apple Watch (47.9% market share), with the second most 

popular device, Samsung Gear, holding only 13.4% of the global market share (in terms of shipment 

units) in the first quarter of 2020 [26]. 
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2. Materials and Methods 

 

2.1. Sensor Signal Quality Study 

2.1.1. Population 

We recruited a sample of healthy volunteers (n=12) from Imperial College London to take part 

in a sensor accuracy assessment study. All participants agreed to take part with no withdrawals. All 

participants gave informed consent to participate in the study, and the study was ethically approved 

by Imperial College London University Science, Engineering and Technology Research Ethics 

Committee (ICREC). 

Figure 1. (a) depicts the participant wearing the sensor stack attached to the right wrist with the adjustable 

wrist strap. From top to bottom of the sensor stack, we mounted Apple Watches Series 5, Axivity AX3, Xsens 

MTw unit, OptiTrack retro-reflective marker pad with 4 retro-reflector unit (grey spheres), and Apple Watch 

Series 3 to one another vertically, aligning the centre of gravity, using Velcro sticky pads. (b) depicts 10-seconds 

sensors reading for each of the motion sensors. (c) shows 10-seconds sensors reading for each of the recording 

dimensions. 

 

2.1.2. Data Collection 

To record and extract inertial data from the Apple Watches (Series 3 and 5), we developed a 

piece of software, a WatchOS App, to collect real-time triaxial acceleration (±8 g for Series 3 and 

±16 g for Series 5) and triaxial angular velocity data (±1000 degree/s for Series 3 and ±2000 degree/s 

for Series 5) at 100Hz. The watch stored data to an onboard memory and offloaded the data to a 

custom-configured base station wireless access point and laptop. The Xsens MTw Awinda unit 

recorded packet-stamped triaxial acceleration (±16 g), triaxial angular velocity (±2000 degree/s), and 

(a) 

(b) (c) 
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triaxial magnetic fields (±1.9 Gauss) data at 100Hz. The Xsens sensors wirelessly transmitted data in 

real-time to a base station and laptop which recorded the data within the MT Manager software. The 

Axivity AX3 unit recorded triaxial acceleration data at 100Hz with a configurable range of ±2/4/8/16 

g (±16 g was selected for this study). The Axivity sensors stored data to an onboard memory and 

offloaded the data upon attachment to a laptop via the installed AX3 OMGUI software. For the 

ground-truth optical motion tracking, we calibrated 4 ceiling-mounted OptiTrack cameras according 

to the manufacturer's specifications and created a rigid body model using four reflective markers 

attached to the single marker pad (see photos in Fig. 1.a). The system recorded absolute x-axis 

position and triaxial rotation of the marker within a 2 cubic meters area at 240Hz and wirelessly 

recorded data in real-time within a laptop installed Motiv Software.  

Figure 2. Depicts the power spectral density for the linear acceleration signal for each aggregated across all 

validation study participants. Shaded areas indicate 1 SD from the mean power, each row represents data from 

a different device. All evaluated device data and optical motion tracking were collected simultaneously. 

 

We asked each participant to perform a predefined sequence of upper body movements in a 

6-minute controlled exercise while data were simultaneously recorded from the sensor and marker 

stack illustrated in Figure 1. We chose the movement tasks outlined in Table A.1 because they 

spanned the full range of natural joint angles at shoulder and elbow during a complex 2-joint 

movement typical for natural activities e.g. reaching for, passing, and picking up an object. Each 
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participant trial consisted of a sequence of 4 distinct movements in time with a 120 BPM metronome. 

We constrained movement tasks within the OptiTrack cameras' field of views. 

 

Figure 3. Depicts in blue the action component order for the participant performing the 4 movement tasks 

during the sensor validation protocol. Illustrates in yellow the OptiTrack reflective marker movement path 

associated with each movement task. From top to bottom, the 4 movement tasks are: (a) Horizontal Arm 

Movement, (b) Vertical Arm Movement, (c) Rotational Arm Movement, and (d) Composite Cross-Body 

Movement. 

 

2.1.3. Data Processing  

Following the completion of the movement protocol, we collected and analysed sensor inertial 

data in MATLAB® (MathWorks, Inc., Natick, MA, USA). All sensor data was linearly resampled to a 

constant sampling rate of 100Hz. We manually inspected the OptiTrack data within Motiv, corrected 

mislabelled markers, and reconstructed the rigid body data using the newly corrected makers. We 

derived OptiTrack triaxial accelerations and angular velocities from the positional and rotational 

data. We unrolled Xsens packet stamps and replaced missing packet rows with a Not-a-Number 

(NaN) row vector and calculated Xsens timestamps using the unrolled packet stamps. 

 

A 0.25 to 2.5 Hz 6th-order Butterworth bandpass filter decontaminates signals data from 

integration drifts and differentiation noise. We determined the cut-off frequencies by plotting the 

power spectrums of acceleration (a) and position (b) signals of the sensors, which demonstrated that 

acceleration concentrate around 2 Hz and position around 0.5 and 1 Hz (Figure 2). This frequency is 

consistent with our movement tasks which were restricted to a lower bound of 0.5 Hz or an upper 

bound of 2 Hz. Additionally, we used Hampel filters to identify and interpolate outlying spikes in 

the OptiTrack data caused by differentiating missing frames and incorrectly inverted rigid body 

orientation resulting from marker obscuration.  

 
We visually segmented sensor recordings using an identifiable movement event (five 

handclaps) at the start and end of each participant recording. To align signals spatially, we 

converted acceleration data to a unit of earth gravity (g), using a constant of 9.80665 m/s2, and 

angular velocity data to a unit of radians per second (rad/s). We used cross-correlation to calculate 

any lag between signals in each unique device pair to align signals temporally at the common 

starting point. To verify alignment, we applied cross-correlation to each signal pair. We then 

converted aligned signals were into a 1D vector using a Euclidean norm function and removed NaN 

rows from each sensor vector and its corresponding sensor pair. 

 

2.1.4. Analysis 

We compared vectors for each inertial sensor against every other inertial sensor and OptiTrack 

using Root-Mean-Square-Error (RMSE) and R-Squared (R2) metrics for acceleration and angular 

velocity. Axivity AX3 does not contain a gyroscope and so we omitted angular velocity comparisons 

for Axivity. We reported the results between each sensor pair in the format of Mean of Metrics across 

(a) (b) (c) (d) 
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all trials ± Standard Error of Metrics across all trials. To assess whether the stacking of the sensors 

and markers introduced any recording error due to varied distance between the wrist and the 

sensor, we plotted the difference between acceleration and angular velocity from an Apple Watch 

(Series 3) stacked at the bottom and an Apple Watch (Series 5) stacked at the top of the sensor and 

marker stack.  We interpreted the strength of the R2  between sensors using the following 

descriptive categories: weak (R2 = <0.5), moderate (R2 =0.5–0.7) and strong (R2≥0.7) agreement[14]. 
 

2.2. Sensor Acceptability Study 

2.2.1. Population 

We recruited a consecutive convenience sample of 44 in-patients and 15 healthcare 

professionals to complete patient and healthcare professional sensor acceptability questionnaires, 

respectively. We recruited patients who were enrolled in a study exploring relationships between 

free-living wearable motion sensor data and observed behaviour and clinical scores (data to be 

published separately). Inclusion criteria were: 1) admission to Stroke or Neurology Wards at 

Charing Cross NHS Hospital, London; 2) > 18 years old; 3) absence of significant cognitive 

impairment; 4) Glasgow Coma Score >13; and 5) ability to understand English; 6) and capacity to 

consent. Exclusion criteria were: 1) inclusion within another interfering trial; and 2) contagious skin 

infections or other rash interfering with sensor placement. The study screened 71 potentially eligible 

patients, of which the following were subsequent reasons for further exclusion: swollen ankles (n=2); 

same-day discharge (n=5); and patient refusal to take part because they were not interested (n=7), or 

felt fatigued or unwell (n=8). 49 patients completed the study protocol, of which 5 were excluded 

due to: a clinical need to remove watches early to undertake magnetic resonance imaging (MRI) 

(n=2); and hospital discharge or transfer (n=3). All participants gave informed consent to participate 

in the study and the study was ethically approved by the UK's Health Research Authority IRAS 

Project ID: 78462. 

 

2.2.2. Data Collection  

All healthcare professional and patient interviews took place in the ward by the patient 

bedside. The clinical researchers explained the purpose of the study both verbally and via written 

information sheets. Questionnaires lasted 10-minutes and two clinical researchers recorded the 

participants’ answers. 

 

All in-patients wore 4 consumer smartwatches (Apple Watch Series 3) on their wrists and 

ankles (i.e. 1 per limb) while they performed their usual everyday activities on the hospital ward. We 

chose this arrangement to capture asymmetrical patterns of, upper, and lower limb weakness (that 

are typical for stroke); and to support recognition of both different locomotion (e.g. walking, 

standing and sitting) and different daily activities entailing manual interactions (e.g. drinking and 

eating). To assess sensor wear-time acceptability over day-long continuous recording periods, we 

asked all participants to wear the sensors for a full working day and a random subset of the total 

(n=11) to continue to wear the sensors overnight. Subject wear times varied (1.5-24 hours), as 

watches were removed for patient showers, medical scans, and upon patient hospital discharge or 

transfers. At the end of the recording protocol, we asked participants to complete a questionnaire to 

collate their views regarding wearable technology. We derived and adapted [24,27,28] and agreed 

upon the final study questions via discussions between the clinical researchers, a Consultant 

Neurologist, a Stroke Physician and two patients. Watches were attached using a soft, breathable 

nylon replacement sport strap with adjustable fastener. During the protocol, we locked watch 

user-functionalities, blanked out and covered the watch screen with a plastic sleeve preventing user 

interaction. After sensor recordings, in-patients answered 10 close-ended questions outlined in Table 

1.  

 

We provided healthcare professionals with the intended functionality of the sensors for 

monitoring patient movement in the hospital and showed healthcare professionals how to operate 
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the devices.  Healthcare professionals then answered 5 closed-ended questions outlined in Table 1.  

Thereafter, we asked both in-patients and healthcare professionals open-ended questions described 

in Table 1. 

 

Table 1. Healthcare Professional and in-patient Questionnaire 

In-patient Closed Questions 

• icQ1. The device was easy to put on and take off? 

• icQ2. I would feel comfortable wearing the device even if it is visible to others? 

• icQ3.   
I feel I could do most of my normal activities (except those involving water) 

wearing the device? 

• icQ4. The device did not interfere with washing or going to the toilet? 

• icQ5. I would find it easy to learn to use the device? 

• icQ6. I did not experience any itchiness or skin irritations using the device? 

• icQ7. I did not experience any discomfort wearing the device? 

• icQ8. I did not feel anxious wearing the device? 

• icQ9. I would be willing to wear the device continuously for long term use? 

• icQ10. I did not find the appearance or design of the sensors obtrusive? 

Healthcare Professional Closed Questions 

• hcQ1. The device was easy to put on and take off? 

• hcQ2. I would find it easy to learn to use the device? 

• hcQ3. 
Do you think that the increasing use of wearable tracking technology and 

Artificial Intelligence in healthcare is an opportunity? 

• hcQ4. 
Do you think that the increasing use of wearable tracking technology in 

Artificial Intelligence in healthcare is a danger? 

• hcQ5. 

If there were strong clinical evidence that the intervention would be equivalent 

or better than current neurological observations alone in a Neurology and 

Stroke setting, would you agree to use the new intervention in your own 

management of your patients? 

In-patient Open Questions 

• ioQ1. What do you like about the device? 

• ioQ2. What sort of characteristics and functions do you expect from the device? 

• ioQ3. Is there anything you don't like about the device? 

Healthcare Professional Open Questions 

• hoQ1. What do you like about the device? 

• hoQ2. What sort of characteristics and functions do you expect from the device? 

• hoQ3. Is there anything you don't like about the device? 

• hoQ4. 
What do you think are the benefits and risks you perceive when using these 

new technologies? 

Q =question, ic =in-patient closed; hc =healthcare professional closed, io =in-patient open; ho =healthcare 

professional open 
 

Rating scales and descriptive category groupings were as follows:  
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• icQ1-10 used a 1 to 7 rating scale: 1 to 2 (strongly disagree); 3 to 4 (somewhat agree); and 5 to 

7 (strongly agree).  

• hcQ1-2 used a 1 to 7 rating scale: 1 to 2 (strongly disagree); 3 to 4 (somewhat agree); and 5 to 

7 (strongly agree).  

• hcQ3 used a 1 to 10 rating scale: 0 to 5 (no opportunity); and 6 to 10 (great opportunity).  

• hcQ4 used a 1 to 10 rating scale: 0 to 5 (no danger/safe); and 6 to 10 (danger).  

• hcQ5 was collected with a -3 to +3 rating scale: -3 (would not use the intervention); -2 to 0 

(would only use the intervention if controlled by a human caregiver); and 1 to 3 (would use 

the intervention and it could replace some interventions currently implemented by human 

caregivers).   

Figure 4. Triangle diagrams of the sensor validation study aggregated by pairwise signal measures (R2 for 

dynamic tracking of signals and RMSE metrics for offsets) between the selected motion sensors (Apple Watch 

Series 3 and 5, Xsens, Axivity, and Optitrack). Data is organised in (a) linear accelerometer R2, (b) linear 

accelerometer RMSE, (c) angular velocity R2, and (d) angular velocity RMSE. Displayed R2 and RMSE values in 

the figure are rounded. See main text for details. 

 

(a) (b) 

(c) (d) 
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2.2.3. Analysis  

We aggregated in-patient and healthcare professional responses for close-ended questions into 

the broader rating scale descriptive categories (e.g. strongly disagree, somewhat agree, strongly 

agree for the 1-7 rating scale) and calculated 1) the percentage of responses for each descriptive 

category  

 

for in-patients; and 2 the frequency of responses for each descriptive category for healthcare 

professionals separately. We assessed all open-ended responses by a thematic analysis which aimed 
to describe concepts extracted from the participant responses. Literal comments were 1) recorded by 

the two clinical researchers 2) compared and grouped based on similarity and creation and 3) 

subsequently merged into core agreed themes via consensus between the researchers. 

Figure 5. Depicts the participant’s behaviour while wearing the 4 wrist and ankle-worn sensors on the hospital 

ward and the associated sensors' triaxial acceleration readings. (a) depicts the ground-truth video recording of 

the subject. (b) describes the associated behaviour labels. (c) shows the associated 3D linear acceleration signals 

of the 4 sensors. 

(a) 

(b) 

Sit Walk Stand 

Left Hand 

Right Hand 

Left Leg 

Right Leg 

(c) 
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3. Results 

Both the sensor signal quality comparison and the sensor acceptability study we explore here 

are based on the Apple Watch (Series 3 and 5), which we chose based on its market share as in 

2019/2020 (47.9% market share) as the single leading consumer device, as a second most used device 

in the market had only 13.4% market share [26]. We compared the inertial accuracy of the consumer 

smartwatch IMUs (from Apple Watch Series 3 and 5) against two well-known research- and 

clinical-grade IMU sensors: 1. Xsens MTw Awinda (Xsens Technology B.V., Enschede, The 

Netherlands) with many published applications and validation studies in biomechanics (e.g. [29-35]) 

and 2. Axivity AX3 (Axivity Ltd, Newcastle Upon Tyne, UK)[36,37] with many published 

biomedical research applications including its deployment in the UK Biobank cohort with over 3,500 

devices used by 100,000 participants (e.g.[38]). 

 

We determined how all three IMUs compared to a gold-standard for human movement 

assessment in the form of optical motion tracking (OptiTrack, Natural Point Inc., Corvallis, OR) 

[39-41].  The findings from the first study led to the selection of the smartwatch sensors for the 

second study in which we conducted a survey, assessing the experiences and attitudes of 44 

in-patients and 15 healthcare professionals after a trial of continuous smartwatch use in hospital 

patients. Together these questions establish the scientific and practical validity of wearable inertial 

sensors for movement tracking in clinical applications, particularly within hospitals. 

 

3.1. Sensor Signal Quality Study Results 

We compared the inertial accuracy of both research-grade and consumer-grade IMUs relative 

to gold-standard optical motion tracking. The RMSEs for acceleration against OptiTrack ranged 

from 0.15 to 0.42 m/s2 and RMSEs for angular velocity ranged from 1.28 to 1.40 rad/s. When 

comparing to OptiTrack acceleration, R2 agreement was stronger for Xsens than for Axivity, the 

latter of which had weak R2 agreement. Apple Watches only demonstrated moderate R2 agreement 

with OptiTrack acceleration. When comparing to OptiTrack angular velocity, R2 agreement was 

similarly strong for Xsens and Apple Watch (Series 3 and 5). When comparing to Xsens (research 

inertial sensor reference) acceleration, Apple watch demonstrated stronger R2 agreement than 

Axivity. When comparing to Xsens (research inertial sensor reference) angular velocity, Apple 

watch (Series 3 and 5) had strong R2 agreement. Apple Watch Series 3 and Apple Watch Series 5 

had a strong agreement with each other for acceleration and angular velocity: The actual R2 and 

RMSE values for acceleration comparisons (Figure 4a & b) and RMSE value for angular velocity 

comparisons (Figure 4c & d) between Apple Watch Series 3 and Series 5 (which in the graphic are 

rounded to two digits) are 0.9997±0.00001, 0.0049±0.00016, and 0.9999±0.00000 respectively, these 

are not visible in the figures due to rounding. The actual RMSE value for angular velocity 

comparisons between Apple Watch Series 3 and Xsens MTw Awinda is 0.9955±0.00030. 

 

3.2. Sensor Acceptability Study Results 

A total of 44 patients (50% female; average age: 64 years; interquartile age range: 24-92 years) 

completed the acceptability questionnaire. A further 15 healthcare professionals (66% female; 

doctors =5, nurses = 4, therapists = 3, and healthcare assistants = 3) working directly with these 

patients were also recruited. Further details of in-patient and healthcare characteristics are outlined 

in Table A3 and Table A4 respectively. 

 

Table 2. Closed-ended Question Results for In-patients and Healthcare Professionals 

In-patient Questionnaires Strongly Disagree Somewhat Agree 
Strongly 

Agree 

• icQ1. 2 2 39 

• icQ2. 0 5 38 

• icQ3.   0 2 41 
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• icQ4. 4 2 38 

• icQ5. 2 4 37 

• icQ6. 1 1 42 

• icQ7. 2 2 40 

• icQ8. 2 0 42 

• icQ9. 3 5 36 

• icQ10. 1 3 39 

Healthcare Professional 

Questionnaires 
Strongly Disagree Somewhat Agree 

Strongly 

Agree 

• hcQ1. 2 0 13 

• hcQ2. 2 0 13 

 No Opportunity Great Opportunity 

• hcQ3. 6 9 

 Dangerous Safe 

• hcQ4. 0 15 

 Would not use 
Would only use if 

human-controlled 

Would use and 

replace  

• hcQ5. 0 6 9 

Table 2 describes 1) the percentage of responses for each descriptive category for in-patients (n=44); 2) the 

frequency of responses for each descriptive category for healthcare professionals (n=15). The percentages may 

not add up to 100% due to the rounding error. icQ1-10 and hcQ1-2 used a 1 to 7 rating scale: 1 to 2 (strongly 

disagree); 3 to 4 (somewhat agree); and 5 to 7 (strongly agree). hcQ3 used a 1 to 10 rating scale: 0 to 5 (no 

opportunity); and 6 to 10 (great opportunity). hcQ4 used a 1 to 10 rating scale: 0 to 5 (no danger); and 6 to 10 

(danger). hcQ5 was collected with a -3 to +3 rating scale: -3 (would not use the intervention); -2 to 0 (would only 

use the intervention if controlled by a human caregiver); and 1 to 3 (would use the intervention and it could 

replace some interventions currently implemented by human caregivers). 

 

The patient survey responses showed that in-patients strongly agreed with all 10 closed-ended 

questions (icQ1-10), suggesting that sensors were easy to operate and learn to use, comfortable, did 

not limit daily activities, did not cause anxiety, and unobtrusive in appearance as seen in Table 2. 

As illustrated below in Table 2, the survey of healthcare professional showed high levels of 

agreement with statements that the system was easy to operate and learn to use (hcQ1-2) and 

presented no danger (hcQ4). Healthcare professionals were more split in their views regarding the 

opportunity of wearable tracking sensors and AI in healthcare delivery (hcQ3) and whether the 

technology could be used without the control of a human caregiver (hcQ5). Difference in opinions 

existed across the varied healthcare professional specialties. In particular, given strong evidence 

that an intervention was better or equivalent to current observations, some therapists (n=2), nurses 

(n=3), and healthcare assistants (n=1) still viewed human control as important, whereas all doctors 

(n=5) viewed human control as unnecessary. Additionally, all therapists (n=3) viewed the 

increasing use of wearable motion sensors and artificial intelligence technologies as an opportunity 

for healthcare applications, whereas some doctors (n=3), nurses (n=2), and healthcare assistants 

(n=1) thought it presented no opportunity.   A significant proportion of in-patients reported that 

they felt neutral towards the sensors or had nothing in particular to comment when asked open 

questions about system likes (n=18), dislikes (n=34), and expected functions and characteristics 

(n=31) (ioQ1-3). The comments from in-patients who did provide detailed responses were grouped 

into various themes (5 likes, 5 dislikes, 6 expected characteristics and functions) outlined in Table 3. 
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Table 3. Themes of perceived likes, dislikes, expected functions and characteristics of 

technology from in-patient survey (ioQ1-3) 

Themes  Details and example quotes  

Likes  

• Attractive 

appearance  
'Fine', 'good', 'stylish', 'beautiful', 'modern', design  

• Unobtrusive  
'unobtrusive', 'neutral' or 'unaware' of the device. Sensor felt 

just like a 'normal watch', 'non-invasive' 

• Simple design and 

ease of use  

'Simple design', 'easy to wear', 'simple to wear' 

 

• Visibility to others  
Not concerned about the visibility of sensors to others as 

‘appearance is fine’ 

• Promising 

healthcare 

applications  

'Helpful for research' and can improve healthcare 

Dislikes 

• Poor appearance  Would like a 'colour scheme' 

• Discomfort  Skin ‘irritation’ from sensors 

• Interference with 

medical equipment 
Cumbersome to wear with other ‘medical contraptions’ 

• Poor straps 

Would like ‘stretchy’ and ‘magnetic straps’, straps 'hard to 

get on' 

 

• Large size 'too big' 

Expected characteristics and functions  

• Well-designed 

straps  
'Better looking' straps 

• Attractive 

appearance  
'beautiful design', 'brighter' colour scheme 

• Time and heart rate 

functionalities  
'heart rate' and 'time' functionalities 

• Suitability for 

medical scans  
'Suitable' to wear when going for 'MRI scans' 

• Promising 

healthcare 

applications 

'helpful for research', 'beneficial for other patients' 

• Smaller size  'smaller' size 

 

In response to the open-ended question (hoQ1-4), healthcare professionals (n=10) highlighted 

that the sensors would only cause discomfort to a selection of patients in certain situations (e.g. 

some cases of hemiparesis, swelling or long wear periods). All healthcare professionals viewed the 

system as not intrusive to healthcare professionals; and, similarly, the majority of healthcare 

professionals (n=12) also perceived that the sensors were not intrusive to patients. 6 healthcare 

professionals commented that the system may interfere with medical treatments, while 8 disagreed 

and thought it would not interrupt care needs. The open-ended comments from healthcare 

professionals were grouped into themes (7 benefits, 5 risks, 2 likes, 2 dislikes, 4 expected 

characteristics and functions) outlined in Table 4. 
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Table 4. Themes of perceived benefits, risks, likes, dislikes, expected functions and 

characteristic of technology from the healthcare professional survey (hoQ1-4) 

Themes  Details and example quotes  

Benefits  

• Promising healthcare 

applications  

'Able to monitor movements to the development of new 

therapy'  

• Treatment 

personalisation  
'tailored therapy' 

• Patient engagement  'way of engaging with patients in their own health 

• Patient tracking  'wearer could be tracked' to know 'where they are' 

• Unobtrusiveness  
'gather information….in objective way & patients didn't seem 

inconvenienced' 

• Ease of use Ease of use and quick set-up 

• Convenience  'convenient in the modern days of medicine' 

Risks  

• Data privacy risks  
'ability for it to be shared with others that a patient did not 

consent to' 

• Sensor loss  ‘it can be lost as it is easy to remove' 

• Discomfort  'not comfortable on skin and can contribute to skin wounds' 

• Specificity  'risk of false-positive results' 

• Compliance  use…' depends on patient compliance' 

Likes 

• Ease of use  'easy to wear and use' 

• Promising healthcare 

applications  
Purpose and aim of system for health monitoring 

• Lightweight  Lightweight size 

• Unobtrusive 
System is not obtrusive for patients or healthcare 

professionals 

• High portability  
It's 'portable' so it is possible to 'monitor' whilst the patient is 

'mobile' 

Dislikes 

• Large size 'too bulky'  

• Unsuitable for medical 

scans 

 

frustrated by having to ‘remove’ the sensors to accommodate 

‘medical scans’ 

Expected characteristics and functions 

• Alarm systems 
alerts to dangerous changes in 'symptoms' e.g. 'GCS scores' 

and area breaches within the ward  

• Integration vital 

measurements 

combine with other important clinical measurements e.g. 

'temperature 'and 'peripheral capillary oxygen saturation'. 

• On-screen instructions 'Instructions' on how to use device. 

• Notifications On-screen 'notifications' on device 
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4. Discussion 

Wearable inertial sensors are increasingly exploited for clinical purposes by providing low-cost, 

pervasive, high-resolution tracking of natural human behaviour. However, their validity assumes 

that they convey accurate motion information, while their clinical feasibility and adoption require a 

minimal level of user acceptance among patients and healthcare professionals. In this study, we 

tested these two assumptions by: 1) quantifying the accuracy of commonly used wearable inertial 

sensors relative to a gold-standard optical motion tracking instrument; and 2) surveying the 

attitudes of target healthcare professionals and in-patient populations following a trial period of 

continuous wearable inertial sensor use. As our study approached two original research questions, 

our results are not directly comparable to results of earlier literature as we addressed different 

research problems (raw sensor data quality) and employed standardised and consistent methods for 

collecting comparative data across devices. For example, we differed in our choice of outcome 

measure (we used straightforward inertial estimates rather than combined estimates (e.g.[29,32]) 

and type of sensor (we used individual sensors rather than full-body sensor suits(e.g.[29,32]). This is 

significant given that many motion tracking applications of clinical use, such as in-patient seizure 

detection, and sleep and posture classification [42] models depend upon using good raw 

accelerometer and gyroscope data. 

 

4.1. Sensor Signal Quality Study 

Relative to ground-truth optical motion tracking, the consumer smartwatches (i.e. the Apple 

Watch Series 3 and 5) and the research-grade IMU Xsens achieved cleaner linear acceleration signals 

and lower errors than Axivity (Figure 4). This is likely to be due to accelerometer and gyroscope 

fusion in the cases of Xsens and consumer smartwatches that enables superior isolation of gravity 

vectors from acceleration signals; whereas Axivity acts as a pure acceleration logger that relies on a 

low-pass filter to accomplish the [43-45]. We found that the consumer smartwatches and Xsens 

sensors had similarly high angular velocity accuracy when compared against ground truth (Figure 

4). However, Xsens had stronger fidelity for recording accelerations (R2=0.88), perhaps due to the 

additional magnetometer and strap down integration (SDI) technology [46-49]. Accelerations and 

angular velocities were for all purposes identical between Apple Watch Series 3 and Series 5 (Figure 

4), suggesting high intergenerational consistency between the smartwatch IMUs. This provides a 

measure of confidence to pool and compare studies using IMU data recorded from different versions 

of the smartwatch.   

 

The sensor signal quality experiment had several strengths. In contrast to earlier studies 

validating consumer sensor proprietary ‘black-box’ energy expenditure, heart rate, step count 

measures, and joint estimates, our study was unique in measuring the accuracy of the 

straightforward inertial movement measurements (i.e. acceleration and angular velocity) of the 

sensors. We were able to do this by developing custom software to bypass the consumer smartwatch 

closed system barriers to export raw acceleration and angular velocity data. Using our custom 

extraction and transmission of the smartwatch IMU data, the data could easily be integrated with 

wider systems for unique research and clinical applications outside of the laboratory. Studies [50-52] 

also developed custom software to export Apple Watch data but did not assess the IMU accuracy. 

Moreover, our validation of 4 individual Xsens MTw sensor accuracy, as opposed to the 17-sensor 

Xsens MVN BIOMECH full-body suit in earlier studies, is also noteworthy. We posit that the full 

body suit is less practical for long-term continuous ‘in the wild’ behaviour monitoring of in-patients 

as it is higher cost, more challenging to operate and calibrate, obtrusive for the user for long wear 

times (requires 17 sensors attached to various positions on the body), and requires mobile 

participants for the walking calibration. We evaluated whether the position of the sensor in the 

sensor stack (i.e. distance to the wrist) affected the captured movement estimates and found that it 

was not a significant confound.  
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Limitations of our sensor accuracy study include the fact that the movement task duration (~5 

minutes) may not have sufficiently captured drift over longer time-periods and the controlled task of 

the upper limb may not have fully represented the range of natural human movements. Importantly, 

we note that some differences between optical motion tracking and Xsens could be explained by 

greater inertial sensor jitter and latency and horizontal position (XY) drift during stationary periods 

or exaggerated noise from marker obstruction through the differentiation when deriving 

acceleration and angular velocity from optical motion tracking position data [53]. 

 

In summary, our sensor quality study results demonstrate that: 1. sensors with both 

accelerometers and gyroscopes (Xsens and Apple Watches) perform better than just accelerometers 

(Axivity); 2. accuracy for acceleration, but not angular velocity, is higher for research-grade sensors 

that employ SDI technology with magnetometry (Xsens), compared to non-SDI non-magnetometer 

sensors (Apple Watches); 3. Apple Watch Series 3 and Series 5 demonstrated intergenerational 

inertial sensing consistency i.e. were practically identical, suggesting. This gave us confidences that, 

with relatively few drawbacks, consumer-grade smartwatches can be objectively used within 

clinical- and research-grade setting.  

 

4.2. Sensor Acceptability Study 

Similarly, our acceptability results show that subjectively consumer-grade smartwatches are 

suitable to be used within clinical- and research-grade environments. The sensor acceptability study 

demonstrated high approval ratings from hospital patients and healthcare professionals for use of 

wearable motion sensors for continuous motion tracking. We found that in-patients were generally 

neutral towards or had nothings comment about the sensors in open responses; and strongly agreed 

with closed-ended statements that the sensors were simple to use, comfortable, unobtrusive and did 

not interfere with daily activities. At the same time, a small number of participants did raise worries 

with regards to discomfort, bulky sensor size, data privacy, and damage and loss. These concerns 

were similarly expressed across earlier wearable sensor usability studies [13,23]. For example, Tran 

and authors (2019) found that patient’s data privacy concerns including hacking of data and devices, 

spying on patients, and using and selling patient data without consent. Our findings highlighted 

that patients were considerably influenced by superficial characteristics related to sensor design and 

appearance, such as sensor colour schemes. This mirrors earlier findings, such as [21] which 

reported positive user opinions with regards to ‘colourful’, ‘beautiful’, ‘lightweight’ designs and 

‘ease of use’ of evaluated smartwatches and [23] which recorded ‘lack of attractive features’ as the 

top concern for wearable devices. Acceptability results from healthcare professionals also revealed 

conflicting views regarding wearable sensor motion tracking across different medical specialities, 

such as the perceived opportunity of wearable movement sensors and artificial intelligence in 

healthcare applications. This highlights that different members of multidisciplinary teams have 

different experiences and expectations of technologies such as motion trackers, which need to be 

addressed when introducing such systems into clinical environments. 

 

The device feasibility study had several strengths. Decision to adopt or use a new technology 

frequently involves a shared agreement between both the patients and healthcare professionals. Our 

study looked at both perspectives through the questionnaires. Our combined methods design, using 

open-ended and closed-ended questions, allowed broad insights into perceptions of the use of 

wearable sensors for continuous monitoring in a hospital setting. Comparable to earlier smartwatch 

usability studies [21], we used a Likert scale evaluation to enable us to gauge degrees of opinion. 

Furthermore, the findings captured a diverse range of views from a large sample of in-patients 

(n=44) with wide-ranging demographics and multiple comorbidities. This offers an advantage over 

earlier studies such as [21] which only captured views from 7 healthy subjects in a community 

setting; [22,23] which collected data from larger samples (n=388 and n=2058 respectively), but only 

recruited healthy subjects online who reported some or no experience using the wearable 

wristwatches.  
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The feasibility study was limited by not using a validated device usability questionnaire, such 

as System Usability Scale (SUS)[28], as we wanted to explore a broader set of questions (as subjects 

were not using the wearables as such but wearing them) while keeping questions brief to ensure 

completion and compliance rates. Unlike study [21], we did not include the evaluation of satisfaction 

with the smartwatch user interface or battery as part of the study and prevented user on-screen 

interactions. Given that we wanted to evaluate the inertial sensor primarily for recording movement 

for healthcare professional in-patient monitoring, we did not choose to assess in-patient views of 

other smartwatch features and functionalities (e.g. networking and applications). In future research, 

we plan to develop and assess the acceptability of custom device movement feedback visualisations. 

Our smaller sample size of healthcare professionals (n=15) may not be representative of the broader 

population and the sample was unbalanced for different medical specialities and experience. Views 

on the usability of wearables were based upon recording durations (1.5-24hour) which is shorter 

than typical in-patient stays of several days to weeks. Our study also gained opinions only from 

those of patients in neurology and stroke wards, which may not be representative of other clinical 

settings and care homes. The study only collected views on Apple Watch wearables, which may not 

generalise to other wearable inertial devices. However, this allowed us to incorporate brand-related 

influences (e.g. brand loyalty and attitudes) that play a role in end-user adoption and to address a 

gap in the literature for perceptions related to use consumer devices for continuous monitoring in 

hospital settings [54]. We believe that there is, in principle, no technological barriers in allowing 

other smartwatch platforms with appropriate programmable interfaces and high-accuracy IMUs to 

be developed and look forward to this rapidly developing consumer electronics domain developing 

common interoperability standards for measurement, collecting and deploying of healthcare data 

and applications. 

 

In summary, our sensor acceptability study showed that 1) hospital patients wearing motion 

tracking smartwatches for 1.5-24 hours are positive about their use; 2) healthcare professionals 

involved in clinical monitoring also embraced wearable IMU technology but concerns that need to 

be addressed are data privacy, compliance, sensor loss, specificity and discomfort.    

5. Conclusions 

These results suggest that for continuous long-term behavioural monitoring of in-patients, 

consumer smartwatches (such as Apple Watch) can offer reliable inertial tracking. Albeit more so for 

measures relying on angular velocity, than linear acceleration for Apple smartwatches. The 

implication of this on clinical application, for example, to measure the proportion of time lying in 

bed, as opposed to ambulating, or to estimate physical disability, needs to be ascertained by further 

studies. Our feasibility results provide reassurance that consumer smartwatch motion tracking is 

generally acceptable for patients and staff in hospitals, where we can now proceed with deploying 

these consumer-grade technologies to easily collect and monitor natural behaviour on a daily-basis 

from in-patient and care home residents. This may pay the wave for improved care, patient safety, 

and novel data-driven solutions enabled by the availability of low-cost, high-accuracy natural 

behavioural data streams (e.g. [55]) that can be collected in a low-cost, accurate, continuous and 

socially distanced manner. Our results show that consumer-grade smartwatch use effectively 

provides researchers and healthcare technology developers with an accurate and acceptable 

platform enabling to 24/7 watch over a patient. 

 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/A1, Table A1: Movement 

Sequence Protocol, Table A2: In-patient characteristics (n =44), Table A3: Healthcare professional characteristics 
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Appendix A 

Table A1. Movement Sequence Protocol 

Each movement task consists of the movement task description, 1 number of metronome beats per task (BPA),  
2 The Time Per Action (TPA) (calculated based on 120 Beat Per Minute frequency and length of action cycle),  

3 number of movement task repetitions (REP), and 4 total times of the movement task (TOT). 

  

Action TPA2 BPA1 REPS3 TOT4 

Handclap 

• shoulder 45 degrees, elbow 45 degrees 0.5 1 5 2.5 

Horizontal Arm Movement (Both arms) 

• hand to contralateral shoulder, elbow 0-90 

degrees, forearm pronated, shoulder at 90 

degrees 

2 4 30 60 

Vertical Arm Movement (Both arms) 

• Shoulder 0-90 degrees vertical 

abduction-adduction, elbow 0 degrees, 

forearm pronated 

2 4 30 60 

• Shoulder 0-90 degrees vertical 

flexion-extension, elbow 0 degrees, forearm 

pronated 

2 4 30 60 

Rotational Arm Movement 

• Pronation-supination, shoulder 90 degrees 

vertical flexion, elbow 0 degrees 
1 2 30 30 

• Pronation-Supination, shoulder 90 degrees 

vertical flexion, elbow 90 degrees vertical 
1 2 30 30 

• Pronation-Supination, shoulder 90 degrees 

vertical flexion, elbow 90 degrees horizontal 
1 2 30 30 

Composite Cross-Body Movement 

• Hand from contralateral knee to ipsilateral 

ear, back bent 
1 2 30 30 

Handclap     

• shoulder 45 degrees, elbow 45 degrees 0.5 1 5 2.5 

Total time (Not including rest periods between 

each action) 
305 seconds 
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Table A2. In-patient characteristics (n =44) 

In-Patient Characteristics n (weights) 

Age (years)— Avg (IQR) 64 (24–92) 

Female sex—n (%) 22 (50) 

Male sex —n (%) 22 (50) 

Asthma —n (%) 4 (9) 

Chronic obstructive pulmonary disease —n (%) 3 (7) 

Other respiratory diseases —n (%) 2 (5) 

Diabetes —n (%) 4 (9) 

Thyroid disorders —n (%) 3 (7) 

High blood pressure —n (%) 29 (66) 

Dyslipidemia —n (%) 13 (30) 

Other cardiac or vascular diseases —n (%) 5 (11) 

Chronic kidney diseases —n (%) 2 (5) 

Rheumatologic conditions —n (%) 6 (13) 

Digestive conditions —n (%) 10 (23) 

Neurological conditions —n (%) 4 (9) 

Cancer (including blood cancer) —n (%) 2 (5) 

Depression —n (%) 2 (5) 

Ischemic stroke —n (%) 29 (66) 

Hemorrhagic stroke —n (%) 5 (11) 

Transient Ischemic Attack —n (%) 10 (23) 

Stroke mimic (Stroke symptoms but non-stroke) —n 

(%) 
10 (23) 

Avg = Average; IQR = Interquartile range; n = number 
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Table A3. Healthcare professional characteristics (n =15) 

Characteristics  Doctor (n=5)  Nurses (n=4) HCA (n=3) Therapist (n=3) 

Age (years)— Avg 

(IQR) 
28 (27–32) 40 (31-58) 48 (30-55) 33 (28-45) 

Female sex— n (%) 

 
2 (40%) 2 (50%) 3 (100%) 3 (100%) 

Male sex — n (%) 3 (60%) 2 (50%) 0 (0%) 0 (0%) 

Educational level (%) 

 

Medical degree 

(60%), MSc (40%) 

Degree level 

(100%) 

Degree level 

(33%), NVQ3 

(33%), N/A (33%) 

Degree (66%), 

N/A (33%) 

Clinical speciality or 

training level  

1 Stroke SHO, 1 CT 

medicine, 1 

Geriatrics ST3, 1 

GPS 2, 1 SPR 

Student Nurse 

(25%), B5 

Nurse (75%) 

HCA level 2 

(33%), N/A (66%) 

1 Rehab assistant, 

1 B5 

Occupational 

therapist, 1 B6 

Physiotherapist 

Previous use of 

e-health or m-health 

technology 

Yes (40%), No (60%) 
Yes (25%), No 

(75%) 
  No (100%) 

Yes (33%), No 

(66%)  

Avg = Average; IQR = Interquartile range, n = number; SPR = Specialist Registrar; SHO = Senior House Officer; 

ST3 = Specialty Training 3; CT = Core Training; NVQ = National Vocational Qualifications; MSc = Master of 

Science; GPS = General Practice Specialty 
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Figure A1. depicts recorded IMU signal from Apple Watch Series 5 (top of stack) and Apple Watch Series 3 

(bottom of the stack) where (a) are accelerations and their differences and (b) are angular velocities and their 

differences. The coloured area indicates different behavioural execution as depicted in Figure 3 i.e. is 

horizontal arm movements, is vertical arm movements, is rotational arm movements, and is composite 

cross-body movements. 

(a) (b) 
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