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Predicting critical state after COVID-19 diagnosis:

Model development using a large US electronic health record dataset

Mike D. Rinderknecht!'" and Yannick Klopfenstein''™
'IBM Switzerland Ltd, Zurich, Switzerland

As the COVID-19 pandemic is challenging healthcare systems worldwide, early identification
of patients with a high risk of complication is crucial. We present a prognostic model predicting
critical state within 28 days following COVID-19 diagnosis trained on data from US electronic
health records (IBM Explorys), including demographics, comorbidities, symptoms, insurance
types, and hospitalization. Out of 15816 COVID-19 patients, 2054 went into critical state
or deceased. Random, stratified train-test splits were repeated 100 times and lead to a ROC
AUC of 0.872 [0.868, 0.877] and a precision-recall AUC of 0.500 [0.488, 0.509] (median
and interquartile range). The model was well-calibrated, showing minor tendency to over-
forecast probabilities above 0.5. The interpretability analysis confirmed evidence on major risk
factors (e.g., older age, higher BMI, male gender, diabetes, and cardiovascular disease) in an
efficient way compared to clinical studies, demonstrating the model validity. Such personalized

predictions could enable fine-graded risk stratification for optimized care management.

Keywords: Al, artificial intelligence, clinical decision support, coronavirus, IBM Explorys,
machine learning, prognosis, real-world evidence, risk stratification, RWE, SARS-CoV-2, triage

1 Introduction

The coronavirus disease (COVID-19), caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) !,
has started to spread since December 2019 from the province
Hubei of the People’s Republic of China to 188 countries,
becoming a global pandemic [*!. Despite having a lower case
fatality rate than SARS in 2003 and MERS in 2012 1, the
overall number of 24 007 049 cases and 821 933 deaths from
COVID-19 ! (status August 26, 2020) far outweigh the other
two epidemics. These high numbers have forced governments
to respond with severe containment strategies to delay the
spread of COVID-19 in order to avoid a global health crisis
and collapse of the healthcare systems “*!. Several countries
have been facing shortages of intensive care beds or medical
equipment such as ventilators [°!. Given these circumstances,
appropriate prognostic tools for identifying high-risk popula-
tions and helping triage are essential for informed protection
policies by policymakers and optimal resource allocation to
ensure best possible and early care for the patients.

Today’s availability of data enables the development of
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different solutions using machine learning to address these
needs, as described in recent reviews *!. One type of pro-
posed solutions is prognostic prediction modeling, which con-
sists in predicting patient outcomes such as hospitalization or
exacerbation to a critical state, using longitudinal data from
medical healthcare records of COVID-19 patients ~'?! or
proxy datasets based on other upper respiratory infections >,
To this date, most studies include data exclusively from one
or few hospitals and therefore relatively small sample sizes
of COVID-19 patients (i.e., below 1000 patients), with the
exception of the retrospective studies in New York City with
4103 ' or with a total of 3055 patients ['71,

This is where combined electronic health records (EHRs)
across a large network of hospitals and care providers become
valuable to generate real-world evidence (RWE). Machine
learning models based on such datasets can benefit from in-
creased amount of data and improved robustness and general-
izability, as data comes from various sources (e.g., different
hospitals), and may thus cover wider ranges of demographics
and diverse healthcare practices or systems. Having such data
available, can facilitate and accelerate insight generation, as
such an approach for retrospective data analyses is more cost
effective and requires less effort compared to setting up and
running large scale clinical studies.

The aim of this work was to create a prognostic prediction
model for critical state after COVID-19 diagnosis based on a
retrospective analysis of a large set of de-identified EHRs of
patients across the US using the IBM® Explorys® database
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(IBM, Armonk, NY). Such a predictive model allows identi-
fying patients at risk based on predictive factors to support
risk stratification and enable early triage. The present work
based on EHR data is reported according to the RECORD and
STROBE statements [*! and reporting of model development
followed TRIPOD statement guidelines **!.

2 Results
2.1 Cohort, descriptive statistics, and concurvity

The total number of identified patients diagnosed with
COVID-19 based on International Classification of Dis-
eases (ICD) codes and entries for positive results of SARS-
CoV-2 test based on Logical Observation Identifiers Names
and Codes (LOINC) are reported in Figure 1. In addition,
the number of patients with age and gender information (re-
ferred to as the cohort), the number of patients labeled as
not entering critical state and labeled as entering critical state
as well as the sizes of the partitions for training and testing
are also reported. Among patients labeled as critical state, a
total of 545 patients were flagged as deceased in the Explorys
database. This corresponds to 3.4% of the entire cohort.

Descriptive statistics after zero-imputation of the binary
features and before feature reduction are reported in Table 1.
No features were removed due to a too high proportion of
missing data. Rank correlations across features is shown in
the heatmap in Figure 2. The following feature combination
showed a strong rank correlation: {Race (African American),
Race (Caucasian)}. The following feature was removed to
avoid feature collinearity: Race (Caucasian). The removed
feature will therefore contribute to the baseline risk probabil-

ity.
2.2 Performance

The performance and calibration of the model was eval-
uated on the 3164 patients of the test set for each train-test
split seed. The area under the curve (AUC) of the receiver
operating characteristic (ROC) and under the precision-recall
(PR) curve across the 100 different seeds were 0.872 [0.868,
0.877] and 0.500 [0.488, 0.509], respectively (median and
interquartile range). Figure 3 shows their distributions, to-
gether with the ROC curve and the precision recall curve (Left
and Middle), as well as the calibration of the model (Right).
The confusion matrix for the identified optimal classification
threshold (0.127 [0.118, 0.139]) is shown in Figure 4. The
sensitivity of the model for the optimal threshold was 0.841
[0.819, 0.856] and the specificity 0.762 [0.740, 0.781].

2.3 Model interpretability

Figure 5 shows the results of the model interpretability
analysis based on Tree SHAP [**1, Older age and pneumonia
are by far the principal predictors for critical state. The main

features contributing to a higher probability of critical state
in case of high feature values or presence are (in decreasing
order of global feature importance): older age, pneumonia,
higher BMI, diabetes, male gender, shortness of breath, and
cardiovascular disease. Note that in Figure 5 for binary fea-
tures “max” feature values correspond to 1 (e.g., presence of
the feature). In the case of gender, 1 corresponds to female
(see Table 3). Figure 6 illustrates the composition of a single
example prediction.

3 Discussion

In this work, a prognostic model was created based on
real-world data from 12652 patients to predict at COVID-19
diagnosis, whether patients will enter a critical state within
the next 28 days or not. In addition to demographic, and
clinical data, hospitalization and insurance types were used
as predictors. Our results based on new 3164 patients unseen
during training showed high predictive performance (sensi-
tivity of 0.841 and specificity of 0.762) and well-calibrated
output probabilities with a minor tendency to over-forecast
probabilities above 0.5. Furthermore, the interpretability anal-
ysis identified older age, pneumonia, higher BMI, diabetes,
male gender, shortness of breath, and cardiovascular disease
as most important predictive factors for critical state.

3.1 Validity of the COVID-19 dataset

Around 16 000 US patients diagnosed with COVID-19 met
the inclusion criteria. To the best of our knowledge, it is
one of the largest cohorts used for COVID-19 progression
modeling to date based on EHR data.

The definitions used for severe state or critical state vary
across different sources (e.g., intubation prior to ICU ad-
mission, discharge to hospice, or death ['"), moderate to
severe respiratory failure "', oxygen requirement greater
than 10L/min or death ['*1), or are not described in detail.
Based on the definition by the World Health Organization **!
including sepsis, septic shock, and respiratory failure (e.g.,
acute respiratory distress syndrome (ARDS)), the proportion
of patients entering critical state (13.0%) in our study is within
the range of prevalence (12.6% to 23.5%) reported in a review
covering 21 studies >,

Similarly, case fatality rates vary across US states and
countries, as they directly depend on factors such as the
number of tested people, demographics, socioeconomics, or
healthcare system capacities. The death rate for the entire
US is estimated to be 3% [’ (status August 26, 2020). In
the present work, the reported proportion of people assumed
to be deceased because of COVID-19 is 3.4%. These dif-
ferences may be justified in part by the fact that in these
sources the outcome (i.e., potential death) of recent cases is
yet unknown when computing the case fatality rate, hence
leading to underestimation. As our analysis enforces at least
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7 weeks of data after diagnosis date increasing changes of
knowing the patients’ outcomes, this underestimation can be
reduced. Nevertheless, death is not reliably reported in EHRs
and records were de-identified making linking to public death
records not feasible.

Regarding demographics of our cohort, there are only mi-
nor dissimilarities to numbers reported by the Centers for
Disease Control and Prevention (CDC) or US states. The
interquartile range of the age distribution of our cohort (32—
63 years) matches with the 33—63 years for COVID-19 cases
across the entire US [“°!, The racial breakdown varies strongly
across different US states. Given that Explorys clients are
mostly in metropolitan areas, there is a higher proportion
of African Americans in the present EHR dataset compared
to US average /. As Caucasian and African American
together represent 92.7% of the dataset, there is a strong
negative correlation between the two features, for which rea-
son the majority group (race (Caucasian)) was considered as
baseline and removed from the feature set. The proportion of
female cases (56.8%) is more pronounced compared to the
US-wide incidences of 406 (female) and 401 (male) cases
per 100000 persons also showing a marginally higher rate
for females than males, respectively °°!. Since the medical
system captured by Explorys is separate to the billing system,
it can be expected that information on insurance types is not
widely available. As a matter of fact, less than 10% of patients
have a reported insurance type.

The most common underlying comorbidities identified
through ICD codes in our cohort are hypertension, obesity,
cardiovascular disease, diabetes, and chronic lung disease
(includes asthma and chronic obstructive pulmonary disease).
As this is in line with statistics from the CDC **?*! as well
as other studies conducted in China (e.g., ') and the preva-
lence of such features is not affected by any time window
restrictions (i.e., the entire patient history was considered), it
substantiates the validity of the Explorys data.

Since the aim of the present work is to develop a model for
predictions at the time point of COVID-19 diagnosis, symp-
toms identified through ICD codes (e.g., fever or cough) are
only extracted from the 14 days previous to the COVID-19
diagnosis. As the COVID-19 diagnosis may be early or late
in the disease progression, there is the possibility to capture
either early or late symptoms depending on each case. How-
ever, due to the time window restriction, the prevalence of
reported symptoms tends to be lower compared to statistics
including reported symptoms during the entire course of the
disease 1*°1. Moreover, outpatient symptoms based on ICD
codes may be under-documented, as hospitals may not get
paid for their diagnosis. Despite these lower numbers, the
most common symptoms in our cohort, namely cough, fever,
and shortness of breath, are confirmed by other reports and
studies 2030211,

Overall, the size and quality of the EHR dataset based on

the Explorys database demonstrates high value with regards to
demographics, chronic features, and acute symptoms, despite
its sparsity.

3.2 Performance

Although our dataset is based on sparse real-world data,
our prognostic model shows an excellent model performance
in terms of ROC AUC (0.872 [0.868, 0.877]) [’ and a sub-
stantial improvement of the PR AUC (0.500 [0.488, 0.509])
compared to chance level (0.130). Optimizing the decision
threshold by maximizing the Youden’s J statistic lead to a
sensitivity of 0.841 [0.819, 0.856] and a specificity of 0.762
[0.740, 0.781]. Depending on the medical requirements for
the prognostic model in terms of sensitivity and specificity,
the threshold could easily be adjusted for a real application.
As different types of datasets, inclusion/exclusion criteria, fea-
tures, and prediction target definitions were used in other pa-
pers presenting the development of models predicting COVID-
19 critical state, (e.g., ['>'"), or review 1), it renders it diffi-
cult to do a direct performance comparison (reported metrics
were in the following ranges: ROC AUC 0.81-0.99, PR AUC
0.56-0.71, sensitivity 0.70-0.94, specificity 0.75-0.85). Fur-
thermore, some publications do not mention metrics (e.g.,
PR AUC, or sensitivity and specificity) required to properly
evaluate performance on an imbalanced dataset, which is the
case for this type of COVID-19 prognosis. Unlike other pa-
pers ['1:1517] ygually performing a cross-validation or using a
limited number of independent sets for the testing, the present
approach used random, stratified train-test splits repeated 100
times to obtain a distribution of performance. Such an ap-
proach has the advantage of providing a better understanding
of the generalizability of the model and the robustness of
the performance estimate, as it is likely that a single test set
might underestimate or overestimate the real performance for
small testing sets. Even though our model was trained on data
coming from many hospitals compared to other work being
only based on a single or limited number of contributors, an
external validation should be performed to better assess its
generalizability.

Most publications on prognosis prediction models do not
report model calibration [*!, with the exception of a few ['%!8],
The present model based on the Explorys dataset is well-
calibrated, showing only minor tendency to over-forecast
probabilities above 0.5. We hypothesize that this over-forecast
comes from the fact that features encoding care or treatments
(e.g., drugs) were not included in the model. Assuming that
treatments reduce the probability of entering critical state,
taking a treatment will lead to an overestimated probability
by the model, as this information is not available to the model.
In any case, over-forecast accentuating cases with relatively
high probability is preferable to under-forecast, where patients
with high probability of critical case may not be identified.

Overall, our prognostic model shows excellent perfor-
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mance and has the advantage to provide a calibrated risk
score instead of a binary classification. This could potentially
help healthcare professionals to create a more fine-graded risk
stratification of patients.

3.3 Model interpretability

Pneumonia appeared among the top features, as pneumo-
nia is a diagnosis defining moderate and severe cases [*],
which are precursor stages for critical state due to COVID-19
disease. The results from a study with 1099 patients showed
that patients with severe disease had a higher incidence of
physician-diagnosed pneumonia than those with non-severe
disease 1,

As identified by the interpretability analysis, older age is
an important risk factor. This has been confirmed by many
studies showing its relevance in progressing to grade I'V and
V on the pneumonia severity index and mortality of COVID-
19 patients *~°l. The developed model was also able to
endorse existing results showing that men are, despite similar
prevalence to women, more at risk for worse disease severity,
independent of age [*1. Similarly, obesity has been reported
as a factor increasing probability of higher disease severity
and lethality 33%%1 While according to our interpretability
analysis the feature obesity shows marginal importance in
the output of the model, the feature BMI is among the top
features leading to high risk (in case of high BMI). It can be
assumed that the feature obesity with a prevalence of 25.1%
in our dataset compared to age-adjusted prevalence of obesity
in the US is around 35% *"! is under-reported in the EHR
data of our cohort. The median BMI in our dataset is very
close to the threshold from overweight to obesity (BMI of
> 30kg/m?). Hence it can be concluded that approximately
50% of our patients are obese. In addition, the BMI feature is
a continuous variable with only 16.7% missing entries, having
thus more information content and, as a result, shows higher
predictive importance than obesity.

In line with the literature, the following comorbidities were
also shown to drive high probabilities for critical state: di-
abetes '~ chronic kidney disease [*~*!, and cardiovas-
cular diseases "****1. " As a matter of fact, many elderly
patients with these comorbidities use Angiotensin-converting
enzyme (ACE) inhibitors and Angiotensin-receptor block-
ers (ARBs) which up-regulate the ACE-2 receptor *’1. Given
that ACE-2 receptor has been proposed as a functional recep-
tor for the cell entry mechanism of coronaviruses, it has been
hypothesized that as a consequence this may lead to a higher
prevalence and elevated risk for a severe disease progression
after SARS-CoV-2 infection PV

Our model also revealed disparities in terms of probability
for critical state between races: African American seem to
have a higher risk of entering critical state compared to Cau-
casian. This fact has been verified in several states, among
others Louisiana where around 70% of deaths have occurred

among African Americans, although they represent only one
third of the state’s population °'!. While a higher prevalence
of comorbidities such as hypertension, diabetes, obesity, and
cardiovascular disease among African Americans may be one
reason for these disproportion, also late lockdowns in southern
states or social determinants (e.g., living in poor areas with
high housing density, high crime rates, poor access to healthy
foods) may be strong contributors °'~”!, For ethnicity, on
the other hand, consistent effect can be concluded based on
SHAP values for Hispanics versus non-Hispanics. While
socioeconomic factors and insurance types may also have an
influence on the probability of severe disease progression, the
SHAP analysis did not reveal any major trends. However,
Figure 5 shows that privately insured patients may have a
marginally lower risk for critical state, as they may be able to
seek earlier and better care. As there there are no “selfpay’
patients, who may be more reluctant to seek early medical care
due to costs, in our cohort, this hypothesis can unfortunately
not be supplemented with additional evidence.

i

The two primary symptoms influencing the progression
of the disease based on the present analysis are shortness of
breath (dyspnea) and cough, both prevalent symptoms for
COVID-19 P!, Interestingly, they have opposite effects on
the prediction probability of the model, with shortness of
breath increasing and cough decreasing the probability for
critical state. This can be explained by the fact that cough is an
early symptom during mild or moderate disease, and shortness
of breath develops in the late course of illness. This concurs
with statistical reports from China showing higher prevalence
of shortness of breath in severe cases and a higher prevalence
of cough in non-severe cases and survivors **7341, Hence, if
cough is reported, this may indicate that the disease is still in
early stage and there is the chance that it may not lead to a crit-
ical state, whereas if shortness of breath is reported, chances
for further disease progression may be much higher. Further-
more, hospitals may not report outpatient symptoms such as
cough, whereas they may report more critical symptoms such
as shortness of breath more reliably. This means that it is
highly likely that many of the patients in our cohort without
an ICD code entry for cough actually may have had cough, in
particular given that it is a highly prevalent symptom. This
may considerably contribute to this rather surprising result.
Fever may be at the same time an early appearing symptom
but has also been shown to be developed later during hospital-
ization "I, In addition, the same prevalence of fever has
been reported in survivors and non-survivors “’!, This may
also explain why it is more difficult to use it as a predictive
feature, unlike for example cough, despite being also among
the most prevalent symptoms ). Nonspecific neurological
symptoms like headache and confusion are less commonly
reported V. Nevertheless, the right plot in Figure 5 reveals
that the presence of confusion significantly contributes to an
increase in the model’s output probability, despite having low
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overall importance (which in turn is also driven by the low
prevalence within our dataset). While headaches may have
many potential origins not necessarily related to COVID-19,
confusion may be a clearer precursor of neuroinvasion of
SARS-CoV-2, which has been suggested to potentially lead
to respiratory failure 7,

Overall, the findings of this work are in line with results
from the vast number of studies reported in the literature and
the interpretability analysis provides evidence for the validity
of the prognostic prediction modeling.

3.4 Limitations

EHRs can be a powerful data source to create evidence
based on real-world data, especially when combined with a
platform facilitating the structured extraction of data. How-
ever, there are trade-offs to be made when doing analyses on
EHR data in contrast to the analysis of clinical study data P,
One major limitation is that patients may get diagnoses, treat-
ments, or observations outside of the hospital network covered
by Explorys, resulting in sparse patient histories. Other chal-
lenges are potential over- and under-reporting of diagnoses,
observations, or procedures. For example, clinicians may
enter an ICD-10 code for COVID-19 when ordering a SARS-
CoV-2 test leading to over-documentation and “false positive”
entries. On the other hand, replying only on test results may
increase the risk that tested patients only performed the test
at a hospital with the Explorys network, but did not get diag-
nosed and treated within the same hospital, which would lead
to potentially “false negatives” in terms of target labeling. For
this reason the inclusion criteria for our cohort was based on
the combination of an ICD code entry for COVID-19 with a
positive SARS-CoV-2 test result, to increase the probability
of only including patients with actual COVID-19. This highly
sparse data may also require imputation, as there is rarely
a patient with a complete data record, especially when the
set of features is large. The method of imputation may also
introduce additional biases which are difficult to control. As
particularly important in predictive modeling, it was ensured
that the imputation was based purely on the train set to avoid
additional information leakage. Furthermore, to ensure data
privacy and prevent re-identification, patients’ age is trun-
cated, and death dates and related diagnoses and procedures
are not available in Explorys data. As the latter is highly
relevant for the present modeling, several assumptions had to
be taken. Nevertheless, resulting death rates correspond well
to official COVID-19-related death rates in the US or relevant
states.

An additional limitation and potential bias is linked to the
data extraction using time windows. Even though the window
lengths were motivated by medical reasoning, they are subject
to trade-offs which is not the case for clinical studies due to
precise protocols: extending the windows to capture enough
information spread over multiple visits and account for delays

in EHR entries, versus remaining recent enough and related
to COVID-19. Furthermore, the features used in this model
do not capture the time information for the individual samples
(e.g., how many days before COVID-19 diagnosis the ICD
code for fever was entered into the system). In addition,
it could be that the reference for the time windows is not
accurate, as the ICD code or LOINC entry used as COVID-19
diagnosis proxy may not have been the actual first diagnosis
of the patient.

The model was based on US data from hospitals of the
Explorys network, sampling mostly metropolitan areas. This
resulted for example in a higher ratio of African Americans
compared to the US average, it is highly likely that there are
demographic and socioeconomic biases, in addition to the
fact that economically disadvantaged patients may seek med-
ical help too late. Moreover, the data reflects the American
healthcare system in terms or testing, diagnosing, and treating
procedures as well as reporting.

Despite these limitations, RWE can retrospectively gener-
ate insights on a scale which would not be feasible with an
observational clinical study. Thus, it may be a starting point
for subsequent, more focused clinical studies. Furthermore,
approaches based on RWE might even have higher clinical
applicability due to their incorporation of statistical noise
while model training 71,

3.5 Conclusions

The results of this work demonstrate that it is possible
to develop an explainable machine learning model based on
patient-level EHR data to predict at the time point of COVID-
19 diagnosis whether individual patients will progress into
critical state in the following four weeks. Without the neces-
sity of relying on multiple laboratory test results or imaging
such as computer tomography (CT), this model holds promise
of clinical utility due to the simplicity of the relevant features
and its adequate sensitivity and specificity. Even though this
prognostic model for critical state has been trained and eval-
uated on one of the largest COVID-19 cohorts to date with
EHR data from around 16 000 patients, it includes predomi-
nantly cases from metropolitan areas within the US and may
therefore be biased towards sub-populations of the US and
the American healthcare system. To prove its generalizability
before being considered for clinical implementation, it should
be validated with other datasets. Such RWE models have
the potential to identify new risk factors by mining EHRs.
This model could also be augmented with treatment features
(e.g., drugs or other interventions) after diagnosis in order to
predict whether the respective treatments would lead to an
improvement (i.e., reduction of the probability of entering
critical state). RWE approaches will never replace clinical
studies to validate risk factors or evaluate treatment effective-
ness. Nevertheless, these types of retrospective real-world
data analyses can support other research generally requiring
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much higher efforts and costs: They could help identifying re-
sponder groups or informing the design of clinical trials, with
the aim of making research more efficient and accelerating
the avenue to personalized treatment and eventually reduced
burden on the healthcare system.

4 Methods
4.1 RWE Insights Platform

This work was achieved by using the RWE Insights Plat-
form, a data science platform for analyses of medical real-
world data to generate RWE recently developed by IBM. The
RWE Insights Platform is a data science pipeline facilitating
the setup, execution, and reporting of analyses of medical
real-world data to discover RWE insights in an accelerated
way. The platform architecture is built in a fully modular
way to be scalable to include different types of analyses (e.g.,
treatment pathway analysis, treatment response predictor anal-
ysis, comorbidity development analysis) and interface with
different data sources (e.g., the Explorys database).

For the present use case of COVID-19 prognosis predic-
tion, we used the comorbidity development analysis which
allows defining a cohort, an outcome to be predicted, a set of
predictors, and relative time windows for the extraction of the
samples from the data source. New data-extraction modules
for specific disease, outcome, treatments, and variables for
the current use case were developed.

The RWE Insights Platform has been developed using open-
source tools and includes a front end based on HTML and
CSS interfacing via a Flask RESTful API to a Python back end
(python 3.6.7) using the following main libraries: imbalanced-
learn 0.6.2, numpy 1.15.4, pandas 0.23.4, scikit-learn 0.20.1,
scipy 1.1.0, shap 0.35.0, statsmodel 0.90.0, and xgboost 0.90.
The platform is a proprietary software owned by IBM. The
detailed description of the RWE Insights Platform is beyond
the scope of this publication.

4.2 Real-world data source

Our work was based on de-identified data from the Ex-
plorys database. The Explorys database is one of the largest
clinical datasets in the world containing EHRs of around
64 million patients across more than 360 hospitals in the
US ¥l Data were standardised and normalised using com-
mon ontologies, searchable through a Health Insurance Porta-
bility and Accountability Act (HIPAA)-enabled, de-identified
dataset from IBM Explorys. Individuals were seen in multiple
primary and secondary healthcare systems from 1999 to 2020
with a combination of data from clinical electronic medical
records, health-care system outgoing bills, and adjudicated
payer claims. The de-identified EHR data include patient de-
mographics, diagnoses, procedures, prescribed drugs, vitals,
and laboratory test results. Hundreds of billions of clinical, op-
erational, and financial data elements are processed, mapped,

and classified into common standards (e.g., ICD, SNOMED,
LOINC, and RxNorm) within the data lake. The Explorys
database has been proven to be useful in many retrospective
data analyses for different applications (e.g., refs. P70,
As data in Explorys is updated continuously, a view of the
database was created and frozen on August 26, 2020 for
reproducibility of this work.

4.3 Cohort

The cohort included all patients in the Explorys database
having a documented diagnosis of COVID-19 and a reported
positive entry for a SARS-CoV-2 test, both since December 1,
2019. As the new ICD-10 code U07.1 for COVID-19 cases
confirmed by laboratory testing has been created and pre-
released a couple of months after pandemic onset, already
existing ICD codes related to coronavirus (B34.2 Coronavirus
infection, unspecified and B97.29 Other coronavirus as the
cause of diseases classified elsewhere) were also included,
as hospitals may have used them for early cases. Based on
their appearance in Explorys, the following LOINC codes
for the SARS-CoV-2 tests were included: 94309-2, 94500-6,
94502-2, 94505-5, 94507-1, and 94547-7 ©1, The December
2019 cutoff was instituted to be consistent with the spread of
COVID-19 in the US and to limit inclusion of patients who
may have been diagnosed with other forms of coronavirus
besides SARS-CoV-2. In case of multiple entries per patient
after December 1, 2019, the first ICD code or LOINC entry
date was used as COVID-19 diagnosis date. In order to have
enough data to extract the patient’s outcome, the diagnosis
date had to be at least 7 weeks before the freeze date of the
database (August 26, 2020), as it may take up to 7 weeks from
symptom onset to death [,

4.4 Prediction target

Critical state was used as a binary prediction target and
included sepsis, septic shock, and respiratory failure (e.g.,
ARDS) P41, Severe sepsis is associated with multiple organ
dysfunction syndrome. The precise definition based on ICD
codes used for critical state is listed in Table 2. In case of
multiple entries for a patient, the first entry was retained.
In addition, the date of the entry for critical state had to be
in a window of [0, +28] days (boundaries included) after
the diagnosis date to be eligible, as illustrated in Figure 7).
Four weeks were chosen to ensure coverage of the majority
of critical outcomes, as the interquartile range of time from
illness onset to sepsis and ARDS were reported to be [7, 13]
and [8, 15] days, respectively “’!. Patients with an eligible
entry for critical state were labeled as entering critical state,
whereas patients eligible based on cohort definitions without
any entry for critical state were labeled as not entering crit-
ical state. One exception to these rules were patients who
are flagged as deceased in the Explorys database. In order
to include death cases potentially related to COVID-19 in
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the critical state group, and as death dates and records with
diagnoses and procedures relating to the patient’s death are
not available in the Explorys data to avoid re-identification of
patients and ensure data privacy, patients with one of the fol-
lowing conditions were also labeled as entering critical state:
deceased with an entry for critical state within the window,
deceased with an entry for critical state within and after the
window, or deceased without any entry for critical state (and
thus excluding deceased patients with an entry for critical
state before the window). In the latter case, the date was set
to the end of the window for critical state entries. To validate
these assumptions, the proportion of patients assumed to be
deceased due to COVID-19 in our cohort was compared to
epidemiological numbers.

4.5 Features

Features were mainly grouped into “acute” features and
“chronic” features. Acute features are a set of features which
should be temporally close to the COVID-19 diagnosis (e.g.,
body temperature, symptoms potentially related to COVID-
19, or hospitalization prior to the diagnosis), whereas chronic
features are a set of features which have no direct temporal
relation to the COVID-19 diagnosis (e.g., chronic comorbidi-
ties, measurable demographics, or long-term habits). Features
were selected based on potential risk factors and predictors
related to COVID-19 reported in the literature. Figure 7 illus-
trates their difference in terms of time windows for extraction.
A negative value for boundaries of time window definitions
stand for dates prior to the reference date (e.g., prior to the
diagnosis date). Ideally, acute features should have been
recorded for higher consistency at diagnosis date. However,
this may not be always the case in the EHR compared to
data from clinical studies. To account for recorded symptoms
previous to the diagnosis (e.g., through telemedicine before
performing a SARS-CoV-2 test or due to potentially required
multiple testing because of false negatives delaying diagno-
sis), a time window of [—14, 0] days before the diagnosis
was used to extract acute features. Patients were considered
hospitalized (inpatient) if the reported admission—discharge
period of the hospitalization overlapped with the acute feature
extraction time window. Entries for chronic features were
considered if prior to the diagnosis date, without additional
restriction. Demographic features which were not restricted
to any time window (e.g., gender or race) or required a spe-
cial way of extraction/computation (e.g., age) are grouped as
“special” features and are not represented in Figure 7. As part
of the de-identification process, for patients over 90 years of
age, the age is truncated to 90 years. Similarly, the age of
all patients born within the last 356 days is be set to 0 years.
The full list of features including their definitions (e.g., based
on ICD or LOINC codes) is provided in Table 3, grouped by
extraction time window type. As features entries (especially
relevant for chronic features) may have been entered several

years ago, ICD-9 codes were used as well for the extraction.
In general, the last entry within the specific extraction time
window was used to construct the feature, except if described
otherwise in Table 3.

4.6 Dataset preparation and modeling approach

The full dataset was constructed based on COVID-19 diag-
nosis including binary prediction target labels for critical state
and enriched by the various features. Patients with missing
age or gender information were removed from the dataset,
and all missing binary features (i.e., obtained from ICD code
entries) of Table 3 were imputed with zero. Descriptive dis-
tribution statistics were created for all features, and features
with more than 90% missing values were removed from the
feature set. For the remaining feature set, the concurvity
(non-linear collinearity) among features was assessed using
Kendall’s 7, a non-parametric measure of correlation. In case
of |7] > 0.7 [°°l, the feature with more missing values was
removed from the feature set. In case of equal number of
missing values, the feature with the higher mean was removed
in order to keep the minorities and make the larger group part
of the predicted probability baseline. To train and evaluate
the model, the dataset was split into a train set (80%) and test
set (20%) using stratification of the prediction target. This
procedure was repeated 100 times based on different random
seeds to get a distribution and confidence intervals of the
model performance and feature importance, as performance
may change depending on the choice of splits.

For each random split the following steps were executed:
The non-binary features of the train set and the test set were
imputed based on the feature medians of the train set to avoid
data leaking. An XGBoost model was trained on the train
set using default parameters of the XGBoost Python pack-
age without additional hyperparameter tuning. XGBoost is
a decision-tree-based ensemble machine learning algorithm
using a gradient boosting framework. Gradient tree boosting
models have shown to outperform other types of models on a
large set of benchmarking datasets [°’). The trained XGBoost
model was subsequently used to create predictions for the test
set.

4.7 Performance analysis and model interpretability

The performance of the model was evaluated on the test
set for each random train-test split seed and reported with
median and interquartile range across seeds. This provides a
distribution of expected performance, if a new model would
be trained on similar data. Following metrics were computed:
receiver operating characteristic (ROC) curve and precision
recall (PR) curve as well as their respective areas under the
curve (ROC AUC and PR AUC). The confusion matrix, sensi-
tivity, and specificity were reported for the optimal probability
classification threshold. This threshold was obtained based
on maximizing the largest Youden’s J statistic (corresponding
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to the largest geometric mean as a metric for imbalanced
classification seeking for a balance between sensitivity and
specificity). Furthermore, the calibration of the model was
reported, comparing binned mean predicted values (i.e., prob-
abilities) to the actual fraction of positives (labeled as critical
state) (%) in order to evaluate whether the predicted prob-
ability is realistic and can provide some confidence on the
prediction.

Interpretability of the model was generated using
Tree SHAP ], a version of SHAP (SHapley Additive ex-
Planations) optimized for tree-based models. SHAP is a
framework to explain the contribution of feature values to
the output of individual predictions by any type of model and
to compute the global importance of features. This individual
contribution is expressed as SHAP value, corresponding to
log-odds (output of the trees in XGBoost), before they are con-
verted into probabilities with a logistic function. The global
feature importance as well as a summary plot of individual
contributions including feature values were created. In our
case, a positive SHAP value indicates a contribution towards
increased probability for critical state, whereas a negative
SHAP value indicates a reduction of probability for critical
state.
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Figure 1. Diagram of number of subjects. Cohort selection and
number of patients not entering versus entering critical state based
on the definitions outlined in the according sections. To train and
evaluate the model, the dataset was split using stratification of the
prediction target. This procedure was repeated 100 times based on
random seeds to get a distribution of model performance.
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Figure 2. Feature concurvity. Kendall’s 7 was used to evaluate correlation between each feature combination. If all patients of the entire
cohort have the same feature value, no concurvity can be calculated (represented in white, e.g., for Insurance (selfpay)).
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Figure 3. Model performance and calibration. Left: Receiver operating characteristic (ROC) curve and corresponding normalized violin
plot of the distribution of the ROC area under the curve (AUC). The top plot shows median and interquartile range (IQR) of the performance
(blue) and the chance level (no predictive value) as a reference (dashed gray line). Middle: Same representation for the precision recall (PR)
curve and corresponding distribution of the PR AUC. Right: Median and IQR (blue) of the fraction of actual positives (labeled as critical state)
for the binned mean predicted values (i.e., probabilities) (top). The reference diagonal represents perfect calibration (dashed gray line). The
bottom plot shows median and IQR (blue) for the counts within each bin of mean predicted value. The vertical gray line shows the median
and IQR for the optimal decision threshold based on the Youden’s J statistic.
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Figure 4. Confusion matrix. Confusion matrix for the predictions
of the test set based on the optimal decision threshold. True refers
to entering critical state, and False refers to not entering critical
state. The shades of the confusion matrix correspond to the median
percentage of the actual labels (i.e., shade of the top left cell and the
bottom right cell represent the median specificity and the median
sensitivity, respectively).
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Figure 5. Model interpretability. Left: Box plots (across different seeds) of the average absolute impact of features on the model output
magnitude (in log-odds) ordered by decreasing feature importance. Boxplots indicate median (circle), interquartile range (box), Tukey’s
original definition for the whiskers (1.5 times the interquartile range). Right: Illustration of the relation between feature values and impact (in
terms of magnitude and direction) on prediction output (all seeds pooled). Each dot represents an individual patient in the test set. The color
of each point corresponds to the normalized feature value (min-max normalization on test set). As an example for continuous features, older
patients tend to have a higher SHAP value). For binary features, the maximum feature value 1 corresponds to presence of the feature, and O to
absence of the feature. For gender, 1 corresponds to female and O to male.


https://doi.org/10.1101/2020.07.24.20155192
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.07.24.20155192; this version posted August 31, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

CRITICAL STATE PREDICTION AFTER COVID-19 USING EHR 17

« Decreased risk

Baseline probability = Decision threshold Predicted probability
0.11 0.12 0.56
0.1 l l 0.2 0.3 0.4 0.5 l 0.6 0.7
alll B : : : : : :
— — o~ =~ o
it il ™~ [ ©
0 < I olx "
2 ® ) S '
[9] [ < o [
e} = £ =
et 8 5 = 2
a ‘5 0 @ ©
a & g
v
£ 5
o
5 z
3]

Figure 6. Example prediction. Composition of a prediction (in probability space) for an example patient going into critical state, based
on the model of a random seed. The yellow arrows represent the contributions of major risk factors (e.g., older age or diabetes), and the
blue arrows represent the contribution of factors decreasing the probability of entering critical state (e.g., healthy BMI and normal body
temperature). Note that the baseline probability and the decision threshold are relatively low and close to the actual ratio of patients entering
critical state in our cohort.
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Figure 7. Time windows for prediction target and feature ex-
traction. Schematic illustration of time window definitions relative
to the COVID-19 diagnosis or to the critical state (time not to scale).
The brackets define the boundaries (included) in days.
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Table 1

Descriptive statistics of the features. The descriptive statistics are based on the full dataset after zero-imputation of the binary features but
before feature reduction. The percentages 25%, 50%, and 75% refer to the first (Q1), second (median), and third quartiles (Q3). Note that for
binary features the Mean column represents the proportion of positive entries. Note that as part of Explorys’ de-identification process the
feature Age has a ceiling effect at 90 years, and the age of all patients born in the last 365 days is reported as zero. For gender, 1 corresponds
to female.

Feature Count Missing Mean Std Min 25% 50% 75% Max
Active smoking 15816 0.0% 0.16 0.359 0 0 0 0 1
Acute bronchitis 15816 0.0% 0.0154 0.123 0 0 0 0 1
Age 15816 0.0% 48.6 19.4 1 32 49 63 90
Anorexia 15816 0.0% 0.00929 0.096 0 0 0 0 1
Asthma 15816 0.0% 0.114 0.318 0 0 0 0 1
BMI 13177 16.7% 315 8.41 10.4 25.7 30.1 359 93
Body temperature 4851 69.3% 37.1 0.617 32 36.7 37 37.4 40.8
Cardiovascular disease 15816 0.0% 0.234 0.423 0 0 0 0 1
Chronic kidney disease 15816 0.0% 0.0994 0.299 0 0 0 0 1
Chronic obstructive pulmonary disease 15816 0.0% 0.0558 0.229 0 0 0 0 1
Confusion 15816 0.0% 0.0179 0.133 0 0 0 0 1
Cough 15816 0.0% 0.298 0.457 0 0 0 1 1
Diabetes 15816 0.0% 0.188 0.391 0 0 0 0 1
Diarrhea 15816 0.0% 0.0404 0.197 0 0 0 0 1
Ethnicity (Hispanic) 15816 0.0% 0.115 0.319 0 0 0 0 1
Ethnicity (non-Hispanic) 15816 0.0% 0.294 0.456 0 0 0 1 1
Ethnicity (other) 15816 0.0% 0.55 0.497 0 0 1 1 1
Fatigue 15816 0.0% 0.0735 0.261 0 0 0 0 1
Fever 15816 0.0% 0.221 0.415 0 0 0 0 1
Gender 15816 0.0% 0.568 0.495 0 0 1 1 1
Headache 15816 0.0% 0.0491 0.216 0 0 0 0 1
Hemoptysis 15816 0.0% 0.000885 0.0297 0 0 0 0 1
Hospitalization (inpatient) 15816 0.0% 0.0483 0.214 0 0 0 0 1
Hypertension 15816 0.0% 0.38 0.485 0 0 0 1 1
Immunodeficiency 15816 0.0% 0.0235 0.151 0 0 0 0 1
Insurance (Medicaid) 15816 0.0% 0.00133 0.0364 0 0 0 0 1
Insurance (Medicare) 15816 0.0% 0.00126 0.0355 0 0 0 0 1
Insurance (other public) 15816 0.0% 0.0453 0.208 0 0 0 0 1
Insurance (other) 15816 0.0% 0.0278 0.164 0 0 0 0 1
Insurance (private) 15816 0.0% 0.00234 0.0483 0 0 0 0 1
Insurance (selfpay) 15816 0.0% 0 0 0 0 0 0 0
Myalgia 15816 0.0% 0.00152 0.0389 0 0 0 0 1
Nicotine dependence 15816 0.0% 0.0867 0.281 0 0 0 0 1
Obesity 15816 0.0% 0.251 0.433 0 0 0 1 1
Paralytic syndromes 15816 0.0% 0.012 0.109 0 0 0 0 1
Pneumonia 15816 0.0% 0.122 0.327 0 0 0 0 1
Race (African American) 15816 0.0% 0.442 0.497 0 0 0 1 1
Race (Asian) 15816 0.0% 0.0119 0.108 0 0 0 0 1
Race (Caucasian) 15816 0.0% 0.485 0.5 0 0 0 1 1
Race (multi-racial) 15816 0.0% 0.0233 0.151 0 0 0 0 1
Race (other) 15816 0.0% 0.0137 0.116 0 0 0 0 1
Rhinorrhea 15816 0.0% 0.0171 0.13 0 0 0 0 1
Shortness of breath 15816 0.0% 0.154 0.361 0 0 0 0 1
Sore throat 15816 0.0% 0.0374 0.19 0 0 0 0 1
Sputum 15816 0.0% 6.32¢ - 05 0.00795 0 0 0 0 1
Vomitting 15816 0.0% 0.00607 0.0777 0 0 0 0 1
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Table 2

ICD-10 codes for the prediction target. Patients with first diag-
nosis of any of the listed ICD-10 codes within the specified time
window were labeled as entering critical state.

ICD-10 code Description

A41.89 Other specified sepsis

A41.9 Sepsis, unspecified organism

R65.2 Severe sepsis

R65.20 Severe sepsis without septic shock

R65.21 Severe sepsis with septic shock

J80 Acute respiratory distress syndrome (ARDS)

J96 Respiratory failure, not elsewhere classified

196.0 Acute respiratory failure

196.00 Acute respiratory failure, unspecified whether with hypoxia
or hypercapnia

J96.01 Acute respiratory failure with hypoxia

196.02 Acute respiratory failure with hypercapnia

J96.9 Respiratory failure, unspecified

196.90 Respiratory failure, unspecified, unspecified whether with hy-
poxia or hypercapnia

J96.91 Respiratory failure, unspecified with hypoxia

J96.92 Respiratory failure, unspecified with hypercapnia
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Table 3
Feature definitions. Feature names, units and details (e.g., ICD and LOINC codes) grouped by extraction time window specifications.
Extraction time window Feature Units Details
Special features Age Years Computed at diagnosis date, based on birth year entry
Gender NA (0: male, 1: female) No time window restrictions
Ethnicity (Hispanic) NA (binary) No time window restrictions
Ethnicity (non-Hispanic) NA (binary) No time window restrictions

Acute features

Chronic features

Ethnicity (Other)
Insurance (Medicaid)
Insurance (Medicare)
Insurance (Other)
Insurance (Other public)
Insurance (Private)
Insurance (Selfpay)
Race (African American)
Race (Asian)

Race (Caucasian)

Race (Multi-racial)
Race (Other)

Acute bronchitis
Anorexia

Body temperature
Confusion

Cough

Diarrhea

Fatigue

Fever

Headache
Hemoptysis
Hospitalization (inpatient)

Myalgia
Pneumonia

Rhinorrhea
Shortness of breath
Sore throat
Sputum

Vomiting

Active smoking
Asthma
BMI

Cardiovascular disease

Chronic kidney disease

Chronic obstructive pulmonary disease

Diabetes
Hypertension
Immunodeficiency

Nicotine dependence
Obesity

Paralytic syndromes

NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)

NA (binary)
NA (binary)
°C

NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)

NA (binary)
NA (binary)

NA (binary)
NA (binary)
NA (binary)
NA (binary)
NA (binary)

NA (binary)
NA (binary)
kg/m?

NA (binary)

NA (binary)

NA (binary)
NA (binary)
NA (binary)
NA (binary)

NA (binary)
NA (binary)

NA (binary)

No time window restrictions
No time window restrictions
No time window restrictions
No time window restrictions
No time window restrictions
No time window restrictions
No time window restrictions
No time window restrictions
No time window restrictions
No time window restrictions
No time window restrictions
No time window restrictions

ICD-10: J20.*, J40 and ICD-9: 466.0, 490

ICD-10: R63.0, R63.8 and ICD-9: 783.0, 783.9

LOINC: 8310-5

ICD-10: R41.0, R41.82 and ICD-9: 780.97

ICD-10: RO5 and ICD-9: 786.2

ICD-10: R19.7 and ICD-9: 787.91

ICD-10: R53.1, R53.81, R53.83 and ICD-9: 780.79

ICD-10: R50.9 and ICD-9: 780.60

ICD-10: R51 and ICD-9: 784.0

ICD-10: R04.2 and ICD-9: 786.30

Considered if reported admission—discharge period overlapping
with extraction time window

ICD-10: M79.1, M79.10, M79.11, M79.12, M79.18 and ICD-9
729.1

ICD-10: J12.%,J13,J14,J15.%,J16.*,J17, J18.* and ICD-9: 480.%,
481, 482.%, 483.%, 484.*, 485, 486, 487.0, 488.01, 488.11, 488.81
ICD-10: J34.89 and ICD-9: 478.19

ICD-10: R06.02 and ICD-9: 786.05

ICD-10: J02.9 and ICD-9: 462

ICD-10: R09.3 and ICD-9: 786.4

ICD-10: R11.10 and ICD-9: 536.2, 787.03

Based on reported habit

ICD-10: J45.* and ICD-9: 493.*

LOINC: 39156-5, or computed from weight (29463-7) and height
(8302-2)

ICD-10: 120.*%, 121.%, 125.%, 148.%*, 150.%, 163.*, 165.*, 167.*, I73.*
and ICD-9: 410.%, 412.%, 413.%, 414.%, 427 %, 428 *, 429.%, 433.%,
434.% 437 %, 443 %

ICD-10: E10.21, E10.22, E10.29, E11.21, E11.22, E11.29, 112.0,
112.9, 113.0, 113.10, 113.11, 113.2, NO4.*, NO5.*, NO8, N18.*,
N19, N25.9 and ICD-9: 250.40, 250.41, 250.42, 250.43, 403.*,
404.%,581.81, 581.9, 583.89, 585.*, 588.9

ICD-10: J44.* and ICD-9: 491.*, 493.2*

ICD-10: E10.*%, E11.*, E13.* and ICD-9: 250.*

ICD-10: 110, 115.* and ICD-9: 401.*, 405.*

ICD-10: B20, D80.*, D81.*, D82.*, D83.*, D84.*, D86.*, D89.*
and ICD-9: 042, 279.*

ICD-10: F17.* and ICD-9: 305.1

ICD-10: E66.0*, E66.1, E66.2, E66.8, E66.9 and ICD-9: 278.00,
278.01, 278.03

ICD-10: G80.*, G81.*, G82.*, G83.* and ICD-9: 342.%*, 343.%,
344.*

* symbolizes a wildcard for ICD subcategory codes.
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