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Abstract 

Background 

The number of proposed prognostic models for COVID-19, which aim to predict disease outcomes, is 

growing rapidly. It is not known whether any are suitable for widespread clinical implementation. We 

addressed this question by independent and systematic evaluation of their performance among 

hospitalised COVID-19 cases. 

Methods 

We conducted an observational cohort study to assess candidate prognostic models, identified 

through a living systematic review. We included consecutive adults admitted to a secondary care 

hospital with PCR-confirmed or clinically diagnosed community-acquired COVID-19 (1st February to 

30th April 2020). We reconstructed candidate models as per their original descriptions and evaluated 

performance for their original intended outcomes (clinical deterioration or mortality) and time horizons. 

We assessed discrimination using the area under the receiver operating characteristic curve 

(AUROC), and calibration using calibration plots, slopes and calibration-in-the-large. We calculated 

net benefit compared to the default strategies of treating all and no patients, and against the most 

discriminating predictor in univariable analyses, based on a limited subset of a priori candidates.   

Results 

We tested 22 candidate prognostic models among a cohort of 411 participants, of whom 180 (43.8%) 

and 115 (28.0%) met the endpoints of clinical deterioration and mortality, respectively. The highest 

AUROCs were achieved by the NEWS2 score for prediction of deterioration over 24 hours (0.78; 95% 

CI 0.73-0.83), and a novel model for prediction of deterioration <14 days from admission (0.78; 0.74-

0.82). Calibration appeared generally poor for models that used probability outcomes. In univariable 

analyses, admission oxygen saturation on room air was the strongest predictor of in-hospital 

deterioration (AUROC 0.76; 0.71-0.81), while age was the strongest predictor of in-hospital mortality 

(AUROC 0.76; 0.71-0.81). No prognostic model demonstrated consistently higher net benefit than 

using the most discriminating univariable predictors to stratify treatment, across a range of threshold 

probabilities. 
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Conclusions 

Oxygen saturation on room air and patient age are strong predictors of deterioration and mortality 

among hospitalised adults with COVID-19, respectively. None of the prognostic models evaluated 

offer incremental value for patient stratification to these univariable predictors.   
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Introduction 

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 

(SARS-CoV-2), causes a spectrum of disease ranging from asymptomatic infection to critical illness. 

Among people admitted to hospital, COVID-19 has reported mortality of 21-33%, with 14-17% 

requiring admission to high dependency or intensive care units (ICU)1–4. Exponential surges in 

transmission of SARS-CoV-2, coupled with the severity of disease among a subset of those affected, 

pose major challenges to health services by threatening to overwhelm resource capacity5. Rapid and 

effective triage at the point of presentation to hospital is therefore required to facilitate adequate 

allocation of resources and to ensure that patients at higher risk of deterioration are managed and 

monitored appropriately. Importantly, prognostic models may have additional value in patient 

stratification for emerging drug therapies6,7.  

As a result, there has been global interest in development of prediction models for COVID-198. These 

include models aiming to predict a diagnosis of COVID-19, and prognostic models, aiming to predict 

disease outcomes. At the time of writing, a living systematic review has already catalogued 145 

diagnostic or prognostic models for COVID-198. Critical appraisal of these models using quality 

assessment tools developed specifically for prediction modelling studies suggests that the candidate 

models are poorly reported, at high risk of bias and over-estimation of their reported performance8,9. 

However, independent evaluation of candidate prognostic models in unselected datasets has been 

lacking. It therefore remains unclear how well these proposed models perform in practice, or whether 

any are suitable for widespread clinical implementation. We aimed to address this knowledge gap by 

systematically evaluating the performance of proposed prognostic models, among consecutive 

patients hospitalised for COVID-19 at a single centre.   
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Methods 

Identification of candidate prognostic models 

We used a published living systematic review to identify candidate prognostic models for COVID-

19 indexed in PubMed, Embase, Arxiv, medRxiv, or bioRxiv until 5th May 20208. We included models 

that aim to predict clinical deterioration or mortality among patients with COVID-19. We also included 

prognostic scores commonly used in clinical practice10–12, but not specifically developed for COVID-19 

patients. For each candidate model identified, we extracted predictor variables, outcome definitions 

(including time horizons), modelling approaches, and final model parameters from original 

publications, and contacted authors for additional information where required. We excluded scores 

where the underlying model parameters were not publicly available, since we were unable to 

reconstruct them, along with models for which included predictors were not available in our dataset. 

The latter included models that require computed tomography imaging or arterial blood gas sampling, 

since these investigations were not routinely performed among unselected patients with COVID-19 at 

our centre.  

Study population 

Our study is reported in accordance with transparent reporting of a multivariable prediction model for 

individual prognosis or diagnosis (TRIPOD) guidance for external validation studies13. We included 

consecutive adults admitted to University College Hospital London with a final diagnosis of PCR-

confirmed or clinically diagnosed COVID-19, between 1st February and 30th April 2020. Since we 

sought to use data from the point of hospital admission to predict outcomes, we excluded patients 

transferred in from other hospitals, and those with hospital-acquired COVID-19 (defined as 1st PCR 

swab sent >5 days from date of hospital admission, as a proxy for the onset of clinical suspicion of 

SARS-CoV-2 infection).  

Data sources and variables of interest 

Data were collected by direct extraction from electronic health records, complemented by manual 

curation. Variables of interest in the dataset included: demographics (age, gender, ethnicity), 

comorbidities, clinical observations, laboratory measurements, radiology reports, and clinical 

outcomes. We defined ‘clinical deterioration’ as a composite outcome including initiation of ventilatory 

support (continuous positive airway pressure, non-invasive ventilation, high flow nasal cannula 
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oxygen, invasive mechanical ventilation or extra-corporeal membrane oxygenation) or death, 

equivalent to World Health Organization Clinical Progression Scale ≥ 614. The rationale for this 

composite outcome is to make the endpoint more generalisable between centres, since hospital 

respiratory management algorithms may vary substantially. Each chest radiograph was reported by a 

single radiologist, reflecting routine clinical conditions, using British Society of Thoracic Imaging 

criteria, and using a modified version of the Radiographic Assessment of Lung Edema (RALE) 

score15,16. Participants were followed-up clinically to the point of discharge from hospital. We extended 

follow-up beyond discharge by cross-checking NHS spine records to identify reported deaths post-

discharge, thus ensuring >30 days’ follow-up for all participants.   

Statistical analyses 

For each prognostic model included in the analyses, we reconstructed the model according to 

authors’ original descriptions, and sought to evaluate the model discrimination and calibration 

performance against their original intended endpoint. For models that provide online risk calculator 

tools, we validated our reconstructed models against original authors’ models, by cross-checking our 

predictions against those generated by the web-based tools for a random subset of participants.  

For models that used ICU admission or death, or ‘severe’ COVID-19 or death, as composite 

endpoints, we used our ‘clinical deterioration’ endpoint as the primary outcome, as defined above. 

Where models specified their intended time horizon in their original description, we used this timepoint 

in the primary analysis, in order to ensure unbiased assessment of model calibration. Where the 

intended time horizon was not specified, we assessed the model to predict in-hospital deterioration or 

mortality, as appropriate.  

For all models, we assessed discrimination by quantifying the area under the receiver operating 

characteristic curve (AUROC)17. For models that provided outcome probability scores, we assessed 

calibration by visualising calibration of predicted vs. observed risk using loess-smoothed and quartile 

plots, and by quantifying calibration slopes and calibration-in-the-large (CITL). A perfect calibration 

slope should be 1; slopes <1 indicate overfitting, while slopes >1 reflect underfitting. Ideal CITL is 0; 

CITL>0 indicates that predictions are systematically too low, while CITL<0 indicates that predictions 

are too high. For models with points-based scores, we assessed calibration visually by plotting model 

scores vs. actual outcome proportions. For models that provide probability estimates, but where the 
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model intercept was not available, we calibrated the model to our dataset by calculating the intercept 

when using the model linear predictor as an offset term, leading to perfect CITL. This approach, by 

definition, overestimated calibration with respect to CITL, but allowed us to examine the calibration 

slope in our dataset.  

We also assessed the discrimination of each candidate model for standardised outcomes of: (a) our 

composite endpoint of clinical deterioration; and (b) mortality, across a range of pre-specified time 

horizons from admission (7 days, 14 days, 30 days and any time during hospital admission), by 

calculating time-dependent AUROCs (with cumulative sensitivity and dynamic specificity)18. The 

rationale for this analysis was to harmonise endpoints, in order to facilitate more direct comparisons of 

discrimination between the candidate models.  

In order to further benchmark the performance of candidate prognostic models, we then computed 

AUROCs for a limited number of univariable predictors considered to be of highest importance a 

priori, based on clinical knowledge and existing data, for prediction of our composite endpoints of 

clinical deterioration and mortality (7 days, 14 days, 30 days and any time during hospital admission). 

The a priori predictors of interest examined in this analysis were age, clinical frailty scale, oxygen 

saturation at presentation on room air, C-reactive protein and absolute lymphocyte count8,19.  

We performed decision curve analyses to quantify the net benefit achieved by each model for 

predicting the intended endpoint, in order to inform clinical decision making across a range of 

risk:benefit ratios for an intervention or ‘treatment’20. In this approach, the risk:benefit ratio is 

analogous to the cut point for a statistical model above which the intervention would be considered 

beneficial (deemed the ‘threshold probability’). Net benefit was calculated as sensitivity × prevalence 

– (1 – specificity) × (1 – prevalence) × w where w is the odds at the threshold probability and the 

prevalence is the proportion of patients who experienced the outcome20. We calculated net benefit 

across a range of clinically relevant threshold probabilities, ranging from 0 to 0.5, since the risk:benefit 

ratio may vary for any given intervention (or ‘treatment’). We compared the utility of each candidate 

model against strategies of treating all and no patients, and against the best performing univariable 

predictor for in-hospital clinical deterioration, or mortality, as appropriate. We calculated ‘delta’ net 

benefit as net benefit when using the index model minus net benefit when: (a) treating all patients; 
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and (b) using most discriminating univariable predictor. Decision curve analyses were done using the 

rmda package in R21.  

We handled missing data using multiple imputation by chained equations22, using the mice package in 

R23. All variables in the final prognostic models were included in the imputation model to ensure 

compatibility22 . A total of 10 imputed datasets were generated; discrimination and calibration metrics 

were pooled using Rubin’s rules24. Individual predictions for each prognostic model were averaged 

across imputations for each participant in order to generate pooled calibration plots, ROC curves and 

decision curves.  

All analyses were conducted in R (version 3.5.1).  

Sensitivity analyses 

We recalculated discrimination and calibration parameters for each candidate model using a complete 

case analysis. We also examined for non-linearity in the a priori univariable predictors using restricted 

cubic splines, with 3 knots. Finally, we estimated optimism for discrimination and calibration 

parameters for the a priori univariable predictors using bootstrapping (1,000 iterations), using the rms 

package in R25.   
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Results 

Summary of candidate prognostic models 

We identified a total of 37 studies describing prognostic models, of which 19 studies (including 22 

unique models) were eligible for inclusion (Supplementary Figure 1 and Table 1). Of these, 5 models 

were not specific to COVID-19, but were developed as prognostic scores for emergency department 

attendees26, hospitalised patients12,27, people with suspected infection10 or community-acquired 

pneumonia11, respectively. Of the 17 models developed specifically for COVID-19, most (10/17) were 

developed using datasets originating in China. A total of 13/22 models use points-based scoring 

systems to derive final model scores, with the remainder using logistic regression modelling 

approaches to derive probability estimates. A total of 12/22 prognostic models primarily aimed to 

predict clinical deterioration, while the remaining 10 sought to predict mortality alone. When specified, 

time horizons for prognosis ranged from 1 to 30 days.  

Overview of study cohort 

During the study period, 521 adults were admitted with a final diagnosis of COVID-19, of whom 411 

met the eligibility criteria for inclusion (Supplementary Figure 2). Median age of the cohort was 66 

years (interquartile range (IQR) 53-79), and the majority were male (252/411; 61.3%). Table 2 shows 

the baseline demographics, comorbidities, laboratory results and clinical measurements of the study 

cohort, of whom most (370/411; 90.0%) had PCR-confirmed SARS-CoV-2 infection. A total of 180 

(43.8%) and 115 (28.0%) of participants met the endpoints of clinical deterioration and mortality, 

respectively, above the minimum requirement of 100 events recommended for external validation 

studies 28. The risks of clinical deterioration and death declined with time since admission (median 

days to deterioration 1.4 (IQR 0.3-4.2); median days to death 6.6 (IQR 3.6-13.1); Supplementary 

Figure 3). Most variables required for calculation of the 22 prognostic model scores were available 

among the vast majority of participants. However, admission lactate dehydrogenase was only 

available for 183/411 (44.5%) and D-dimer measured for 153/411 (37.2%). Supplementary Figure 4 

shows missingness of each prognostic model in the complete case dataset, stratified by the outcomes 

of interest, due to unavailability of predictor variables.  
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Evaluation of prognostic models for original primary outcomes 

Table 3 shows discrimination and calibration metrics, where appropriate, for the 22 evaluated 

prognostic models in the primary multiple imputation analysis. The highest AUROCs were achieved 

by the NEWS2 score for prediction of deterioration over 24 hours (0.78; 95% CI 0.73 - 0.83), and the 

Carr ‘final’ model for prediction of deterioration over 14 days (0.78; 95% CI 0.74 - 0.82). Of the other 

prognostic scores currently used in routine clinical practice, CURB65 was noted to have reasonable 

discrimination for 30-day mortality (AUROC 0.75; 95% CI 0.70 - 0.80), and qSOFA discriminated in-

hospital mortality poorly (AUROC 0.6; 95% CI 0.55 - 0.65). ROC curves are shown for each candidate 

model in Supplementary Figure 5.  

For all models that provide probability scores for either deterioration or mortality, calibration appeared 

visually poor with evidence of overfitting and either systematic overestimation or underestimation of 

risk (Figure 1). Supplementary Figure 6 shows associations between prognostic models with points-

based scores and actual risk. In addition to demonstrating reasonable discrimination, the NEWS2 and 

CURB65 models demonstrated approximately linear associations between scores and actual 

probability of deterioration at 24 hours and mortality at 30 days, respectively.  

Time-dependent discrimination of candidate models and a priori univariable predictors for 
standardised outcomes 

Next, we sought to compare the discrimination of these models for different outcomes across the 

range of time horizons, benchmarked against preselected univariable predictors associated with 

adverse outcomes in COVID-198,19. We recalculated time-dependent AUROCs for each of these 

outcomes, stratified by time horizon to the outcome (Supplementary Figures 7 and 8). These analyses 

showed that AUROCs generally declined with increasing time horizons. Admission oxygen saturation 

on room air was the strongest predictor of in-hospital deterioration (AUROC 0.76; 95% CI 0.71-0.81), 

while age was the strongest predictor of in-hospital mortality (AUROC 0.76; 95% CI 0.71-0.81).  

Decision curve analyses to assess clinical utility 

We compared net benefit for each prognostic model (for its original intended endpoint) to the 

strategies of treating all patients, treating no patients, and using the most discriminating univariable 

predictor for either deterioration (i.e. oxygen saturation on air) or mortality (i.e. patient age) to stratify 

treatment (Supplementary Figure 9). Although all prognostic models showed greater net benefit than 
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treating all patients at the higher range of threshold probabilities, none of these models demonstrated 

consistently greater net benefit than the most discriminating univariable predictor, across the range of 

threshold probabilities (Figure 2).  

Sensitivity analyses 

Recalculation of model discrimination and calibration metrics for prediction of the original intended 

endpoint using a complete case analysis revealed similar results to the primary multiple imputation 

approach (Supplementary Table 1). Visual examination of associations between the most 

discriminating univariable predictors and log odds of deterioration or death using restricted cubic 

splines showed no evidence of non-linear associations (Supplementary Figure 10). Finally, internal 

validation using bootstrapping showed near zero optimism for discrimination and calibration 

parameters for the univariable models (Supplementary Table 2).   
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Discussion 

In this observational cohort study of consecutive adults hospitalised with COVID-19, we systematically 

evaluated the performance of 22 prognostic models for COVID-19. These included models developed 

specifically for COVID-19, along with existing scores in routine clinical use prior to the pandemic. For 

prediction of both clinical deterioration or mortality, discrimination appeared modest or poor for most 

models. NEWS2 performed reasonably well for prediction of deterioration over a 24-hour interval, 

achieving an AUROC of 0.78, while the Carr ‘final’ model29 also had reasonable discrimination 

(AUROC 0.78), but tended to systematically underestimate risk. All COVID-specific models that 

derived an outcome probability of either deterioration or mortality showed poor calibration. We found 

that oxygen saturation (AUROC 0.76) and patient age (AUROC 0.76) were the most discriminating 

single variables for prediction of in-hospital deterioration and mortality respectively. These predictors 

have the added advantage that they are immediately available at the point of presentation to hospital. 

In decision curve analysis, no prognostic model demonstrated clinical utility consistently greater than 

using oxygen saturation on room air to predict deterioration, or patient age to predict mortality. 

While previous studies have largely focused on novel model discovery, or evaluation of a limited 

number of existing models, this is the first study to our knowledge to evaluate systematically-identified 

candidate prognostic models for COVID-19. We used a comprehensive living systematic review8 to 

identify eligible models and sought to reconstruct each model as per the original authors’ description. 

We then evaluated performance against its intended outcome and time horizon, wherever possible, 

using recommended methods of external validation incorporating assessments of discrimination, 

calibration and net benefit17. Moreover, we used a robust approach of electronic health record data 

capture, supported by manual curation, in order to ensure a high-quality dataset, and inclusion of 

unselected and consecutive COVID-19 cases that met our eligibility criteria.  In addition, we used 

robust outcome measures of mortality and clinical deterioration, aligning with the WHO Clinical 

Progression Scale14 

A weakness of the current study is that it is based on data from a single centre, and therefore cannot 

assess between-setting heterogeneity in model performance. Second, due to the limitations of 

routinely collected data, predictor variables were available for varying numbers of participants for 

each model. We therefore performed multiple imputation, in keeping with recommendations for 
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development and validation of multivariable prediction models, in our primary analyses30. Findings 

were similar in the complete case sensitivity analysis, thus supporting the robustness of our results. 

Thirdly, a number of models could not be reconstructed in our data. For some models, this was due 

the absence of predictors in our dataset, such as those requiring computed tomography imaging, 

since this is not currently routinely recommended for patients with suspected or confirmed COVID-

1916. We were also not able to include models for which the parameters were not publicly available. 

This underscores the need for strict adherence to reporting standards in multivariable prediction 

models13. Finally, we used admission data only as predictors in this study, since most prognostic 

scores are intended to predict outcomes at the point of hospital admission. We note, however, that 

some scores (such as NEWS2) are designed for dynamic in-patient monitoring. Future studies may 

integrate serial data to examine model performance when using such dynamic measurements.  

Despite the vast global interest in the pursuit of prognostic models for COVID-19, our findings show 

that no COVID-19-specific models can currently be recommended for routine clinical use. All novel 

prognostic models for COVID-19 assessed in the current study were derived from single-centre data. 

Future studies may seek to pool data from multiple centres in order to robustly evaluate the 

performance of existing models across heterogeneous populations, and develop and validate novel 

prognostic models, through individual participant data meta-analysis31. Such an approach would allow 

assessments of between-study heterogeneity and the likely generalisability of candidate models. It is 

also imperative that discovery populations are representative of target populations for model 

implementation, with inclusion of unselected cohorts. Moreover, we strongly advocate for transparent 

reporting in keeping with TRIPOD standards (including modelling approaches, all coefficients and 

standard errors) along with standardisation of outcomes and time horizons, in order to facilitate 

ongoing systematic evaluations of model performance and clinical utility13.  

We conclude that baseline oxygen saturation on room air and patient age are strong predictors of 

deterioration and mortality, respectively. None of the prognostic models evaluated in this study offer 

incremental value for patient stratification to these univariable predictors. Therefore, none of the 

evaluated prognostic models for COVID-19 can be recommended for routine clinical implementation. 

Future studies seeking to develop prognostic models for COVID-19 should consider integrating multi-
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centre data in order to increase generalisability of findings, and should ensure benchmarking against 

existing models and simpler univariable predictors.   
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Table 1: Characteristics of studies describing prognostic models included in systematic evaluation.  1 

MEWS = modified early warning score; qSOFA = quick sequential (sepsis-related) organ failure assessment; REMS = rapid emergency medicine score; 2 

NEWS = national early warning score; TACTIC = therapeutic study in pre-ICU patients admitted with COVID-19; AVPU = Alert / responds to voice / 3 

responsive to pain / unresponsive; CRP = C-reactive protein; LDH = lactate dehydrogenase; RALE = radiographic assessment of lung edema; ARDS = acute 4 

respiratory distress syndrome; ICU = intensive care unit; ECMO = extra-corporeal membrane oxygenation.  5 

Units, unless otherwise specified, are: age in years; respiratory rate in breaths per minute; heart rate in beats per minute; blood pressure in mmHg; 6 

temperature in °C; oxygen saturation in %; CRP in mg/L; LDH in U/L; neutrophils, lymphocytes, total white cell count and platelets x 10^9/L; D-dimer in ng/mL; 7 

creatinine in μmol/L; estimated glomerular filtration rate in mL/min/1.73 m2, albumin in g/L.  8 

Authors Score name Country of 

derivation 

Development 

population 

Pre-existing or COVID-

specific? 

Model outcome Predictors Original 

modelling 

approach 

How are 

predictors 

combined? 

Subbe et 

al
32

 

MEWS
#
 UK Hospital inpatients Pre-existing (hospital 

patients) 

Mortality, ICU admission or 

cardiac arrest (no specified 

timepoint) 

Systolic blood pressure, pulse rate, 

respiratory rate, temperature, 

AVPU score 

Clinical 

consensus 

Points-based 

score 

Olsson et 

al
26

 

REMS
#
 Sweden Patients presenting 

to emergency 

department 

Pre-existing (emergency 

department patients) 

Mortality (in-hospital) Blood pressure, respiratory rate, 

pulse rate, Glasgow coma scale, 

oxygen saturation, age 

Logistic 

regression 

Points-based 

score 

Seymour et 

al
10

 

qSOFA USA Electronic health 

record encounters 

Pre-existing (suspected 

infection) 

Mortality (in-hospital) Systolic hypotension [≤100 mm 

Hg], tachypnoea [≥22/min], altered 

mentation 

Logistic 

regression 

Points-based 

score 

Lim et al
11

 CURB65 UK, New 

Zealand, 

Netherlands 

Patients with 

community 

acquired 

pneumonia 

Pre-existing 

(community-acquired 

pneumonia) 

Mortality (30 days) Confusion, urea >7 mmol/L, 

respiratory rate >30/min, low 

systolic (<90 mm Hg) or diastolic 

(<60 mm Hg) blood pressure), age 

> 65 years 

Logistic 

regression 

Points-based 

score 

Royal 

College of 

Physicians
12

 

NEWS2 UK Hospital admissions Pre-existing (hospital 

patients) 

Mortality, ICU admission or 

cardiac arrest (24h) 

Respiratory rate, oxygen 

saturation, systolic blood pressure, 

pulse rate, level of consciousness 

or new confusion, temperature 

Clinical 

consensus 

Points-based 

score 

Bello-

Chavolla et 

al
33

 

Bello-Chavolla Mexico Confirmed COVID-

19 patients 

presenting in 

COVID-specific Mortality (30 day) Age ≥65 years, diabetes, early-

onset diabetes, obesity, age <40 

years, chronic kidney disease, 

Cox regression Points-based 

score 
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primary care hypertension, immunosuppression 

(rheumatoid arthritis, lupus, HIV or 

immunosuppressive drugs) 

Caramelo 

et al
34

 

Caramelo
$
 Simulated data Simulated data COVID-specific Mortality (period unspecified) Age, hypertension, diabetes, 

cardiovascular disease, chronic 

respiratory disease, cancer 

Logistic 

regression 

Logistic 

regression 

Carr et al
29

 ‘Carr final', 'Carr 

threshold' 

UK Inpatients with 

confirmed COVID-

19 

COVID-specific ICU admission or death (14 

days from symptom onset) 

NEWS2, CRP, neutrophils, 

estimated glomerular filtration 

rate, albumin, age 

Regularized 

logistic 

regression with 

LASSO 

estimator 

Regularized 

logistic 

regression 

Colombi et 

al
35

 

Colombi_clinical
$
 

(clinical model 

only) 

Italy Inpatients with 

confirmed COVID-

19 

COVID-specific ICU admission or in-hospital 

mortality (period unspecified) 

Age > 68 years, cardiovascular 

disease, CRP > 76 mg/L, LDH > 347 

U/L, platelets > 180 x 10^9/L 

Logistic 

regression 

Logistic 

regression  

Galloway et 

al
36

 

Galloway UK Inpatients with 

confirmed COVID-

19 

COVID-specific ICU admission or death during 

admission 

Modified RALE score >3, oxygen 

saturation < 93%, creatinine > 100 

μmol/L, neutrophils > 8 x 10^9/L, 

age > 40 years, chronic lung 

disease, CRP > 40 mg/L, albumin < 

34g/L, male gender, non-white 

ethnicity, hypertension, diabetes. 

Logistic 

regression 

(LASSO) 

Points-based 

score 

Guo et al
37

 Guo China Inpatients with 

confirmed COVID-

19 

COVID-specific Deterioration within 14 days 

of admission 

Age >50, underlying chronic 

disease (not defined), 

neutrophil/lymphocyte ratio > 5, 

CRP > 25 mg/L, d-dimer > 800 

ng/mL  

Cox regression Points-based 

score 

Hall et al
38

 TACTIC UK Inpatients with 

confirmed COVID-

19 

COVID-specific Admission to ICU or death 

during admission 

Modified RALE score >3, age >40 

years, male sex, non-white 

ethnicity, diabetes, hypertension, 

neutrophils > 8 x 10^9/L, CRP > 40 

mg/L 

Logistic 

regression 

(LASSO) 

Points-based 

score 

Hu et al
39

 Hu China Inpatients with 

confirmed COVID-

19 

COVID-specific Mortality (in-hospital) Age, CRP, lymphocytes, d-dimer 

(μg/mL) 

Logistic 

regression 

Logistic 

regression 

Huang et 

al
40

 

Huang China Inpatients with 

confirmed COVID-

19 

COVID-specific Progression to severe COVID 

(defined as respiratory rate ≥ 

30, oxygen saturation ≤ 93% 

in the resting state or arterial 

blood oxygen partial pressure 

/ oxygen concentration (FiO2) 

≤ 300mmHg), 3-7 days from 

admission 

CRP > 10 mg/L, LDH > 250 U/L, 

respiratory rate > 24/min, 

comorbidity (hypertension, 

coronary artery disease, diabetes, 

obesity, chronic obstructive 

pulmonary disease, chronic kidney 

disease, obstructive sleep apnoea) 

Logistic 

regression 

Logistic 

regression 

Ji et al
41

 Ji China Inpatients with 

confirmed COVID-

19 

COVID-specific Progression to severe COVID-

19 at 10 days (defined as 

respiratory rate ≥ 30, resting 

Age (> 60 years), lymphocytes (≤1 x 

10^9/L) LDH (<250, 250-500, >500 

U/L), comorbidity (hypertension, 

Cox regression Points-based 

score 
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oxygen saturation ≤ 93%, 

PaO2/FiO2 ≤ 300 mmHg, 

requirement of mechanical 

ventilation or worsening of 

lung CT findings) 

diabetes, cardiovascular disease, 

chronic lung disease, or  

HIV) 

Lu et al
42

 Lu China Inpatients with 

suspected or 

confirmed COVID-

19 

COVID-specific Mortality (12 days) Age ≥ 60 years, CRP ≥ 34 mg/L Cox regression Points-based 

score 

Shi et al
43

 Shi China Inpatients with 

confirmed COVID-

19 

COVID-specific Death or 'severe' COVID-19 

(not defined) over unspecified 

period 

Age>50 years, male sex, 

hypertension 

Not specified Points-based 

score 

Xie et al
44

 Xie China Inpatients with 

confirmed COVID-

19 

COVID-specific Mortality (in-hospital) Age, lymphocytes, LDH, oxygen 

saturation 

Logistic 

regression 

Logistic 

regression  

Yan et al
45

 Yan China Inpatients 

suspected of 

COVID-19 

COVID-specific Mortality (period unspecified) LDH > 365 U/L, CRP > 41.2 mg/L, 

lymphocyte percentage > 14.7% 

Decision-tree 

model with XG 

boost 

Points-based 

score 

Zhang et 

al
46

 

‘Zhang poor', 

'Zhang death' 

China Inpatients with 

confirmed COVID-

19 

COVID-specific Mortality and poor outcome 

(ARDS, intubation or ECMO, 

ICU admission) as separate 

models; no timepoint 

specified 

Age, sex, neutrophils, 

lymphocytes, platelets, CRP, 

creatinine 

Logistic 

regression 

(LASSO) 

Logistic 

regression 

#MEWS and REMS were evaluated among people with COVID-19 by Hu et al47, and thus were included in the present study.  9 

$No model intercept was available; the intercepts for these models were therefore calibrated to the validation dataset, using the model linear predictors as 10 

offset terms. 11 

12 
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Table 2: Baseline characteristics of hospitalised adults with COVID-19 included in systematic evaluation cohort.  13 

Laboratory and physiological measurements reflect parameters at the time of hospital admission. N column shows number of participants with available data 14 

for each variable. Data are shown as N (%) for categorical data or median (interquartile range (IQR)) for continuous variables.  15 

Variable n level Overall 

   411 

Demographics    

Age (years) 411 (100)  66.0 [53.0, 79.0] 

Gender 411 (100) Female 159 (38.7) 

  Male 252 (61.3) 

Ethnicity 390 (94.9) Asian 52 (13.3) 

  Black 56 (14.4) 

  White 234 (60.0) 

  Mixed 7 (1.8) 

  Other 41 (10.5) 

Clinical frailty scale 411 (100)  2.0 [1.0, 6.0] 

Comorbidities    

Hypertension 411 (100)  172 (41.8) 

Chronic cardiovascular disease 410 (99.8)  108 (26.3) 

Chronic respiratory disease 411 (100)  99 (24.1) 

Diabetes 411 (100)  105 (25.5) 

Obesity 411 (100)  83 (20.2) 

Chronic kidney disease 410 (99.8)  40 (9.8) 

Laboratory measurements    

C-reactive protein (mg/L) 403 (98.1)  96.7 [45.2, 178.7] 

Lymphocytes (x 10^9) 410 (99.8)  0.9 [0.6, 1.4] 

Lactate dehydrogenase (U/L) 183 (44.5)  395.0 [309.0, 511.0] 

D-dimer (ng/mL) 153 (37.2)  1070.0 [640.0, 2120.0] 

SARS CoV-2 PCR 411 (100)  370 (90.0) 

Physiological measurements    

Respiratory rate (per min) 410 (99.8)  24.0 [20.0, 28.0] 

Heart rate (per min) 410 (99.8)  94.0 [81.2, 107.0] 

Systolic blood pressure (mmHg) 411 (100)  131.0 [115.0, 143.0] 

Oxygen saturation (%; on air) 403 (98.1)  91.0 [86.0, 95.0] 

Outcome    

Deteriorated 411 (100)  180 (43.8) 

Died 411 (100)  115 (28.0) 
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Table 3: Validation metrics of prognostic scores for COVID-19, using primary multiple imputation analysis (n=411).  16 

For each model, performance is evaluated for its original intended outcome, shown in ‘Primary outcome’ column. AUROC = area under the receiver operating 17 

characteristic curve; CI = confidence interval.  18 

Score Primary outcome AUROC (95% CI) Calibration slope (95% CI) Calibration in the large (95% CI) 

NEWS2 Deterioration (1 day) 0.78 (0.73 - 0.83) 

 
Ji Deterioration (10 days) 0.56 (0.5 - 0.62) 

 
Carr_final Deterioration (14 days) 0.78 (0.74 - 0.82) 1.04 (0.8 - 1.28) 0.33 (0.11 - 0.55) 

Carr_threshold Deterioration (14 days) 0.76 (0.71 - 0.81) 0.85 (0.65 - 1.05) -0.34 (-0.57 - -0.12) 

Guo Deterioration (14 days) 0.67 (0.61 - 0.73) 

 
Zhang_poor Deterioration (in-hospital) 0.74 (0.69 - 0.79) 0.33 (0.22 - 0.43) 0.56 (0.3 - 0.81) 

Galloway Deterioration (in-hospital) 0.72 (0.68 - 0.77) 

 
TACTIC Deterioration (in-hospital) 0.7 (0.65 - 0.75) 

 
Colombi_clinical Deterioration (in-hospital) 0.69 (0.63 - 0.74) 0.53 (0.35 - 0.71) N/A 

Huang Deterioration (in-hospital) 0.67 (0.61 - 0.73) 0.18 (0.1 - 0.26) -4.26 (-4.61 - -3.91) 

Shi Deterioration (in-hospital) 0.61 (0.56 - 0.66) 

 
MEWS Deterioration (in-hospital) 0.6 (0.54 - 0.65) 

 
Lu Mortality (12 days) 0.72 (0.67 - 0.76) 

 
CURB65 Mortality (30 days) 0.75 (0.7 - 0.8) 

 
BelloChavolla Mortality (30 days) 0.66 (0.6 - 0.72) 

 
REMS Mortality (in-hospital) 0.76 (0.71 - 0.81) 

 
Xie Mortality (in-hospital) 0.76 (0.69 - 0.82) 0.83 (0.51 - 1.15) 0.41 (0.16 - 0.66) 

Hu Mortality (in-hospital) 0.74 (0.68 - 0.79) 0.33 (0.2 - 0.45) -1.07 (-1.37 - -0.77) 

Caramelo Mortality (in-hospital) 0.71 (0.66 - 0.76) 0.53 (0.36 - 0.69) N/A 

Zhang_death Mortality (in-hospital) 0.7 (0.65 - 0.76) 0.29 (0.19 - 0.4) 0.89 (0.6 - 1.19) 

qSOFA Mortality (in-hospital) 0.6 (0.55 - 0.65) 

 
Yan Mortality (in-hospital) 0.58 (0.49 - 0.67) 
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Figure 1: Calibration plots for prognostic models estimating outcome probabilities. 

For each plot, the blue line represents a Loess-smoothed calibration curve, and scatter points show 

quartiles of predicted risk. Rug plots indicate the distribution of data points. No model intercept was 

available for the Caramelo or Colombi ‘clinical’ models; the intercepts for these models were 

calibrated to the validation dataset, by using the model linear predictors as offset terms. Calibration-

in-the-large is therefore not shown for these models, since it is zero by definition. The primary 

outcome of interest for each model is shown in the plot sub-heading. Individual predictions for each 

prognostic model were averaged across imputations for each participant in the dataset in order to 

generate these pooled calibration plots. 
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Figure 2: Decision curve analysis showing delta net benefit of each candidate model, compared to treating all patients and best univariable 
predictors.  

For each analysis, the endpoint is the original intended outcome and time horizon for the index model. Delta net benefit is calculated as net benefit when 

using the index model minus net benefit when: (1) treating all patients; and (2) using the most discriminating univariable predictor. The most discriminating 

univariable predictor is admission oxygen saturation (SpO2) on room air for deterioration models and patient age for mortality models. Individual predictions 

for each prognostic model were averaged across imputations for each participant in the dataset in order to generate pooled decision curve plots. Delta net 

benefit is shown with Loess-smoothing. Black dashed line indicates threshold above which index model has greater net benefit than the comparator. Full 

decision curves for each candidate model are shown in Supplementary Figure 9. 
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