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Abstract4

SARS-CoV-2 has now infected 15 million people and produced more than six hundred thousand5

deaths around the world. Due to high transmission levels, many governments implemented social-6

distancing measures and confinement with different levels of required compliance to mitigate the7

COVID-19 epidemic. In several countries, these measures were effective, and it was possible to8

flatten the epidemic curve and control it. In others, this objective was not or has not been achieved.9

In far to many cities around the world rebounds of the epidemic are occurring or, in others, plateau-10

like states have appeared where high incidence rates remain constant for relatively long periods of11

time. Nonetheless, faced with the challenge of urgent social need to reactivate their economies,12

many countries have decided to lift mitigation measures at times of high incidence. In this paper,13

we use a mathematical model to characterize the impact of short duration transmission events14

within the confinement period previous but close to the epidemic peak. The model describes too,15

the possible consequences on the disease dynamics after mitigation measures are lifted. We use16

Mexico City as a case study. The results show that events of high mobility may produce either17

a later higher peak, a long plateau with relatively constant but high incidence or the same peak18

as in the original baseline epidemic curve, but with a post-peak interval of slower decay. Finally,19

we also show the importance of carefully timing the lifting of mitigation measures. If this occurs20

during a period of high incidence, then the disease transmission will rapidly increase, unless the21

effective contact rate keeps decreasing, which will be very difficult to achieve once the population22

is released.23

Keywords: COVID-19, SARS-CoV-2, Mathematical model, lifting restrictions, epidemic curve,24

epidemic plateau25
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1 Introduction1

Latin America has recently become the world’s epicenter for SARS-CoV-2 activity. Lack of in-2

frastructure, weak economic performance and social inequality can, in part, explain this situation.3

In many countries such as Mexico, a large percentage of the economically active population works4

in informal jobs that largely depend on going into the street and plazas of towns and cities. This5

explains the need to reopen the economy in these countries but, on the other hand, ineffectively6

justifies the lifting of social-distancing policies in the midst of the epidemic. However, not only the7

economically deprived countries of the American continent are suffering the blunt of the COVID-8

19 pandemic. The United States has been unable to bring under control the spread of the disease.9

As has been the case in many Latin American countries, the USA, in general, reopened its econ-10

omy too fast and without a clear strategy in place. This has brought a worrisome rebound of the11

epidemic that threatens the very way of life of this rich and powerful country. It is within this12

context that we present our work. There is the need for strategic modeling, geared to local, specific13

situations, that can provide projections to understand and evaluate the consequences of lifting mit-14

igation measures that were put into place earlier this year, to fight the so-called first epidemic wave15

at the local (county or city) levels. Mathematical modeling has been a valuable tool to understand16

the dynamics of COVID-19 around the world. Many models have employed variations of the SEIR17

model [1, 2, 3, 4, 5, 6]. In this work we particularly concentrate on the impact of what we call18

atypical mobility events, that are and were associated with population events where some level of19

disease superspreading occurred as previously observed in [7]. These short-duration, superspread-20

ing events have a non-negligible effect upon the shape and time evolution of the epidemic curve.21

In many places of the world, such as in the USA and, at present, in several regions of Mexico, we22

are seeing that the epidemic has entered a plateau, and when the plateau ends it gives place to a23

new epidemic growth phase. We exemplify our model applying it to the case of Mexico City. We24

analyze the interrelation between the date of maximum incidence and heightened incidence events25

taking place before the projected maximum. The manuscript is organized as follows. In Section 2,26

we formulate the mathematical model and give some general results arising from it; in Section 3,27

we describe the Mexico City data that is used to exemplify our model results and present a brief28

analysis of the impact of mitigation measures. In Section 4, we use our proposed model to gen-29

erate scenarios that describe the impact of superspreading events associated with holidays, on the30

shape of the epidemic curve, and explore the probable consequences of lifting mitigation measures.31

Finally, the discussion and conclusions are presented in Section 5.32

2 Mathematical Model Formulation33

Our model is an extension of the mathematical model first introduced in [5]. We extend it as34

follows: i) we introduce a compartment for the reported infectious cases, ii) we introduce two35

time-dependent contact rates to approximate their reduction after the initial mitigation measures36

were implemented, and iii) we introduce a time-dependent confinement-compliance rate. These37
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extensions allow us to provide a better account of the social-distancing effects and the role and1

impact of several short periods of increased transmission due to the lack of compliance of social-2

distancing guidelines during the confinement.
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Figure 1: S , E, Ia, Is, Ir, R, D represent the populations of susceptible, exposed, asymptomatically
infected, symptomatically infected, reported infected, recovered and dead individuals, respectively.
Previous to the mitigation measures, the epidemic follows the dynamics represented by the blue
diagram. Once the mitigation measures are implemented (on March 23 in the case of Mexico),
the population splits into two: those who comply with the control measures (green box) and those
who do not (orange box). The dashed line connecting the green and orange boxes represent the
compliance-failure rate ω(t).

3

Our mathematical model explicitly takes into account two time intervals, before and after the
date when mitigation measures were implemented, T , as illustrated in Figure 1. The model is of
SEIR-type with three infectious classes: Ia asymptomatically, Is symptomatically, and Ir reported
(confirmed) infectious individuals. The dynamics for the first time interval are described by the

3
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following system of ordinary differential equations:

S ′ = −b (Is + Ia)
S
N∗
,

E′ = b (Is + Ia)
S
N∗
− γE,

Ia
′ = ργE − ηaIa,

Is
′ = (1 − ρ)γE − (ηs + δs) Is,

Ir
′ = δsIs − δrIr,

R′ = ηaIa + ηsIs + (1 − µ) δrIr,

D′ = µδrIr,

(2.1)

where N∗ = S + E + Ia + Is + R. Note that the Ir compartment does not participate in transmission
since, it is assumed, once confirmed, the cases are effectively isolated. b represents the effective
contact rate, 1/γ the incubation period, ρ the proportion of asymptomatically infected individuals,
1/ηa and 1/ηs the periods from symptoms onset to recovery for symptomatically and asymptomat-
ically infected individuals, δs the rate at which a symptomatically infected individuals becomes a
reported (confirmed) case, 1/δr the time from confirmation to recovery or death and µ is the pro-
portion of those reported cases that die. The basic reproductive number of the system 2.1 is given
by:

R0 =
bρ
ηa

+
b(1 − ρ)
ηs

,

where the first term represents the number of new cases produced by asymptomatically infected
individuals and the second term represents the number produced by symptomatically infected in-
dividuals. After mitigation measures are implemented (T ), the population is split into two groups:
one constituted by those individuals who comply with the measures that is referred to as the con-
fined group, and another constituted by those individuals who do not, that is called the unconfined
group, either because they disobey the social-distancing guidelines or because they belong to an
strategic sector of the economy. The dynamics in the second time interval are given by:

S ′i = −βi(t) (Isi + Iai)
S i

N∗
+ (−1)iω(t)S 1

E′i = βi(t) (Isi + Iai)
S i

N∗
− γEi + (−1)iω(t)E1

Iai
′ = ργEi − ηaIai + (−1)iω(t)Ia1

Isi
′ = (1 − ρ)γEi − (ηs + δs) Isi + (−1)iω(t)Is1

Ir
′ = δs (Is1 + Is2) − δrIr

R′ = ηa (Ia1 + Ia2) + ηs (Is1 + Is2) + (1 − µ) δrIr

D′ = µδrIr

(2.2)

where N∗ =
∑2

i=1 (S i + Ei + Iai + Isi) + R. The index i = 1 gives the population that complies with
the control measures, while i = 2 indicates those who do not. Note that the compartments Ir, R,

4
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and D are common to both groups. Following [5], the effective contact rates are different for each
group and are given by:

βi(t) =


b − (1−q1i)

θ1
b (t − T ) , T ≤ t < T + θ1,

q1ib −
(q1i−q2i)

θ2
b (t − T − θ1) , T + θ1 ≤ t < T + θ1 + θ2,

q2ib, T + θ1 + θ2 ≤ t.

(2.3)

Equation (2.3) assumes decreasing contact rates where the parameters q2i ≤ q1i, i = 1, 2, represent
a reduction in the baseline effective contact rate b. T is the time at which the effective contact rates
start to act and θ j, j = 1, 2, are the duration of the contact reduction process. Finally, we define the
compliance-failure rate ω(t) as a step function, that is,

ω(t) =

 κω0, T ∗ ≤ t ≤ T ∗ + θω

ω0, otherwise
(2.4)

where κ > 1 is the increase in the compliance-failure rate relative to the baseline value ω0 (κ = 1),1

T ∗ is the time at which the perturbation starts and θω is the duration of the perturbation. This model2

admits several periods during which ω(t) may act but here we illustrate only one period.3

The inclusion of short-term superspreading events into equations 2.3 and 2.4 renders scenarios4

in which a plateau-like behavior appears. We show three scenarios: (I) long plateau with slight5

decrease and rebound; (II) shorter plateau with a later decreasing trend in the epidemic-curve;6

(III) long plateau with a later decreasing epidemic-curve. Each scenario is subdivided into three7

sub-cases defined as follows:8

• Scenario X.a: Increase κ = 3 of the baseline value ω0.9

• Scenario X.b: Increase κ = 5 of the baseline value ω0.10

• Scenario X.c: Increase κ = 7 of the baseline value ω0.11

where X = I, II, III. Fixed parameter values are given in Table 1. The length of the interval during12

which the compliance-failure rate is increased is 11 days (equation 2.4).

Parameter Value Parameter Value Parameter Value
b 0.887677 γ−1 5.1 T 30
ρ 0.698725 η−1

a 6 q11 0.6
µ 0.11 η−1

s 7 θ1 18
ω 0.005 δ−1

s 4 q12 0.7
q 0.7 δ−1

r 12.070691 T ∗ 67

Table 1: Baseline parameter values for the simulation of the different scenarios described in the
text.

13
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2.1 (I) Long plateau with slight decrease and rebound1

Setting q1i as in Table 1, in (2.3) we put for both groups, θ1 of approximately two weeks and θ2 of2

about 3 months with q21 = 0.3 (decrease of 70% for the confined group), q22 = 0.4 (decrease of3

60% for the unconfined group).4

Figure 2 illustrates the case where the perturbed epidemic curve shows a slight decrease imme-5

diately after the perturbation relative to the baseline curve. Here, it is observed that as κ increases,6

the incidence increases again. Scenario Ic is the worst-case scenario where the growth rate keeps7

growing. Scenario Ia illustrates the appearance of a plateau-like behavior followed first by a slight8

decline and then growth again. The length of plateau is preserved for several weeks.
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Figure 2: Impact of high mobility, for 12 days, on the baseline epidemic curve (blue line). The
increase period starts 26 days before of the baseline epidemic curve peak. (A) Newly reported
cases proportion per day, and (B) daily deaths proportion per day.

9

2.2 (II) Shorter plateau with decreasing epidemic-curve10

Setting q1i as in Table 1, in (2.3) we put, as before, θ1 of about two weeks and θ2 of about three11

months with q21 = 0.3 (decrease of 70% for the confined group), q22 = 0.3 (decrease of 70% for12

the unconfined group).13

Figure 3 illustrates the case where the epidemic curve decreases after the end of the interval14

of maximum incidence. Scenario IIc is the worst-scenario since where after the perturbation, the15

epidemic peak is pushed higher and later in time. Scenario IIa, on the other hand, is comparatively16

benign. The peak is still reached as projected on the baseline case, and then the epidemic curve17

decreases at a slower rate than the baseline. Finally, scenario IIb shows the appearance of a plateau-18

like behavior. In this case, when the peak is reached, the incidence curve does not show a significant19

decay but rather, enters a sustained phase of maximum incidence that lasts several weeks.20

6
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Figure 3: Impact of high mobility, for 12 days, on the baseline epidemic curve (blue line). The
increase period starts 23 days before of the baseline epidemic curve peak. (A) Newly reported
cases proportion per day, and (B) daily deaths proportion per day.

2.3 (III) Long plateau with decreasing epidemic-curve1

Set q1i as in Table 1, and, in (2.3) we put, for both groups, θ1 of about two weeks but now θ2 of2

about four months with q21 = 0.2 (confined group), q22 = 0.3 (non-confined group).3

Figure 4 illustrate the case where the epidemic curve decreases after the peak. Scenario IIIa4

shows the appearance of a plateau that lasts some months after the date of the baseline peak. On5

the other hand, scenarios IIIb and IIIc shows a runaway epidemic with a much higher peak than6

that of the baseline curve.
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Figure 4: Impact of high mobility, for 12 days, on the baseline epidemic curve (blue line). The
increase period starts 28 days before of the baseline epidemic curve peak. (A) Newly reported
cases proportion per day, and (B) daily deaths proportion per day.

7

Remark. Depending upon the scenario, parameters θ j and qi j can be modified to explore alternative8

descriptions of it including the effective transmission contact rates (equation 2.3) .9

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20161026doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20161026
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 Case-study: Mexico City1

In this section, we exemplify our model results with the case study of Mexico City. We start the2

analysis with some context. On March 23, 2020, social distancing measures where implemented3

in Mexico to slowdown the spread of COVID-19 pandemic, mainly focused in closing schools4

and some non-essential activities. One week later, on March 30, 2020, a Sanitary Emergency was5

declared to last until April 30, 2020, a date that was later extended to June 01, 2020. These mea-6

sures aimed to “flatten the curve”, meaning to lower the incidence to ensure that critical cases7

would remain under manageable levels. On April 16, 2020, the federal government announced8

that for Mexico City, the day of maximum incidence would occur on May 08-10, 2020 [8, 9], and9

consequently, the date for lifting mitigation measures was announced to start on June 01, 2020.10

However, the peak did not happen on the projected dates. Independent projections by Mexican11

scientists [5, 6] set the dates of maximum incidence to be in an interval of about ten days around12

May 30, 2020, which puts the lifting of mobility restrictions indicated by the Federal government13

precisely in the likely days of higher transmission. Confronted with this scenario, the local Mexico14

City government puts into place a set of specific actions, that have kept the epidemic in the city15

within still manageable levels. Data shows that by the end of May, the epidemic in Mexico City16

seemed to stabilize on a plateau which continued beyond June up to the present day (mid July).17

This plateau may have appeared as a consequence of two important holidays, children’s day, and18

mother’s day, occurring approximately 10-14 days before the expected date for the peak of maxi-19

mum incidence . We postulate that these events are an important factor that explains the observed20

quasi-stationary epidemic trend that the data shows at present (mid-July 2020). In this section21

we attempt an explanation of the probable causes of such behavior. Furthermore, we explore the22

possible consequences of lifting the mitigation measures under diverse conditions. COVID-19 epi-23

demic data was provided by the Secretaría de Ciencia, Tecnología e Innovación of the Government24

of Mexico City through the COVID-19-CDMX database [10]. This data set contains details on25

all the confirmed and suspected COVID-19 individuals such as sex, age, residence place, date of26

symptoms onset, etc. We use records from February 22, 2020, to July 19, 2020.27

3.1 Effect of mitigation measures28

Richards model is an extension of a simple logistic growth model that is an standard tool commonly
used to predict cumulative COVID-19 cases in China (see, for example, [11]). In this model the
curve of cumulative cases, C(t), is described by the solution of

C′(t) = rC(t)
[
1 −

(
C(t)

K

)a]
, (3.1)

where r is the epidemic growth rate, K is the final epidemic size, and a is a parameter that accounts29

for the asymmetry of the epidemic curve. We estimate the Richards curve for two different periods,30

the first goes from February 22, 2020 to March 22, 2020, and the second from March 23, 2020 to31

April 30, 2020. The parameters a, r, and K for each period are estimated using Bayesian inference32

8
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[12, 13]. Technical details can be found in Appendix A. We limit the fitting of the Richards curve1

to April 30 since on that date an important event of increased transmission started that violated the2

hypothesis that population conditions for transmission were essentially unchanged since March 23,3

2020. In terms of our model, unchanged conditions mean ω(t) = ω0 for all t.4

Before the start of social distancing on March 23, 2020, the growth rate is approximately 0.765

with a 95% interval (0.28, 1.91) which indicates a very fast growing epidemic with a doubling6

time of about a day. After March 23, 2020, the median growth rate is 0.12 with a 95% interval of7

(0.101, 0.168) rendering a median doubling time of about 6 days. This gives us a median reduction8

of 85% of the epidemic growth rate in the early days of the implementation of social distancing9

measures. The uncertainty around this value is significant but our estimate gives evidence that10

the confinement strategy was indeed effective in reducing transmission during the first weeks of11

mitigation. This justifies the idea of including decreasing effective contact rates. Unfortunately,12

however, those same social distancing measures also pushed the interval of the likely occurrence13

of the epidemic peak towards the end of May, thus overlapping it with the date set to reopen the14

economy.15

Remark: The interval of dates for maximum incidence are in agreement in three previous models,16

for late May to early June. Two of them are mechanistic [5, 6]; the third is the projection of the17

Richards curve shown in Figure 5.18

3.2 Mathematical model setup19

To evaluate the impact of mobility events, we set-up equations 2.1-2.2 under the scenario that20

70% of the general population is confined (obeying mitigation restrictions) during the confinement21

period (first time interval), and 30% is not [14]. The unconfined population includes workers with22

essential economic activities in government and industry and individuals that work in the informal23

economy. The time where confinement started T is March 23, 2020. The duration of the first24

reduction in the effective contact rate is θ1 = 18 days. The magnitudes of the first reduction in25

both effective contact rates are q11 = 0.6 (40% reduction in the confined group), q12 = 0.7 (30%26

reduction in the unconfined group), respectively. The duration θ2 and magnitudes (q2i) of the27

second reductions (q2i) depend on the study scenario as described in the next section.28

Once under confinement, individuals may abandon the isolation with a compliance-failure rate29

ω(t). This is the parameter we use as a proxy for population mobility. ω(t) is a time-dependent30

rate: we assume that increased mobility lasts only for a period of θω days, with a background31

compliance-failure rate ω0 that in atypical events is increased by a factor κ (equation 2.4). We take32

ω0 = 0.005/day as a baseline value [5], that is, given the exponential nature of this rate, this means33

that 50% of the confined populations will stay there at least for 4 months, while the other 50% will34

abandon confinement earlier.35

9
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Figure 5: Number of daily new COVID-19 confirmed cases by symptoms onset and Richards
model fit. The blue bars show data from March 23, 2020 to April 30, 2020 used to estimate the
parameters. Orange bars show available data up to July 19, 2020 that were not used to estimate the
parameters. Solid black line and gray dashed lines show pointwise median and 95% probability
interval estimates for the expected number of cases, respectively. Note that the date of maximum
incidence is projected to occur between May25 and June 8 (maxima of dotted lines). The projection
is valid only up to May 30 since on June 01, confinement was partially lifted.

4 Results1

4.1 Increased mobility previous to the expected epidemic peak2

Non-pharmaceutical interventions (NPIs) have been used to reduce contact between individuals in3

many countries. However, short-term increases in population mobility have been observed within4

the social-distancing confinement period. This increased mobility weakens the strength of the NPIs5

and, therefore, has an impact on disease transmission. Here we explore the consequences of in-6

creasing mobility during the confinement period. The objective is to give a plausible explanation7

for the appearance of the plateau in the dynamics observed in several countries using, as an exam-8

ple, the case of Mexico City.9

In Mexico, there were two important holidays (in terms of population mobility) within the10

period of confinement: April 30, 2020, children’s day, and May 10, 2020, mother’s day. Population11

mobility increased these days as evidenced by the intantaneous reproduction number (Figure 6).12

Note that Rt shows a slight increase just around April 30, 2020, and May 01, 2020. We center13

our attention on the effect of increased mobility within the period from April 29, 2020, to May 10,14

2020.15
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Figure 6: Instantaneous reproduction number for Mexico City using a median serial interval of
4.7 days [17]. The Figure shows the estimates from February 22, 2020 to July 7, 2020. In the
insert a clear jump can be observed for April 30 and May 01, indicating a likely increase in active
transmission during these days.

Mexico City epidemic has shown a plateau-like behavior since middle-May (Figure 8). As1

Figure 6 shows, a significant increase in mobility occurred in the period from April 29, 2020,2

to May 10, 2020. Therefore, we set the start of the perturbation, T ∗, as April 29, 2020, and its3

duration θw = 11 days. The second reductions in both effective contact rates are set to q21 = 0.34

and q22 = 0.4, while θ2 = 80 days. Other parameter values are fixed and given in Table 1.5

Figure 7 shows simulations for κ = 3. We compare our results with the reported confirmed6

cases and deaths per day. Our projections go until July 01, 2020. Blue and yellow bars represent7

confirmed and suspect+confirmed cases, respectively. Observe that the mortality is not well de-8

scribed by our model (Figure 7). This observed decrease in mortality is intriguing. It could be due9

to enhanced treatment of grave cases, shifting of the morbidity towards age classes with a lower10

risk of death or, perhaps, incomplete mortality records and reporting time delays. Since we are11

comparing with the absolute number of deaths, testing has little impact in this case.12

4.2 Lifting social-distancing measures13

Currently, an important question relates to the consequences of lifting too early the mitigation14

measures. The concern is that an increase in the number of cases may occur as it has occurred in15

the USA. In this section, we explore the possibility of this scenario for Mexico City.16

Mexico’s federal government developed an epidemiological panel to oversee the reactivation17

11
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Figure 7: Impact of high mobility, from April 29, 2020, to May 10, 2020. (A) Newly reported
cases per day, and (B) daily deaths per day.

of economic activities in the different states of the country. The panel is based on an index that1

essentially combines incidence and mortality data, and it has been used since June 01, 2020. The2

aim was to gradually increase the population mobility to keep under control the hospital demand3

and capacity. It has four colors: red, orange, yellow, and green.4

At the time of writing (third week of July), the epidemiological panel for Mexico City has had5

two changes: it started under a red flag on June 01, 2020, the initial date for lifting of mobility6

restrictions; and it changed to an orange flag on June 29, 2020. A red flag allows only essential7

economic activities and brief trips to pharmacies, supermarkets, doctor, etc. An orange flag allows8

added non-essential activities with business staffed only to a 30% capacity, opening of public spaces9

with reduced capacity, etc [18, 19]. On both dates, an unknown number of individuals abandoned10

confinement and returned to their daily pre-epidemic activities.11

We model this process by updating the number of individuals at a fixed time (T ∗) in equa-12

tion (2.2), as x1(ti) = (1 − q)x1(ti−1) and x2(ti) = qx1(ti−1) + x2(ti−1) where ti = T ∗, x1 and x213

represent the susceptible, exposed, asymptomatically infected and symptomatically infected for14

the confined and unconfined groups, respectively.15

4.2.1 Lifting mitigation measures on June 29, 202016

Now we explore the possible consequences of lifting mitigation measures on June 29, 2020. We17

have chosen this date based on an actual change of the Mexico City epidemiological panel (a18

change from red to orange light). We explore the short and medium-term effects of the lifting of the19

mitigation measures on the epidemic curve. For each case, we project three scenarios: 25%, 50%,20

or 75% of the confined population abandoning confinement. We present three curves that have a21

good fit to Mexico City data. These curves are obtained for the parameters shown in Table 2.22

Both effective contact rates (for the confined and not-confined groups) decrease until June 29,23

2020, and then both remain constant. For this scenario, reductions in effective contact rates are24

12
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Parameter Blue line Red line Black line
b 0.887677 0.906658 0.911977
ρ 0.698725 0.644263 0.660068
δ−1

r 12.070691 13.838454 12.263355

Table 2: Parameters for the lifting of mitigation measures scenarios.

described by q11 = 0.6, q21 = 0.3 (for the confined group), and q12 = 0.7, q22 = 0.4 (for the1

not-confined group).2

Figure 8 shows the behavior of reported cases Ir. Solid lines are the baseline, while dotted3

lines represent the perturbed system (after lifting restrictions on June 29, 2020). Note that, as the4

percentage of the confined population is decreased, the incidence increases to higher levels. Also,5

for the scenario of 25% of the population leaving confinement (i.e., increasing its effective contact6

rate), we obtain a good data fit.
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Figure 8: Lifting mitigation measures on June 29, 2020. A) Dynamics, when confinement is
not lifted, B) dynamics when 25% of the confined population leaves confinement, C) when 50%
of the confined population leaves confinement, and D) if 75% of the confined population leaves
confinement.
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4.2.2 Lifting on June 29, 2020, with decreasing effective contact rate1

We explore the scenario where the effective contact rate continues to decline even after partially lift-2

ing mitigation measures. Here, we consider that the effective contact rates in both groups decrease3

until August 01, 2020, and then both remain constant. For this scenario, we set q11 = 0.6, q21 = 0.14

(confined group), and q12 = 0.7, q22 = 0.2 (unconfined group). Other parameter values are similar5

to those employed in the above subsection.6

Figure 9 underlines the importance of a continuing decrease of the transmission rate after lift-7

ing. Although the contingency measures are lifted on June 29, in the worst-case scenario (Fig-8

ure 9D), there can be a reduction of approximately 50% of newly reported cases (see Figure 8D)9

after lifting the mitigation measures.10
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Figure 9: Lifting of the mitigation measures on June 29, 2020, but both effective contact rates (for
lockdown and non-lockdown environments) decrease until August 01, 2020. A) Dynamics, when
nobody leaves confinement, B) dynamics when 25% of the confined population leaves confine-
ment, C) if 50% of the confined population leaves confinement, and D) when 75% of the confined
population leaves confinement.
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Remark:1

Figures 8 and 9 show that, as the percentage of the population under confinement decreases, the2

number of new reported cases also increases. A similar behavior is observed for the dynamics of3

daily deaths.4

5 Conclusion5

The analysis of the precise epidemiological situation in Mexico City is difficult because, among6

other things, COVID-19 testing is limited, the positivity rate is high and there is substantial under-7

reporting of cases and mortality. Our case-study uses the confirmed cases reported by the Mexico8

City government in its official web page. Results show that the growth rate of the epidemic was9

reduced upon the implementation of mitigation measures on March 23, 2020. However, for Mexico10

City, the federal government originally forecasted the peak of maximum incidence to occur by May11

8-10 , 2020 and the date for lifting mitigation measures was set to start on June 1, 2020. The peak,12

however, occurred much later in the month as the data and independent models have shown [5, 6, 7].13

The epidemic in Mexico City shows that it entered a period of constant incidence since around14

May 20 that, as mentioned in the previous sections, still continues. The end result was that the15

lifting of mobility restrictions coincided with this interval of maximum incidence. Events of high16

mobility and increased transmission occurring during confinement on times relatively close but17

before the expected epidemic peak (e.g., like children’s day and mother’s day in Mexico City), may18

have impacted the epidemic curves pushing it into the plateau behavior observed in the data and19

described in the different scenarios presented in this work. We have explored the effect of pulses20

of unusual activity (within the confinement period) and their effect of the lifting on the epidemic21

curve of COVID-19 in Mexico City. These are theoretical results, but we believe, they illuminate22

the importance of counting with reasonable estimates for the timing of maximum incidence and23

of constant surveillance and evaluation of atypical high transmission events during confinement.24

A characteristic of our model that we think is worth underlining, is that the effective contact rates25

are time-varying which, we think, constitutes a realistic approximation since we are looking at26

population averages. For example, adopting safe behaviors, such as wearing face masks, involves27

a learning process; it does not suddenly occur, rather it takes time for the face masks to be adopted28

by a significant proportion of the general population. Our results indicate that after lifting mobility29

restrictions, a decrease of the effective contact rate should continue in order to force the epidemic30

curve to make a downward turn. We interpret this continuing decrease in the effective contact rate31

as related to the use of face masks, social-distancing, washing hands, etc.32

Mathematical models are essential in the fight against COVID-19. They are tools for evaluating33

mitigation measures, estimating mortality and incidence, and projecting scenarios to help public34

health decision-makers in their very difficult and important task of controlling the epidemic. In this35

paper, we have used mathematical models to evaluate and generate scenarios. Although precise36

forecasting is not our aim, we consider that these results can be helpful for decision-makers.37
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A Appendix A: Richards curve estimation3

Let Y j, for j = 1, 2, ...n, be the number of observed new daily cases at time t j, with t j given in days
since the first reported case started symptoms. We assume that Y j follows a Negative Binomial
distribution with mean value X(t j|a, r,K) = C(t j|a, r,K) − C(t j−1|a, r,K) and dispersion parameter
α. Here, C(t|a, r,K) is the solution of Richards model presented in (3.1). Assuming that, given the
parameters, the observations Y1,Y2, . . . ,Yn are conditionally independent, then

E[Y j|a, r,K, α] = X(t j|a, r,K) (A.1)

Var[Y j|a, r,K, α] = X(t j|a, r,K) + αX(t j|a, r,K)2 (A.2)

The Negative Binomial distribution allows to control the variability of the data by considering4

over-dispersion which is common for epidemiological data. If α = 0, then we return to the Poisson5

model which is often used in this context.6

Let θ = (a, r,K, α) be the vector of parameters to estimate. The inclusion of the parameter
α, which is related to the variability of the data, not to the Richards model, is necessary since in
practice this variability is unknown. Then, the likelihood function, which represents how plausible
is the data under the Negative Binomial assumption and Richards model if we knew the parameters,
is given by

π(y1, . . . , yn|θ) =

n∏
j=1

Γ(y j + τ)
Γ(y j)Γ(τ)

(
τ

τ + C(t j|a, r,K)

)τ ( C(t j|a, r,K)
τ + C(t j|a, r,K)

)y j

. (A.3)

Consider that parameters a, r, K and α as random variables. Assuming prior independence, the
joint prior distribution for vector θ is

π(θ) = π(a)π(r)π(K)π(α),

where π(a) is the probability density function (pdf) of a Uniform(0,2) distribution, π(r) is the7

pdf of a Uniform(0, 2), π(K) is the pdf of a Uniform(Kmin, Kmax), and π(α) is the pdf of a8

Gamma(shape=2, scale=0.1). To select the prior for parameter r, we consider that previous es-9

timations of r are close to 0.3 [11], and a Uniform(0,2) represents a weekly informative prior as it10

allows for a wide range of values of r. Also, there is no available prior information regarding the11

final size of the outbreak K. This is a critical parameter in the model and, in order to avoid bias,12

we assume a uniform prior over Kmin and Kmax. To set these last two values, we consider that the13

minimum number of confirmed cases is the maximum number of observed cumulative cases Y(tn)14

(for the studied period) times two, i.e. Kmin = yn ∗ 2. To set the upper bound for K, we consider a15

fraction of the total population Kmax = N ∗ 0.05, where N is the population size of Mexico. This16
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February 22 - March 22 March 23 - April 30
Lower Median Upper Lower Median Upper

a 0.02 0.05 0.38 0.12 0.17 0.24
K 1,186 26,156 167,504 31,737 67,344 88,417
r 0.28 0.76 1.91 0.10 0.15 0.26

Table 3: Parameter median estimates and 95% posterior probability intervals for Richards model.
Two periods are considered, from February 22, 2020 to March 22, 2020, and for two different
periods, from March 23, 2020 to April 30, 2020. Here, r is the growth rate, K is the final size of
the outbreak and a is a scaling factor. K is shown by completeness.

fraction was determined based on the observations of other cities such as the New York where the1

total population size is similar to Mexico City.2

Then, the posterior distribution of the parameters of interest is

π(θ|y1, . . . , yn) ∝ π(y1, . . . , yn|θ)π(θ),

and it does not have a simple form since the likelihood function depends on the solution of the3

Richards model, which is not linear on the parameters. We analyze the posterior distribution using4

an MCMC algorithm that does not require tuning called t-walk [20]. This algorithm generates5

samples from the posterior distribution that can be used to estimate marginal posterior densities,6

mean, variance, quantiles, etc. We refer the reader to [12] for more details on MCMC methods and7

to [13] for an introduction to Bayesian inference with differential equations.8

We estimate vector θ using data from Mexico City for two different periods, from February 22,9

2020 to March 22, 2020, and from March 23, 2020 to April 30, 2020. Table 3 shows the median10

posterior estimates and 95% probability intervals for the parameters in each period.11
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