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Variation in individual susceptibility or exposure to infection accelerates the rate 17 

at which populations acquire immunity by natural infection. Individuals that are 18 

more susceptible or more exposed tend to be infected earlier and hence 19 

selectively removed from the susceptible pool, decelerating the incidence of new 20 

infections. Eventually, susceptible numbers become low enough to prevent 21 

epidemic growth or, in other words, the herd immunity threshold is reached. 22 

Here we fit epidemiological models, with inbuilt distributions of susceptibility or 23 

exposure, to SARS-CoV-2 epidemics in Spain and Portugal, to estimate basic 24 

reproduction numbers (𝑹𝟎) alongside coefficients of individual variation (CV) 25 

and the effects of control measures. Herd immunity thresholds are then 26 

calculated as 𝟏 − (𝟏 𝑹𝟎⁄ )𝟏 #𝟏$𝑪𝑽𝟐'⁄  or 𝟏 − (𝟏 𝑹𝟎⁄ )𝟏 #𝟏$𝟐𝑪𝑽𝟐'⁄ , depending on 27 

whether variation is in susceptibility or exposure. Our inferences result in lower 28 

herd immunity thresholds than what would be expected if population immunity 29 

was to be induced by random infection or vaccination, 𝟏 − 𝟏 𝑹𝟎⁄ . 30 

  31 
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Introduction 32 

Selection acting on unmeasured individual variation is a well-known source of bias in 33 

the analysis of populations. It has been shown to affect measured rates of mortality 34 

(Keyfitz and Littman; Vaupel et al 1979; Vaupel and Yashin 1985), the survival of 35 

endangered species (Kendall and Fox 2002; Jenouvrier et al 2018), the scope of 36 

neutral theories of biodiversity and molecular evolution (Steiner and Tuljapurkar 37 

2012, Gomes et al 2019), the risk of diseases whether non-communicable (Aalen et al 38 

2015; Stensrud and Valberg 2017) or infections (Anderson et al 1986; Dwyer et al 39 

1997; Smith et al 2005; Bellan et al 2015; Gomes et al 2019; Corder et al 2020), and 40 

the efficacy of interventions such as vaccines (Halloran et al 1996; O´Hagan et al; 41 

Gomes et al 2014; Gomes et al 2016; Langwig et al 2017) or symbionts (Pessoa et al 42 

2016; King et al 2018). Building on this knowledge, we addressed how selection on 43 

individual variation might affect the course of the coronavirus disease (COVID-19) 44 

pandemic (Gomes et al 2020). 45 

COVID-19 is an infectious respiratory disease caused by a virus (severe acute 46 

respiratory syndrome coronavirus 2 [SARS-CoV-2]), which was first identified in 47 

China in late 2019 and has since spread worldwide leading to considerable human 48 

suffering and social disruption. European and American continents have been the 49 

most affected, with 0.16% and 0.20% of the respective total populations having died 50 

as of the 15 July 2021 (WHO 2021). Here we analyse series of daily deaths attributed 51 

to COVID-19 in Spain and Portugal (Iberian Peninsula) to study how individual 52 

variation in susceptibility and exposure to a respiratory virus affects its epidemic 53 

trajectory. Besides adding to the compendium of neglected effects of selection in 54 

population dynamics we hope to stimulate a new approach to study epidemic 55 
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dynamics. 56 

The main idea developed here is that individual variation in susceptibility or exposure 57 

(connectivity) accelerates the acquisition of immunity in populations. More 58 

susceptible and more connected individuals have a higher propensity to be infected 59 

and thus are likely to become immune earlier. Due to this selective immunization by 60 

natural infection, heterogeneous populations acquire herd immunity by natural 61 

infection more efficiently than suggested by models that do not fully account for these 62 

types of variation. We integrate continuous distributions of susceptibility or 63 

connectivity in otherwise basic epidemiological models for COVID-19, which 64 

necessarily account for non-pharmaceutical intervention effects, and generate three 65 

types of results. First, at national levels the herd immunity threshold by natural 66 

infection declines from around 70% to 20-30%. This is newly reported here for Spain 67 

and in agreement with recent estimates for England and Scotland (Gomes et al 2021). 68 

Second, these inferences can be made relatively early in the pandemic, such as 69 

between first and second waves, provided the first wave is sufficiently large and 70 

spatially synchronous. Third, we include a selection of results for Portugal to illustrate 71 

how the inferential procedure degenerates when national data do not meet certain 72 

conditions.  73 

Individual variation in SARS-CoV-2 transmission 74 

SARS-CoV-2 is transmitted primarily by respiratory droplets and modelled as a 75 

susceptible-exposed-infectious-recovered (SEIR) process.  76 

Variation in susceptibility to infection 77 
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Individual variation in susceptibility is integrated as a continuously distributed factor 78 

that multiplies the force of infection upon individuals (Diekmann et al 1990) in the 79 

form of an infinite system of ordinary differential equations (ODEs): 80 

𝑆̇(𝑥) = −𝜆𝑥𝑆(𝑥),	                                                                                                        (1) 81 

𝐸̇(𝑥) = 𝜆𝑥[𝑆(𝑥) + 𝜎𝑅(𝑥)] − 𝛿𝐸(𝑥),	                                                                         (2) 82 

𝐼̇(𝑥) = 𝛿𝐸(𝑥) − 𝛾𝐼(𝑥),                                                                                               (3) 83 

𝑅̇(𝑥) = (1 − 𝜙)𝛾𝐼(𝑥) − 𝜎𝜆𝑥𝑅(𝑥),                                                                             (4) 84 

where 𝑆(𝑥) is the density of individuals with susceptibility 𝑥, 𝐸(𝑥) and 𝐼(𝑥) are the 85 

densities of individuals who originally had susceptibility 𝑥 and became exposed and 86 

infectious, while 𝑅(𝑥) represents those who have recovered and have their 87 

susceptibility reduced to a reinfection factor 𝜎 due to acquired immunity. Parameter 𝛿 88 

is the rate of progression from exposed to a period of maximal infectiousness (=89 

1 5.5⁄  per day [McAloon et al. 2020]), 𝛾 is the rate of recovery from maximal 90 

infectiousness (= 1 4⁄  per day [Nishiura et al. 2020; Lauer et al. 2020; Li et al. 91 

2020]), 𝜙 is the proportion of individuals who die as a result of infection (= 0.009 92 

[Ward et al. 2021]), and: 93 

𝜆 =
𝛽
𝑁@𝜌𝐸

(𝑦) + 𝐼(𝑦) 𝑑𝑦																																																																																																						(5) 94 

is the average force of infection upon susceptible individuals in a population of 95 

approximately constant size 𝑁 and transmission coefficient 𝛽. Standardizing so that 96 

susceptibility distributions have mean ∫ 𝑥𝑔(𝑥)	𝑑𝑥 = 1, given a probability density 97 

function 𝑔(𝑥), the basic reproduction number, defined as the expected number of 98 

secondary infections generated by an infected individual in a population that has no 99 

specific immunity to the virus (Diekmann et al 1990), is: 100 
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ℛ* = 𝛽 G
𝜌
𝛿 +

1
𝛾H,																																																																																																																						(6) 101 

where 𝜌 is a factor measuring the infectiousness of individuals in compartment E in 102 

relation to those in 𝐼 (= 0.5 [Wei et al. 2020; To et al. 2020; Arons et al. 2020; He et 103 

al. 2020]). The coefficient of variation in individual susceptibility 𝐶𝑉 =104 

L∫(𝑥 − 1)+𝑔(𝑥)	𝑑𝑥 is also treated as a parameter.  105 

The basic reproduction number ℛ* is a theoretical framework. It cannot be exactly 106 

measured directly but it can be approximated from the initial growth in case numbers. 107 

However, as the virus spreads through the population, infected and immune 108 

individuals accumulate, reducing the availability of susceptible hosts. As a result, 109 

growth in case numbers deviates from being a direct indication of ℛ* but rather of a 110 

so-called effective reproduction number ℛ,--. 111 

When susceptibility is given by a gamma distribution and acquired immunity is 112 

totally protective, the effective reproduction number is: 113 

ℛ,--(𝑡) = ℛ* G
𝑆(𝑡)
𝑁 H

.$/0"

,																																																																																																		(7) 114 

where 𝑆(𝑡) = ∫𝑆(𝑥, 𝑡) 𝑑𝑥 is the total number of susceptible individuals at time 𝑡, and 115 

(Equations 1-4) reduce to a finite system of ODEs: 116 

𝑆̇ = −𝛽(𝜌𝐸 + 𝐼) G
𝑆
𝑁H

.$/0"

,																																																																																																	(8)	 117 

𝐸̇ = 𝛽(𝜌𝐸 + 𝐼) G
𝑆
𝑁H

.$/0"

− 𝛿𝐸,																																																																																											(9) 118 

𝐼̇ = 𝛿𝐸 − 𝛾𝐼,																																																																																																																												(10) 119 

𝑅̇ = (1 − 𝜙)𝛾𝐼,																																																																																																																							(11) 120 
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where 𝑆, 𝐸, 𝐼 and 𝑅 are the total numbers of susceptible, exposed, infectious and 121 

recovered individuals, respectively (Novozhilov 2008; Montalbán et al. 2020). 122 

Variation in connectivity 123 

In a directly transmitted infectious disease, such as COVID-19, variation in exposure 124 

to infection is primarily governed by patterns of connectivity among individuals. Here 125 

we incorporate this in the system (Equations 1-4) under the assumption that 126 

individuals mix at random (Pastor-Satorras and Vespignani 2001; Miller et al. 2012), 127 

while in Supplementary Information we conduct some sensitivity analyses to this 128 

assumption. Under random mixing and heterogeneous connectivity, the force of 129 

infection is written as: 130 

𝜆 =
𝛽
𝑁
∫𝑦[𝜌𝐸(𝑦) + 𝐼(𝑦)] 𝑑𝑦

∫ 𝑦𝑔(𝑦) 𝑑𝑦
,																																																																																													(12) 131 

and the basic reproduction number is: 132 

ℛ* = (1 + 𝐶𝑉+)𝛽 G
𝜌
𝛿 +

1
𝛾H.																																																																																																(13) 133 

In this setup, when connectivity is given by a gamma distribution and acquired 134 

immunity is totally protective, the effective reproduction number is: 135 

ℛ,--(𝑡) = ℛ* G
𝑆(𝑡)
𝑁 H

.$+/0"

,																																																																																														(14) 136 

and (Equations 1-4) reduce to the finite system of ODEs: 137 

𝑆̇ = −(1 + 𝐶𝑉+)𝛽(𝜌𝐸 + 𝐼) G
𝑆
𝑁H

.$+/0"

,																																																																									(15)	 138 
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𝐸̇ = (1 + 𝐶𝑉+)𝛽(𝜌𝐸 + 𝐼) G
𝑆
𝑁H

.$+/0"

− 𝛿𝐸,																																																																			(16) 139 

𝐼̇ = 𝛿𝐸 − 𝛾𝐼,																																																																																																																												(17) 140 

𝑅̇ = (1 − 𝜙)𝛾𝐼,																																																																																																																							(18) 141 

where 𝑆, 𝐸, 𝐼 and 𝑅 are the total numbers of susceptible, exposed, infectious and 142 

recovered individuals, respectively (Novozhilov 2008; Montalbán et al. 2020). 143 

We have used the reduced systems (Equations 8-11) and (Equations 15-18) in 144 

combination with non-pharmaceutical interventions (NPIs) to analyse series of daily 145 

deaths in the study countries. 146 

Non-pharmaceutical interventions and other transmissibility modifiers 147 

NPIs designed to control transmission typically reduce 𝛽 and hence ℛ*. Denoting the 148 

time-dependent reproduction number when control measures are in place by ℛ1(𝑡), 149 

the modified effective reproduction number is obtained by replacing ℛ* with ℛ1(𝑡) in 150 

(Equation 7) and (Equation 14) as appropriate. For the estimation of ℛ1(𝑡) we 151 

introduce flexible transmissibility profiles 𝑐(𝑡) as illustrated in Figure 1.  152 
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Figure 1: Transmissibility profile. Schematic illustration of factor 𝑐(𝑡) representing 154 
the combined effects of NPIs, seasonality and viral evolution on the reproduction 155 
number ℛ1(𝑡). 𝑇* is the time when ℛ* begins to decrease due to behavioural change 156 
or seasonality; 𝑇. is the time interval over which transmission reduces gradually until 157 
the first lockdown; 𝑐. ≤ 1 is the average 𝑐(𝑡) achieved during the first lockdown; 𝐿., 158 
𝐿+ and 𝐿2, denote the length in days of the successive periods of strictest NPI 159 
measures (𝐿. being the first lockdown). These profiles are adopted in fits until: 1 July 160 
2020 (top); 1 March 2021 (bottom). 161 

One-wave transmissibility profile 162 

When the model is applied to the first pandemic wave only (until 1 July 2020) we use 163 

the top profile in Figure 1. 𝑇* is the time when ℛ* begins to decrease due to 164 

behavioural change or seasonality; 𝑇. is the time interval over which transmission 165 

reduces gradually (assumed linearly, until the first lockdown; 𝑐. ≤ 1 is the average 166 

𝑐(𝑡) from the beginning of the first lockdown onwards (14 March in Spain, 19 March 167 

in Portugal). Mathematically this is constructed as: 168 

𝑐(𝑡) =

⎩
⎨

⎧
1, if	0 < 𝑡 ≤ 𝑇!,											

1 − (1 − 𝑐") ∙
(1 − 𝑇!)
𝑇"

, if	𝑇! < 𝑡 ≤ 𝑇! + 𝑇",

𝑐", otherwise.																

																																																											(19) 169 

Two-wave transmissibility profile 170 

Applying the model over longer periods which capture multiple waves and multiple 171 

lockdowns requires additional features on the transmissibility profile. Denoting by 𝐿. 172 

the duration of the first lockdown (29 days in Spain, 44 days in Portugal), we allow 173 

restrictions to be progressively relaxed at the end of this period by letting transmission 174 

begin a linear increase such that 𝑐(𝑡) reaches 1 in 𝑇+ days, which may or may not be 175 

within the range of the study. Changes in other factors that affect transmission (such 176 

as seasonality or viral evolution) are inseparable from contact changes in this 177 

framework and are also accounted for by 𝑐(𝑡). Mathematically this is constructed as: 178 
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𝑐!(𝑡) =

⎩
⎪⎪
⎨

⎪⎪
⎧

1, if	0 < 𝑡 ≤ 𝑇!,

1 − (1 − 𝑐") ∙
(1 − 𝑇!)
𝑇"

, 										if	𝑇! < 𝑡 ≤ 𝑇! + 𝑇",

𝑐", if	𝑇! + 𝑇" < 𝑡 ≤ 𝑇! + 𝑇" + 𝐿",

1 − (1 − 𝑐") ∙
(𝑇! + 𝑇" + 𝐿" + 𝑇# − 𝑡)

𝑇"
, otherwise.																																			

									(20) 179 

Second and third lockdowns in the autumn and winter season are implemented as a 180 

further reduction in transmission (by factors 𝑐+ and 𝑐2, respectively) over the 181 

stipulated time periods (𝐿+ and 𝐿2 in the bottom panel of Figure 1): 182 

𝑐Spain(𝑡) = A
𝑐# ∙ 𝑐!(𝑡), if	𝑡 ∈ [26	October	2020,	22	December	2020],
𝑐) ∙ 𝑐!(𝑡), if	𝑡	 ∈ 	 [7	January	2021,	last	data	point],										
𝑐!(𝑡), otherwise.																																																																			

																								(21) 183 

𝑐Portugal(𝑡) = A
𝑐# ∙ 𝑐!(𝑡), if	𝑡 ∈ [9	November	2020,	21	December	2020],
𝑐) ∙ 𝑐!(𝑡), if	𝑡	 ∈ 	 [14	January	2021,	last	data	point],									
𝑐!(𝑡), otherwise.																																																																				

																			(22) 184 

In Spain, second and third lockdowns were effectively a single intervention mildly interrupted 185 

by a short relaxation over Christmas, and hence we assume 𝑐# = 𝑐) in this country. This is 186 

contrasted by Portugal where the third lockdown was much stricter than the second. 187 

Herd immunity thresholds 188 

Individual variation in risk of acquiring infection is under selection by the force of 189 

infection, whether individual differences are due to biological susceptibility, 190 

exposure, or both. The most susceptible or exposed individuals are selectively 191 

removed from the susceptible pool as they become infected and eventually recover 192 

with immunity (some die), resulting in decelerated epidemic growth and accelerated 193 

acquisition of immunity in the population. The herd immunity threshold (HIT) defines 194 

the percentage of the population that needs to be immune to reverse epidemic growth 195 

and prevent future waves. In the absence of NPIs or other transmissibility modifiers, 196 
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if individual susceptibility or connectivity is gamma-distributed and mixing is 197 

random, basic HIT curves (ℋ*) can be derived analytically (Montalbán et al 2020) 198 

from the model systems (Equations 1-4, with the respective forces of infections). In 199 

the case of variation in susceptibility to infection we obtain 200 

ℋ* = 1 − W
1 − 𝜎𝑅*
(1 − 𝜎)𝑅*

X
.

.$/0"
,																																																																																													(23) 201 

while variable connectivity results in  202 

ℋ* = 1 − W
1 − 𝜎𝑅*
(1 − 𝜎)𝑅*

X
.

.$+/0"
.																																																																																											(24) 203 

In less straightforward cases, such as when the characteristics follow a distribution 204 

other than gamma (Gomes et al. 2020), when mixing is not random (Supplementary 205 

Information), when both distributions in susceptibility and connectivity are 206 

considered, or when contact networks are rewired as result of NPIs or otherwise, ℋ* 207 

can be obtained numerically. 208 

Both (Equation 23) and (Equation 24) convey substantial declines in HIT as 209 

individual variation increases (Figure 2, Gomes et al. 2020), most strikingly over 210 

relatively low CV (from 0 up to 1 or 2). For concreteness, when ℛ* = 3, ℋ* = 67% 211 

for 𝐶𝑉 = 0, while 𝐶𝑉 = 1 brings ℋ* down to 42% for heterogeneous susceptibility 212 

and 30% for heterogeneous connectivity, and 𝐶𝑉 = 2 brings ℋ* further down to 20% 213 

and 11%, respectively. Accounting for reinfection (i.e. 𝜎 > 0 in the formulas) might 214 

moderate these reductions. In any case, such differences in HIT are an indication of 215 

strong sensitivity of the epidemic dynamics to the parameter CV. Since early in the 216 

COVID-19 pandemic we and others (Gomes et al. 2020, Britton et al 2020) have 217 
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advocated for attention to this issue. Given that the steeper decline in ℋ* appears to 218 

occur over a range of realistic CVs (Gomes et al. 2020, Gomes et al 2021) it is 219 

plausible that some aspects of the pandemic dynamics need to be reinterpreted in a 220 

broader framework. 221 

 222 

Figure 2: Herd immunity threshold and epidemic final size. Herd immunity 223 
thresholds (solid curves) are calculated according to (Equation 23) for heterogeneous 224 
susceptibility and (Equation 24) for heterogeneous connectivity. Final sizes of the 225 
corresponding unmitigated epidemics are also shown (dashed). Curves are generated 226 
for different values of the efficacy of immunity conferred by natural infection (1 − 𝜎) 227 
as displayed in the legend. 228 

We emphasise, however, that ℋ* is a theoretical framework almost to the extent that 229 

ℛ* is a theoretical framework. It cannot be measured directly when epidemic 230 

trajectories are affected by interventions, but it can be inferred indirectly from 231 

epidemiological data. By construction, ℋ* changes if the parameters that determine 232 

its value change. Most notably, natural changes in ℛ* through time, which can 233 

happen due to seasonal forces or viral evolution, transfer to ℋ* according to 234 
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(Equation 23), (Equation 24), or even their homogeneity equivalent 1 − 1 ℛ*⁄ . As a 235 

result, the percentage of the population immune required to prevent sustained 236 

epidemic growth may deviate from the initial ℋ*. Notwithstanding, a model with 237 

lower ℋ* outputs smaller epidemics than a model with higher ℋ*, all non-basic 238 

processes being the same. 239 

The phenomenon of variation and selection which accounts for lower HIT was widely 240 

explained around mid-2020 (Hartnett 2020) and generated broad public interest in the 241 

context of COVID-19. By early 2021, vaccines had become available, and the 242 

narrative changed to imply that the HIT might be unachievable for COVID-19 243 

(Aschwanden 2021). This apparent contradiction stems from the adoption of less 244 

fundamental meaning of HIT by the latter. While Hartnett (2020) writes about using 245 

the basic ℋ* to assess pandemic potential, stressing how that is weakened by 246 

variation and selection by natural infection, Aschwanden (2021) endorses a more 247 

common sensical view that reinfection may become frequent enough to make herd 248 

immunity unachievable. In the light of the theory presented here – specifically 249 

(Equation 23) and (Equation 24) – these views are transversal and not contradictory.  250 

Data 251 

We fit compartmental models to publicly available epidemiological data from the 252 

coronavirus dashboards for Spain [https://cnecovid.isciii.es/covid19] and Portugal 253 

[https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal] to fit the models 254 

and estimate parameters of interest. Namely, we fit model reconstructed mortality 255 

timeseries assuming a fixed infection fatality ratio to datasets containing daily deaths, 256 

{(𝑘, 𝑦]3)}34.5 , where 𝑘 = 1 is the day when the cumulative moving average of death 257 

numbers exceed 5 ∙ 1067 of the population (7 March in Spain, 19 March 2020 in 258 
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Portugal). 259 

Model fits were carried out to the raw series of daily deaths until the 1 July 2020 in 260 

the first instance (to cover the first wave of the epidemic in the study countries), and 261 

until the 1 March 2021 in an extended analysis (as a compromise between having a 262 

series sufficiently long to capture much of the second wave and not so long that it 263 

would be affected by vaccination and require the vaccine to be modelled). We defined 264 

the initial conditions as: 265 

𝑅(0) = 0,																																																																																																																																	(25) 266 

𝐼(0) =
𝑦].$8

1 − exp	(−𝜙𝛾),																																																																																																							(26) 267 

𝐸(0) =
𝐼(0)

1 − exp	(−𝛾),																																																																																																									(27) 268 

𝑆(0) = 𝑁 − 𝐸(0) − 𝐼(0) − 𝑅(0),																																																																																						(28) 269 

and the population sizes 𝑁 were obtained from the most recent respective census 270 

(approx. 46.94 million in Spain, 10.28 million in Portugal, 3.57 million in the North 271 

Region of Portugal, 3.66 million in Lisbon and Tagus Valley Region of Portugal). 272 

Model fitting and parameter estimating 273 

We assumed that reinfection was negligible throughout the study period. A study 274 

conducted in England (Hall et al. 2021), between June 2020 and January 2021, 275 

concluded that previous SARS-CoV-2 infection induced 84% effective immunity to 276 

future infections. In (Gomes et al. 2121) we fit models to daily COVID-19 deaths in 277 

England and Scotland, assuming no reinfection (i.e. 100% effective immunity) or 278 

90% effective immunity, and found this alteration to have no significant effect on 279 
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projected model trajectories. Basically, the fit readjusts the parameters when 280 

reinfection is added to the model in such a way that the output solutions remain 281 

similar. 282 

Parameter estimation was performed with the software MATLAB using the PESTO 283 

(Parameter EStimation Toolbox) package (Stapor et al. 2018). We assumed the 284 

number of SARS-CoV-2 infections to be Poisson distributed. 285 

We approximate the dynamics of COVID-19 deaths by estimating the set of 286 

parameters 𝜃 that maximises the log-likelihood (LL) of observing the daily numbers 287 

of reported deaths 𝑌: 288 

𝐿𝐿(𝜃|𝑌) = −f𝑦(𝑘, 𝜃) +f𝑦]
5

34.

5

34.

(𝑘) lni𝑦(𝑘, 𝜃)j −f ln(
5

34.

𝑦](𝑘)!),																									(29) 289 

where 𝑦(𝑘, 𝜃) are the simulated model output numbers of COVID-19 deaths at day 𝑘 290 

for the set of parameters 𝜃, 𝑌 = {(𝑘, 𝑦]3)}34.5  are the numbers of daily reported 291 

deaths, and 𝑛 is the total number of days included in the analysis. 292 

Fitting models to one pandemic wave 293 

The models exploring heterogeneity in susceptibility (Equations 8-11) and 294 

connectivity (Equations 15-18) both with transmissibility profile as in (Equation 19) 295 

were fit to COVID-19 deaths recorded daily until 1 July 2020, in Spain and Portugal. 296 

A homogeneous version obtained by setting 𝐶𝑉 = 0 in either model was also fitted. 297 

Results for Spain are shown in Table 1 and Figure 3, and for Portugal in Table 2 and 298 

Figure 4. 299 
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We estimate the basic reproduction number ℛ* with 95% credible intervals (CI) 300 

around 3.5 − 3.8 in Spain and 2.3 − 3.4 in Portugal. For the minimal transmissibility 301 

factor 𝑐. we estimate 0.21 − 0.27 when individual variation is allowed and 0.18 −302 

0.19 with the homogeneity constraint in Spain, while in Portugal we estimate the 303 

wider intervals 0.26 − 0.39. For coefficients of variation in Spain, we estimate CV in 304 

the range 1.3 − 2.4 under heterogeneous susceptibility and 1.0 − 1.7 under 305 

heterogeneous connectivity. In Portugal, we obtain the much wider and uninformative 306 

ranges 0.0 − 3.2. 307 

Left plots in Figures 3 and 4 show the best fitting model solutions generated from the 308 

median posterior estimates of each parameter in the respective countries as well as the 309 

95% CI generated from 100,000 posterior samples. The basic herd immunity 310 

thresholds ℋ*, calculated from ℛ* and CV estimates, are ℋ* = 19% (95% CI, 13-311 

32%) under heterogeneous susceptibility, ℋ* = 19% (95% CI, 13-36%) under 312 

heterogeneous connectivity, and ℋ* = 72% (95% CI, 71-73%) when homogeneity is 313 

imposed, in Spain. In Portugal, we obtain ℋ* = 19% (95% CI, 5-69%) under 314 

heterogeneous susceptibility, ℋ* = 13% (95% CI, 3-69%) under heterogeneous 315 

connectivity, and ℋ* = 67% (95% CI, 66-69%) when homogeneity is imposed. 316 

Credible intervals for ℋ* in Portugal are wide and uninformative when individual 317 

variation is allowed which is expected given the wide ranges obtained for CV. NPIs in 318 

Portugal were initiated very early in the epidemic which resulted in transmissibility 319 

reductions blending with ℛ*, making parameter identification a major challenge from 320 

the data accessible to us.  321 

In Spain, where the three models provide good fits to the data, model selection criteria 322 

such as AIC (Akaike information criterion) support the heterogeneous 323 
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implementations. To better distinguish the various models, we run the respective 324 

systems of equations forward, under a set of conventions, and compare the respective 325 

projected outcomes. Right plots in Figures 3 were generated by taking the end 326 

conditions of the left plots, moving all exposed and infectious individuals to 327 

recovered (except a residual proportion to seed a new outbreak) and running each 328 

model with the estimated ℛ* and CV until the susceptible pool has been effectively 329 

depleted in all implementations. In this manner we can visualise how much more 330 

infection appears to be ahead when models are constrained to be homogeneous (a 331 

manifestation of their relatively higher ℋ*. Roughly, epidemics peak one order of 332 

magnitude higher when models are homogeneous. This must have broad implications, 333 

which we believe remain largely unappreciated, for how a population will experience 334 

an epidemic, irrespective of how this basic scenario is adapted to specific factors such 335 

behavioural patterns, seasonality, viral evolution, or vaccination.  336 

The same analysis applied to Portugal, selects in favour of the homogeneity 337 

assumption and larger projected waves. We recall, however, the great uncertainty 338 

associated with these specific results. We investigate this further through fittings to 339 

longer data series, in the first instance. 340 

Table 1: Model parameters for Spain (one wave). Estimated by Bayesian inference 341 
based on daily deaths until 1 July 2020. Model selection based on maximum log-342 
likelihood (LL) and Akaike information criterion (AIC). Best fitting models have 343 
lower AIC scores (best in red, second best in blue). Herd immunity threshold (ℋ*) 344 
derived from estimated ℛ* and CV. 345 

 Heterogeneous 
susceptibility 

Heterogeneous 
connectivity Homogeneous 

 Median 95% CI Media
n 95% CI Media

n 95% CI 

Estimated parameters 
𝑇! 5.44 [3.52, 6.07] 5.40 [3.45, 6.07] 5.48 [3.73, 6.04] 
𝑐" 0.24 [0.21, 0.27] 0.24 [0.21, 0.28] 0.18 [0.18, 0.19] 
𝜂 16* [15.53, 16.47] 16* [15.52, 16.48] 16* [15.52, 16.47] 
ℛ! 3.59 [3.51, 3.79] 3.59 [3.51, 3.80] 3.53 [3.47, 3.71] 
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CV 1.98 [1.33, 2.44] 1.41 [0.97, 1.74] 0 - 
Derived from estimated parameters 

ℋ! 23% [17%, 38%] 23% [16%, 37%] 72% [71%, 73%] 
Model selection 

LL -503.78 -503.50 -518.33 
AIC 1017.60 1017.00 1044.70 
* Rounded median resulting in integer number of days. 346 

Table 2: Model parameters for Portugal (one wave). Estimated by Bayesian 347 
inference based on daily deaths until 1 July 2020. Model selection based on maximum 348 
log-likelihood (LL) and Akaike information criterion (AIC). Best fitting models have 349 
lower AIC scores (best in red, second best in blue). Herd immunity threshold (ℋ*) 350 
derived from estimated ℛ* and CV.  351 

 Heterogeneous 
susceptibility 

Heterogeneous 
connectivity Homogeneous 

 Median 95% CI Media
n 95% CI Media

n 95% CI 

Estimated parameters 
𝑇! 0.05 [0.00, 0.10] 0.05 [0.00, 0.10] 0.05 [0.00, 0.10] 
𝑐" 0.31 [0.26, 0.36] 0.32 [0.26, 0.39] 0.31 [0.26, 0.35] 
𝜂 20* [14.75, 25.72] 20* [13.27, 25.94] 21* [15.56, 26.04] 
ℛ! 2.62 [2.29, 3.21] 2.66 [2.27, 3.39] 2.61 [2.28, 3.15] 
CV 0.31 [0.01, 3.24] 0.38 [0.01, 3.04] 0 - 

Derived from estimated parameters 
ℋ! 58% [7%, 69%] 53% [4%, 70%] 62% [56%, 68%] 

Model selection 
LL -287.10 -287.14 -287.34 
AIC 584.20 584.28 582.67 
* Rounded median resulting in integer number of days. 352 



	 19	

 353 

Figure 3: Estimating SARS-CoV-2 transmission in Spain by fitting one wave of 354 
COVID-19 deaths. Variation in susceptibility (top panels); variation in connectivity 355 
(middle panels); and homogeneous model (bottom panels). Susceptibility or 356 
connectivity factors implemented as gamma distributions. Controlled (𝑅1) and 357 
effective (𝑅,--) reproduction numbers are displayed on shallow panels underneath the 358 
main plots. Basic reproduction number, coefficients of variation and transmissibility 359 
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profile parameters estimated by Bayesian inference as described in Methods 360 
(estimates in Table 1). Curves represent model reconstructions from the median 361 
posterior parameter estimates. Shades represent 95% credible intervals from 100,000 362 
posterior samples.  363 

 364 



	 21	

Figure 4: Estimating SARS-CoV-2 transmission in Portugal by fitting one wave of 365 
COVID-19 deaths. Variation in susceptibility (top panels); variation in connectivity 366 
(middle panels); and homogeneous model (bottom panels). Susceptibility or 367 
connectivity factors implemented as gamma distributions. Controlled (𝑅1) and 368 
effective (𝑅,--) reproduction numbers are displayed on shallow panels underneath the 369 
main plots. Basic reproduction number, coefficients of variation and transmissibility 370 
profile parameters estimated by Bayesian inference as described in Methods 371 
(estimates in Table 2). Curves represent model reconstructions from the median 372 
posterior parameter estimates. Shades represent 95% credible intervals from 100,000 373 
posterior samples.  374 

Fitting models to two serial pandemic waves 375 

Here we take the models with heterogeneity in susceptibility (Equations 8-11) and 376 

connectivity (Equations 15-18) and apply the transmissibility profile in (Equations 377 

20-22) to both before fitting the model outputs to COVID-19 deaths recorded daily 378 

until 1 March 2021, in Spain and Portugal. As before a homogeneous version 379 

obtained by setting 𝐶𝑉 = 0 was also fitted. Results for Spain are shown in Table 3 380 

and Figure 5, and for Portugal in Table 4 and Figure 6. 381 

We estimate ℛ* with 95% CI around 3.9 − 4.4 in Spain and 2.7 − 4.6 in Portugal. 382 

For the minimal transmissibility factor 𝑐. we estimate 0.20 − 0.21 when individual 383 

variation is allowed and 0.17 with the homogeneity constraint in Spain, while in 384 

Portugal we obtain 0.23 − 032 with individual variation and 0.16 − 018 without. For 385 

coefficients of variation in Spain, we estimate CV around 2.0 under heterogeneous 386 

susceptibility and 1.3 under heterogeneous connectivity. In Portugal, the estimates are 387 

around 0.5.  388 

Left plots in Figures 5 and 6 show best fitting model solutions as well as the 389 

respective 95% CI. In Spain, basic herd immunity thresholds calculated from best-390 

fitting ℛ* and CV are ℋ* = 25% under heterogeneous susceptibility, ℋ* = 27% 391 

under heterogeneous connectivity, and ℋ* = 76% when homogeneity is imposed. In 392 
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Portugal, we obtain again wider and higher ranges: ℋ* = 56% (95% CI, 52-57%) 393 

under heterogeneous susceptibility, ℋ* = 56% (95% CI, 54-57%) under 394 

heterogeneous connectivity, and ℋ* = 77% (95% CI, 76-78%) when homogeneity is 395 

imposed.  396 

Puzzling, as in the case of shorter data series, model selection supports the 397 

homogeneous model for Portugal while still favouring the incorporation of individual 398 

variation in Spain. Moreover, for each country, results are consistent whether we base 399 

our estimates on one or two waves of the national epidemic. This consistency was 400 

also verified in England and Scotland (Gomes et al 2021). This suggests that the 401 

earlier initiation of NPI in Portugal may not in itself explain why results for Portugal 402 

contrast with those for other countries studied. 403 

Table 3: Model parameters for Spain (two waves). Estimated by Bayesian 404 
inference based on daily deaths until 1 March 2021. Model selection based on 405 
maximum log-likelihood (LL) and Akaike information criterion (AIC). Best fitting 406 
models have lower AIC scores (best in red, second best in blue). Herd immunity 407 
threshold (ℋ*) derived from estimated ℛ* and CV. 408 

 Heterogeneous susceptibility Heterogeneous connectivity Homogeneous 
 Median 95% CI Median 95% CI Median 95% CI 

Estimated parameters 
𝑇! 3.22 [3.18, 3.31] 6.06 [6.06, 6.07] 5.99 [5.98, 5.99] 
𝑇# 448.42 [446.58, 452.53] 429.91 [427.04, 433.98] 783.88 [777.04, 784.12] 
𝑐" 0.20 [0.20, 0.20] 0.21 [0.21, 0.21] 0.17 [0.17, 0.17] 
𝑐# 0.71 [0.71, 0.71] 0.68 [0.68, 0.68] 0.50 [0.50, 0.50] 
𝜂 12* [12.42, 12.50] 12* [11.54, 12.45] 10* [10.04, 10.07] 
ℛ! 4.36 [4.32, 4.37] 3.93 [3.92, 3.95] 4.11 [4.10, 4.11] 
CV 2.02 [2.01, 2.02] 1.30 [1.28, 1.31] 0 - 

Derived from estimated parameters 
ℋ! 25% [25%, 25%] 27% [27%, 27 %] 76% [76%, 76%] 

Model selection 
LL -3511.40 -3269.90 -5826.40 
AIC 7036.80 6553.90 11665.00 
* Rounded median resulting in integer number of days. 409 

Table 4: Model parameters for Portugal (two waves). Estimated by Bayesian 410 
inference based on daily deaths until 1 March 2021. Model selection based on 411 
maximum log-likelihood (LL) and Akaike information criterion (AIC). Best fitting 412 
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models have lower AIC scores (best in red, second best in blue). Herd immunity 413 
threshold (ℋ*) derived from estimated ℛ* and CV.  414 

 Heterogeneous susceptibility Heterogeneous connectivity Homogeneous 
 Median 95% CI Median 95% CI Median 95% CI 

Estimated parameters 
𝑇! 0.03 [0.01, 0.05] 0.04 [0.00, 0.10] 0.05 [0.00, 0.10] 
𝑇# 585.14 [573.66, 672.90] 644.26 [615.71, 695.38] 899.67 [872.69, 946.07] 
𝑐" 0.27 [0.27, 0.32] 0.24 [0.23, 0.25] 0.17 [0.16, 0.18] 
𝑐# 0.71 [0.71, 0.87] 0.71 [0.70, 0.77] 0.66 [0.64, 0.68] 
𝑐) 0.34 [0.27, 0.48] 0.42 [0.39, 0.48] 0.35 [0.34, 0.36] 
𝜂 16* [15.52, 17.39] 14* [12.76, 15.34] 12* [11.54, 12.33] 
ℛ! 2.94 [2.66, 2.96] 3.25 [3.14, 3.32] 4.36 [4.20, 4.58] 
CV 0.55 [0.54, 0.59] 0.47 [0.47, 0.49] 0 - 

Derived from estimated parameters 
ℋ! 56% [52%, 57%] 56% [54%, 57%] 77% [76%, 78%] 

Model selection 
LL -1550.80 -1376.80 -1234.30 
AIC 3117.50 2769.50 2482.50 
* Rounded median resulting in integer number of days. 415 



	 24	

 416 

Figure 5: Estimating SARS-CoV-2 transmission in Spain by fitting two serial 417 
waves of COVID-19 deaths. Variation in susceptibility (top panels); variation in 418 
connectivity (middle panels); and homogeneous model (bottom panels). Susceptibility 419 
or connectivity factors implemented as gamma distributions. Controlled (𝑅1) and 420 
effective (𝑅,--) reproduction numbers are displayed on shallow panels underneath the 421 
main plots. Basic reproduction number, coefficients of variation and transmissibility 422 
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profile parameters estimated by Bayesian inference as described in Methods 423 
(estimates in Table 3). Curves represent model reconstructions from the median 424 
posterior parameter estimates. Shades represent 95% credible intervals from 100,000 425 
posterior samples.  426 

 427 
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Figure 6: Estimating SARS-CoV-2 transmission in Portugal by fitting two serial 428 
waves of COVID-19 deaths. Variation in susceptibility (top panels); variation in 429 
connectivity (middle panels); and homogeneous model (bottom panels). Susceptibility 430 
or connectivity factors implemented as gamma distributions. Controlled (𝑅1) and 431 
effective (𝑅,--) reproduction numbers are displayed on shallow panels underneath the 432 
main plots. Basic reproduction number, coefficients of variation and transmissibility 433 
profile parameters estimated by Bayesian inference as described in Methods 434 
(estimates in Table 4). Curves represent model reconstructions from the median 435 
posterior parameter estimates. Shades represent 95% credible intervals from 100,000 436 
posterior samples.  437 

Fitting models to regional data in Portugal 438 

Intrigued by the puzzling results for Portugal at country level, we gathered regional 439 

data. We found that the epidemic was considerably different between the two largest 440 

regions: North, home to roughly one third of the Portuguese population; and Lisbon 441 

and Tagus Valley, home to another third. Asynchrony of epidemic dynamics between 442 

regions of similar sizes may require disaggregated analyses. We then decided to fit 443 

the mortality data for the two regions simultaneously, estimating common parameters 444 

to describe country-wide lockdowns, and regions-specific parameters to describe the 445 

basic transmission dynamics (ℛ* and CV). The results are provided in Tables 5, 6 and 446 

Figures 7-9. According to these analyses, the best-fitting models include 447 

heterogeneity.  448 

Basic herd immunity thresholds inferred by fits to the longer series (until 1 March 449 

2021) are around 25 − 34% in the North (similar as Spain, England, and Scotland) 450 

and 47 − 52% in Lisbon and Tagus Valley. The higher ℋ* in the capital region 451 

results from the estimation of a lower CV. This may be real and due to the more urban 452 

character of Lisbon and Tagus Valley or, in contrast, it may be a spurious result of the 453 

lack of a first wave in the region to inform the model. It would be interesting to 454 
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replicate the regional analysis in other countries to investigate to what extent more 455 

urban regions have higher HIT. 456 

Fits to the shorter series (until 1 July 2020) are again inconclusive. Not only the 457 

uncertainty around parameter estimates is large but some estimates are implausible. 458 

First, ℛ* around 2 or less is on the low end of consensus estimates (Flaxman et al. 459 

2020; Keeling et al. 2020; Viana et al. 2021; Wood 2021). More strikingly, the 460 

algorithm is incapable of estimating CV from these regional series, resulting in 461 

convergence to the upper and lower limits of the prior distribution (uniform between 462 

0.01 − √12) in the North and Lisbon regions, respectively. 463 

In summary, the results reported in this section support two notions. First, 464 

asynchronous dynamics may compromise parameter estimation based on model 465 

fittings to aggregated data. This should depend on whether the asynchrony in question 466 

is between similar-sized regions. Second, the early estimation of parameters for 467 

heterogeneous models (especially CV) may require a larger first wave than that 468 

required by models that are either homogeneous (Flaxman et al. 2020; Wood 2021) or 469 

have their heterogeneity informed directly by specific data (Keeling et al. 2020). The 470 

downside of these other approaches, however, is that heterogeneity is either absent or 471 

possibly incomplete, resulting in reduced selection and biased estimates. Among the 472 

studies we have completed, England, Scotland and Spain had sufficiently sized first 473 

waves to inform the inference of CV while Portugal did not. 474 

Table 5: Model parameters for the North and Lisbon regions of Portugal (one 475 
wave). Estimated by Bayesian inference based on daily deaths until 1 July 2020. 476 
Model selection based on maximum log-likelihood (LL) and Akaike information 477 
criterion (AIC). Best fitting models have lower AIC scores (best in red, second best in 478 
blue). Herd immunity threshold (ℋ*) derived from estimated ℛ* and CV.  479 

 Heterogeneous susceptibility Heterogeneous connectivity Homogeneous 
 Median 95% CI Median 95% CI Median 95% CI 
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Common parameters 
𝑇! 0.05 [0.00, 0.10] 0.05 [0.00, 0.10] 0.05 [0.00, 0.10] 
𝑐" 0.48 [0.43, 0.52] 0.55 [0.47, 0.61] 0.43 [0.40, 0.47] 
𝜂 24* [19.45, 28.99] 21* [14.18, 27.37] 29* [28.50, 28.50] 

North 
ℛ! 2.17 [2.00, 2.45] 2.43 [2.17, 2.92] 1.91 [1.80, 2.09] 
CV 3.44 [3.38, 3.46] 3.45 [3.39, 3.46] 0 - 
ℋ! 5.9% [5.2%, 7.0%] 3.5% [3.0%, 4.4%] 48% [44%, 52%] 

Lisbon and Tagus Valley 
ℛ! 1.78 [1.65, 2.00] 1.65 [1.49, 1.96] 1.85 [1.74, 2.02] 
CV 0.07 [0.01, 0.56] 0.07 [0.01, 0.57] 0 - 
ℋ! 44% [32%, 50%] 39% [21%, 49%] 46% [43%, 51%] 

Model selection 
LL -520.56 -479.75 -578.50 
AIC 1055.10 973.49 1167.00 

    
* Rounded median resulting in integer number of days. 480 

Table 6: Model parameters for the North and Lisbon regions of Portugal (two 481 
waves). Estimated by Bayesian inference based on daily deaths until 1 March 2021. 482 
Model selection based on maximum log-likelihood (LL) and Akaike information 483 
criterion (AIC). Best fitting models have lower AIC scores (best in red, second best in 484 
blue). Herd immunity threshold (ℋ*) derived from estimated ℛ* and CV.  485 

 Heterogeneous susceptibility Heterogeneous connectivity Homogeneous 
 Median 95% CI Median 95% CI Median 95% CI 

Common parameters 
𝑇! 0.06 [0.00, 0.10] 0.09 [0.06, 0.10] 0.05 [0.03, 0.05] 
𝑇# 498.77 [489.85, 515.47] 499.41 [462.35, 547.99] 960.64 [960.28, 961.42] 
𝑐" 0.27 [0.26, 0.29] 0.25 [0.25, 0.25] 0.17 [0.17, 0.17] 
𝑐# 0.75 [0.73, 0.82] 0.71 [0.69, 0.75] 0.73 [0.73, 0.73] 
𝑐) 0.44 [0.42, 0.45] 0.49 [0.45, 0.50] 0.36 [0.36, 0.36] 
𝜂 16* [15.36, 16.46] 15* [13.75, 15.16] 12* [11.62, 11.64] 

North 
ℛ! 2.99 [2.88, 3.03] 3.12 [3.05, 3.18] 4.34 [4.34, 4.35] 
CV 1.40 [1.39, 1.41] 0.99 [0.93, 1.20] 0 - 
ℋ! 31% [30%, 31%) 32% [25%, 34%] 77% [77%, 77%] 

Lisbon and Tagus Valley 
ℛ! 2.81 [2.69, 2.86] 2.95 [2.87, 3.01] 4.39 [4.38, 4.40] 
CV 0.67 [0.65, 0.70] 0.54 [0.53, 0.57] 0 - 
ℋ! 51% [49%, 52%] 49% [47%, 51%] 77% [77%, 77%] 

Model selection 
LL -2313.50 -2471.00 -2764.30 
AIC 4647.10 4961.90 5544.60 
* Rounded median resulting in integer number of days. 486 
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 487 

Figure 7: Estimating SARS-CoV-2 transmission in the two larger regions of 488 
Portugal. Heterogeneous susceptibility implemented as a gamma distribution. 489 
Controlled (𝑅1) and effective (𝑅,--) reproduction numbers are displayed on shallow 490 
panels underneath the main plots. Basic reproduction number, coefficients of 491 
variation and transmissibility profile parameters estimated by Bayesian inference as 492 
described in Methods (estimates in Table 5). Curves represent model reconstructions 493 
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from the median posterior parameter estimates. Shades represent 95% credible 494 
intervals from 100,000 posterior samples.  495 

 496 

Figure 8: Estimating SARS-CoV-2 transmission in the two larger regions of 497 
Portugal. Heterogeneous connectivity implemented as a gamma distribution. 498 
Controlled (𝑅1) and effective (𝑅,--) reproduction numbers are displayed on shallow 499 
panels underneath the main plots. Basic reproduction number, coefficients of 500 
variation and transmissibility profile parameters estimated by Bayesian inference as 501 
described in Methods (estimates in Table 5). Curves represent model reconstructions 502 
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from the median posterior parameter estimates. Shades represent 95% credible 503 
intervals from 100,000 posterior samples.  504 

 505 

Figure 9: Estimating SARS-CoV-2 transmission in the two larger regions of 506 
Portugal. Homogeneous model.  Controlled (𝑅1) and effective (𝑅,--) reproduction 507 
numbers are displayed on shallow panels underneath the main plots. Basic 508 
reproduction number, coefficients of variation and transmissibility profile parameters 509 
estimated by Bayesian inference as described in Methods (estimates in Table 5). 510 
Curves represent model reconstructions from the median posterior parameter 511 
estimates. Shades represent 95% credible intervals from 100,000 posterior samples.  512 

Discussion 513 

We fit SEIR models, with inbuilt distributions of individual susceptibility or exposure 514 

to infection, to daily series of COVID-19 deaths in Spain and Portugal. In similarity 515 

with other studies (Flaxman et al. 2020, Keeling et al. 2020, Bertuzzo et al. 2021, 516 

López & Rodó 2021, Viana et al. 2021), we estimated relevant transmission 517 

parameters, such as the basic reproduction number ℛ*, and a time dependent 518 
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transmissibility profile 𝑐(𝑡) which multiplies ℛ* to account for effects of NPIs, 519 

seasonality, viral evolution, or any unexplicit factor that modifies the ability of the 520 

virus to infect new hosts. In contrast, our sets of estimated parameters include 521 

coefficients of variation that characterise distributions of unmeasured individual 522 

susceptibility or connectivity while more common practices are to impose measured 523 

variation into the model and ignore the unmeasured. 524 

The two approaches have different advantages and disadvantages, and which to adopt 525 

depends on study objectives. Using directly measured variation to inform the model 526 

allows phenomena to be represented on a micro scale as desired for designing targeted 527 

interventions, for instance, but ignoring unmeasured variation may create biases on 528 

the macro scale if relevant selection is occurring on omitted characteristics. This may 529 

result in the model overpredicting the impact of uniform interventions, for example. 530 

The approach of inferring the amount of variation that is under selection by fitting the 531 

model on a macro scale is conceived to eliminate those biases, but not suitable for 532 

informing targeted actions. In addition, the latter approach appears to require larger 533 

infected numbers than the former. In a global crisis such as the current COVID-19 534 

pandemic the two approaches can have a role, helping to overcome each other’s 535 

limitations. 536 

The inference of selectable variation presented here is relatively new to infectious 537 

disease modelling. Prior to attempting this in the context of the COVID-19 pandemic, 538 

we and others have been accelerating progress in systems that were either 539 

experimentally controlled (Dwyer et al. 1997; Ben-Ami et al. 2008; Zwart et al. 2011; 540 

Pessoa et al. 2014; Langwig et al. 2017; King et al. 2018) or already endemic (Smith 541 

et al. 2005; Bellan et al. 2015; Corder et al. 2020). Several aspects of the pandemic 542 
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made it more challenging. There was an urgency for early results from inherently 543 

scarce data, a challenge amplified by non-pharmaceutical interventions designed to 544 

suppress the epidemic. In countries where interventions began earlier, such as 545 

Portugal, it has been impossible to reach conclusive results without refining data and 546 

methods further. In Spain (this study) and England and Scotland (Gomes et al 2021), 547 

on the other hand, interventions started later, and results were consistent internally 548 

and with each other. Moreover, comparing our coefficients of variation for individual 549 

connectivity to those measured directly by contact surveys, we found them to be less 550 

than 40% higher. This suggests that there was more selectable variation than the 551 

surveys had captured, as expected, but not enough to seem implausible. 552 

In conclusion, we believe that the results presented here constitute a major step in the 553 

establishment of a novel approach to improve the accuracy and predictability of 554 

infectious disease modelling. It holds good promise for use in conjunction with other 555 

tools to help devise future pandemic policies. 556 
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