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Abstract

In this paper we developed a deterministic mathematical model of the pandemic COVID-19 trans-

mission in Ethiopia, which allows transmission by exposed humans. We proposed an SEIR model

using system of ordinary differential equations. First the major qualitative analysis, like the disease

free equilibruim point, endemic equilibruim point, basic reproduction number, stability analysis of

equilibrium points and sensitivity analysis was rigorously analysed. Second, we introduced time

dependent controls to the basic model and extended to an optimal control model of the disease.

We then analysed using Pontryagin’s Maximum Principle to derive necessary conditions for the

optimal control of the pandemic. The numerical simulation indicated that, an integrated strategy

effective in controling the epidemic and the gvernment must apply all control strategies in combat-

ing COVID-19 at short period of time.
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1 Introduction

Corona virus disease (COVID-19) which is caused by novel corona virus is a respiratory illness

that can spread from person to person [1, 2, 3]. People with COVID-19 have had a wide range of

symptoms reported – ranging from mild symptoms to severe illness. Symptoms may appear 2-14

days after exposure to the virus. People with these symptoms may have COVID-19: fever or chills,

cough, shortness of breath or difficulty breathing, fatigue, muscle or body aches, headache, new

loss of taste or smell, sore throat, congestion or runny nose, nausea or vomiting, diarrhea [1, 4].
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The outbreak was first identified in Wuhan, China, in December, 2019, which has been spreading

worldwide [5, 6] . Following the day of the outbreak of the pandemic to present more than seven

million globally confirmed cases and half million deaths as well as four million recovered numbers

[7]. In Africa also the virus spread to 57 countries [1, 7]. Through out Africa up to Jun 14, 2020

confirmed cases are 235,707, number of deaths are 6,283 and recoveries are 36,850 [8].

In order to combat this pandemic, different preventive measures are recommended, such as

avoiding close contact with sick people, avoiding touching the eyes, nose and mouth with unwashed

hands, washing hands often with soap and water for at least 20 seconds, using an alcohol-based

hand sanitizer containing at least 60% alcohol when soap and water are not available [1, 3, 4].

Limit the number of people you have close contact with, or are visited by, to a few at a time. For

infected individuals, staying home, covering cough or sneeze with a tissue, then throw the tissue

in the trash, and clean and disinfect frequently touched objects are recommended for controlling

COVID-19, perform home quarantine for 14 days after the last contact with a patient with confirmed

COVID-19 [9, 10].

Mathematical models with optimal control analysis has become an important tool in order to

understand the dynamics of disease transmission and decision making processes regarding inter-

vention programs for the disease control. COVID-19 have been modeled by very few researchs

after the outbreak of the disease. The study by [11], used an SIR model to predict the magnitude

of the COVID-19 epidemic in Pakistan and compared the numbers with the reported cases on the

national database. They predicted that 90% of the population will have become infected with the

virus if policy interventions seeking to curb this infection are not adopted aggressively. The study

presented in [12] used SEIR compartments by considering limited parameters, from January 22,

2020 to March 3, 2020 and Prediction SEIR forecasted by using SEIR model They also looked

at the feelings, current disease trends and economic and political impacts. The article [13], pro-

posed conceptual models for the COVID-19 outbreak in Wuhan with the consideration of individual

behavioural reaction and governmental actions, e.g., holiday extension, travel restriction, hospital-

isation and quarantine. The article published by [12] also proposed SEIR model by incorporating

the intrinsic impact of hidden exposed and infectious cases on the entire procedure of epidemic,

which is difficult for traditional statistics analysis. The other study is done in China using SIR

by considering logistic growth [11]. Using their model, the study approximated future number of

cases in china and proposed possible controlling mechanisms. The study [14] simulated the on-

going trajectory of Covid 19 outbreak in Wuhan using an age-structured SEIR model for several
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physical distancing measures. The article presented by [15], proposed a compartmental model by

dividing the quarantined individuals in to two sub-groups. They developed an SEIRU model where

R and U are quarantine-infected individuals expected to recover and meet undetectable criteria. A

more detail model is proposed by [16], and studied a mathematical modeling of the spread of the

COVID-19 taking into account the undetected infections, in China. The study in [17], proposed a

new epidemic model in the case of Italy that discriminates between infected individuals depending

on whether they have been diagnosed and on the severity of their symptoms. However, all of the

above models studied the dynamics of disease transmission, they did not study finding an optimal

control strategy using the maximum princeiple of Pontryagn.

From all the above studies we can understand that, COVID-19 have been modeled by consider-

ing different situations. In the case of Ethiopia, the proposed model can’t reflect the real situation of

the country. Currently Ethiopia is implementing different measure to control COVID-19 including

implementing state of emergency, counry border closing and mandatory quarantine of new arrivals

for 14 days. herefore, in the present paper we extend the SEIR model with the aforementioned

control measures and propose an optimal control strategy.

The paper is organized as follows. In Section 2 was devoted to the model description and

the underlying assumptions. In Section 3 we carry out mathematical analysis of this COVID-19

model. In Section 4 we propose an optimal control problem and and the optimal control analysis

are presented. In Section 5 numerical simulation and calibration of the model was implemented for

the various strategies considered in this work. The conclusion was presented in Section 6.

2 Model Description and Formulation

In this model the entire population is divided into four sub-populations: Susceptible individuals

(denoted by S) are those who are not infected by the disease pathogen but there is a possibility to

be infected. Exposed individuals (denoted by E) are individuals who are in the incubation period

after being infected and have no visible clinical signsand these individuals could infect other people

with a higher probability than people in the infected compartments. After the incubation period, the

person passes to the infected compartment; infected individuals (denoted by I) are individuals who

developed the symptom of the disease. Recovered individuals (denoted by R )are those individuals

who recovered from the disease.

Individuals are recruitment at a rate π is either through immigration or birth. The suscepti-

ble individuals got infection of COVD-19 disease at a contact rate of β either from infected with

3
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probability of σ1 or from exposed individuals with probability of σ2 and move to the exposed com-

partment. The exposed individuals become infectious and join the infected compartment at τδ and

the remaining proportion of this exposed individuals develop natural immunity and recovered from

the disease. By the treatment given, the infected individuals will recover and move to the recovered

compartment at a rate of ε, or may die due to the disease at a rate of ρ . The recovered individuals

become again susceptible to the disease at a rate of η. The whole population have an average death

rate of µ . Table 1 shows the description of model parameters. The flow diagram of the model is

shown in Figure 1 below.

With regards to the above asumptions, the model is governed by the following system of differ-

ential equation:
dS
dt

= π + ηR− β(σ1I + σ2E)S − µS
dE
dt

= β(σ1I + σ2E)S − (δ + µ)E

dI
dt

= τ δ E − (ε+ ρ+ µ) I

dR
dt

= (1− τ)δE + ε I − (µ+ η)R

(1)

With the initial condition

S(0) = S0 ≥ 0 , E(0) = E0 ≥ 0 I(0) = I0 ≥ 0 , R(0) = R0 ≥ 0 (2)

Figure 1: Compartmental flow diagram of the pandemic COVID 19 transmission
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Table 1: Description of parameters of the model (1).

Parameter Description

π Ricuirement rate of individuals

β Contact rate of susceptible individuals

ρ Death rate due to disease

δ Proportion of exposed individuals leaving the compartment.

ε Recovery rate of individuals from the disease

τ Proportion of exposed individuals who join infected compartment

µ Natural death rate

η Proportion of recovered individuals to be susceptible.

3 Model Analysis

3.1 Invariant Region

Let us determine a region in which the solution of model (1) is bounded. For this model the total

population is N(S,E, I, R) = S(t) + E(t) + I(t) + R(t). Then, differentiating N with respect to

time we obtain:
dN

dt
=
dS

dt
+
dE

dt
+
dI

dt
+
dR

dt
= π − ρI − µN

If there is no death due to the disease, we get

dN

dt
≤ π − µN (3)

After solving equation (3) and evaluating it as t −→∞, we got

Ω = {(S,E, I, R)ε<4
+ : N(t) ≤ π

µ
}

Which is the feasible solution set for the model (1) and all the solution set is bounded in it.

3.2 Positivity of Solutions

Theorem 3.1. If S(0) > 0, E(0) > 0, I(0) > 0, R(0) > 0 are positive in the feasible set Ω, then

the solution set (S(t), E(t), I(t), R(t)) of system (1) is positive for all t ≥ 0.

Proof. : From the first equation of the system

dS

dt
= π + ηR− β(σ1I + σ2E)S − µS
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which can be taken as
dS

dt
≥ −µS (4)

After evaluating equation (4), we obtain

S ≥ S(0)e−µt

Similarly, we obtain

E ≥ E(0)e−(δ+µ)t

I ≥ I(0)e−(ε+ρ+µ)t

R ≥ R(0)e−(η+µ)t

Therefore, all the solution sets are positive for t ≥ 0.

3.3 Disease Free Equilibrium Point(DFEP)

When there is no infectious person of the disease in the population, I.e E = I = 0, the disease free

equilibrium occur and is obtained by taking the right side of Eq. (1) equal to zero. Therefore the

disease free equilibrium point is given by:

E0 = (
π

µ
, 0, 0, 0) (5)

3.4 Basic reproduction number

We calculate the basic reproduction number <0 of the system by applying the next generation

matrix method as laid out by [18]. The first step is rewrite the model equations, starting with

newly infective classes:
dE
dt

= β(σ1I + σ2E)S − (δ + µ)E

dI
dt

= τ δ E − (ε+ ρ+ µ) I

dR
dt

= (1− τ)δE + ε I − (µ+ η)R

(6)

Then by the principle of next-generation matrix, the Jacobian matrices at DFE is given by

F =


β σ2Π
µ

β σ1Π
µ

0

0 0 0

0 0 0

 and V =


δ + µ 0 0

−τ δ ε+ ρ+ µ 0

− (1− τ) δ −ε µ+ η


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FV−1 =


(σ1δ τ+σ2(ε+µ+ρ))βΠ

µ (ε+ρ+µ)(δ+µ)
β σ1Π

µ (ε+ρ+µ)
0

0 0 0

0 0 0


Therefore, the basic reproduction number is given us

<0 =
β Π (σ1τ δ + σ2 (ε+ ρ+ µ))

µ (ε+ ρ+ µ) (δ + µ)
(7)

<0 is a threshold parameter that represents the average number of infection caused by one infectious

individual when introduced in the susceptible population [18].

3.5 Local Stability of DFEP

Theorem 3.2. The DFEP point is locally asymptotically stable if <0 < 1 and unstable if <0 > 1.

Proof. The Jacobian matrix, evaluated at the disease-free equilibrium E0, we get:

J =



−µ −β σ2Π
µ

−β σ1Π
µ

η

0 β σ2Π
µ
− δ − µ β σ1Π

µ
0

0 τ δ −ε− µ− ρ 0

0 (1− τ) δ ε −µ− η


The characteristic polynomial from the Jacobian matrix is

(−λ− (η + µ))(−λ− µ)(λ2 + ψ1λ+ ψ2) = 0 (8)

Where

ψ1 =
−β σ2Π + δ µ+ µ ε+ 2µ2 + µ ρ

µ

ψ2 =
−Π β δ τ σ1 − Π β ε σ2 − Π β µσ2 − Π β ρ σ2 + δ ε µ+ δ µ2 + δ µ ρ+ ε µ2 + µ3 + µ2ρ

µ

From the Eq.(8), we see that

−λ− (η + µ)⇒ λ1 = −(η + µ) < 0 and − λ− µ⇒ λ2 = −µ < 0

From the last expression, that is

λ2 + ψ1λ+ ψ2 = 0 (9)

We applied Routh-Hurwitz criteria and by the principle Eq.(8) has strictly negative real root iff

ψ1 > 0 , ψ2 > 0 and ψ1ψ2 > 0. Clearly we see that ψ1 > 0 because it is the sum of positive

7
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parameters.

ψ1 =
(ε+ ρ+ µ)

(δ + µ)
+

β Πσ1τ δ

µ (ε+ ρ+ µ) (δ + µ)
+ 1−<0 > 0

ψ2 = (ε+ ρ+ µ) (δ + µ) [1−<0] > 0

Hence the DFEP is locally asymptotically stable if <0 < 1.

3.6 Global Stability of DFEP

Theorem 3.3. The DEFP E0 of the model (1) is globally asymptotically stable if <0 < 1.

Proof. Consider the following Lyapunov function

V = c1E + c2I (10)

Differentiating equation (10) with respect to t gives

dV

dt
= c1

dE

dt
+ c2

dI

dt
(11)

Substituting dE
dt

and dI
dt

from the model (1), we get:

dV

dt
= c1[β(σ1I + σ2E)S − (δ + µ)E] + c2[τ δ E − (ε+ ρ+ µ) I]

= c1βσ1SI − c2 (ε+ ρ+ µ) I + c1 (βσ2SE − (δ + µ)E) + c2τδE

Here take c2 = −βσ2S−(δ+µ)
τδ

c1, then we have

dV

dt
= [

βσ1Sτδ + βσ2S (ε+ ρ+ µ)− (δ + µ) (ε+ ρ+ µ)

τδ
]c1I

Taking c2 = 1, and substituting <0 we get

dV

dt
≤ (δ + µ) (ε+ ρ+ µ)

τδ
(<0 − 1)I

for S ≤ S0 = π
µ

and dV
dt
≤ 0 for <0 < 1 and dV

dt
= 0 if and only if I = 0. This implies that the only

trajectory of the system (1) on which dV
dt
≤ 0 is E0. Therefore by Lasalle’s invariance principle,

E0 is globally asymptotically stable in Ω.

3.7 Existence of endemic equilibrium (EEP)

In the presence of disease in the population,(S(t) ≥ 0;E(t) ≥ 0; I(t) ≥ 0, R(t) ≥ 0), there exist

an equilibrium point called endemic equilibrium point denoted by E∗ = (S∗, E∗, I∗, R∗) 6= 0.

Lemma 3.4. The Zika-only model has a unique endemic equilibrium if and only if <0 > 1.
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Proof. It can be obtained by equating each equation of the model equal to zero. i.e

dS

dt
=
dE

dt
=
dI

dt
=
dR

dt
= 0

Then we obtain 

S∗ = (δ+µ)(ε+ρ+µ)
β(τδ+ε+ρ+µ)

E∗ = µ(δ+µ)(ε+ρ+µ)2(η+µ)[1−<0]
βκ

I∗ = τδµ(δ+µ)(ε+ρ+µ)(η+µ)[1−<0]
βκ

R∗ = δ[τ(ε+ρ+µ)+η+µ][1−<0]
βκ

(12)

Where

κ = δ2ητ 2ε− (ε+ ρ+ µ)[δ2τ(ητ + µ) + δτ(ητ + µ2)]

−(ε+ ρ+ µ)2µ(δ + η + µ)− δηµτ(2µ+ 3ρ)− δητρ2

Theorem 3.5. The EEP is locally asymptotically stable if <0 > 1 and unstable if otherwise.

Proof. The Jacobian matrix of system (1) at the DFEP is given by

J =



−µ −β σ2Π
µ

−β σ1Π
µ

η

0 β σ2Π
µ
− δ − µ β σ1Π

µ
0

0 τ δ −ε− µ− ρ 0

0 (1− τ) δ ε −µ− η


(13)

To determine the local stablity of endemic equilibrium, we used the center manifold theory [19],

by taking β as a bufiracation parameter. let S = z1, E = z2, I = z3 and R = z4. In addition, using

vector notation z = (z1, z2, z3, z4)T , formulated as dz
dt

= F (z), with F = (f1, f2, f3, f4, f5)T and

the disease free equilibrium is given by (z1 = Π
µ
, z2 = 0, z3 = 0, z4 = 0). Then the value of β as a

bifurcation parameter and solve <0 = 1, which leads to

β = β∗ =
µ (ε+ ρ+ µ) (δ + µ)

Π (σ1τ δ + σ2 (ε+ ρ+ µ))

The right eigenvector, w = (w1, w2, w3, w4)T , associated with this simple zero eigenvalue can be

9
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obtained as:

w1 =
−(δ + µ)(η + µ)(ε+ ρ+ µ) + δ(ε+ ρ+ µ)− δτ(ρ+ µ)

µ(η + µ)(ε+ ρ+ µ)
w2,

w2 = w2 > 0,

w3 =
δτ

ε+ ρ+ µ
w2,

w4 =
δ(ε+ ρ+ µ)− δτ(ρ+ µ)

(η + µ)(ε+ ρ+ µ)
w2

The left eigenvector, v = (v1, v2, v3, v4, v5) , associated with this simple zero eigenvalue is given

by

v1 = v4 = 0, v2 = v2 > 0, v3 =
σ1Π (δ + µ)

Π (σ1τ δ + σ2 (ε+ ρ+ µ))
v2

Since the first and fourth component of v are zero, we don’t need the derivatives of f1 and f4. From

the derivatives of f2 and f3, the only ones that are nonzero are the following:

∂2f2

∂z2∂z1

=
∂2f2

∂z1∂z2

= β∗σ2,
∂2f3

∂z3∂z1

=
∂2f3

∂z1∂z3

= β∗σ1,
∂2f2

∂z2∂β
= σ2z1,

∂2f2

∂z3∂β
= σ1z1

and all the other partial derivatives of are zero. The direction of the bifurcation at <0d = 1 is

determined by the signs of the bifurcation coefficients a and b, obtained from the above partial

derivatives, given respectively by

a = 2v2w1w2
∂2f2

∂z1∂z2

+ 2v2w1w3
∂2f2

∂z1∂z3

= 2v2w1β
∗ [σ2w2 + σ1w3]

= − 2 (δ + µ)

Π(η + µ)(ε+ ρ+ µ)
[(δ + µ)(η + µ)(ε+ ρ+ µ)− δ(ε+ ρ+ µ) + δτ(ρ+ µ)]w2 < 0

and

b = v2w2
∂2f2

∂z1∂β∗
+ v2w3

∂2f2

∂z3∂β∗
=

Π

µ

[
σ2 +

δτ

ε+ ρ+ µ
σ1

]
> 0 (14)

Do to the sign of the coefficient a < 0 and b > 0 at β∗, by the theorem 4.1 stated in [19] sys-

tem (11) undergo forward bifurcation at <0 = 1 and the unique endemic equilibruim is locally

assymptotically stable for <0 > 1.

3.8 Sensitivity Analysis

We carried out sensitivity analysis, on the basic parameters, to identify their effect to the transmi-

tion of the disease. To go through sensitivity analysis, we used the normalized sensitivity index

definition as defined in [20]. The Normalized forward sensitivity index of a variable, <0, that de-

pends differentiably on a parameter, p, is defined as: Λ<0
p = ∂<0

∂p
× p
<0

for p represents all the

10
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basic parameters. Here we have <0 = βΠ(σ1τ δ+σ2(ε+ρ+µ))
µ (ε+ρ+µ)(δ+µ)

. For the sensitivity index of <0 to the

parameters:

Λ<0
β =

∂<0

∂β
× β

<0

= 1 > 0

Λ<0
σ1

=
∂<0

∂σ1

× σ1

<0

=
σ1δτρ

σ1δτ + σ2(ε+ ρ+ µ)
> 0

Λ<0
σ2

=
∂<0

∂σ2

× σ2

<0

=
σ2(ε+ ρ+ µ)

σ1δτ + σ2(ε+ ρ+ µ)
> 0

Λ<0
τ =

∂<0

∂τ
× τ

<0

=
σ1τδ

σ1δτ + σ2(ε+ ρ+ µ)
> 0

Λ<0
δ =

∂<0

∂δ
× δ

<0

=
δ[σ1δτµ− σ2(ε+ ρ+ µ)]

(ε+ ρ+ µ)[σ1δτ + σ2(ε+ ρ+ µ)]
> 0

Λ<0
ρ =

∂<0

∂ρ
× ρ

<0

= − σ1δτρ

(ε+ ρ+ µ)[σ1δτ + σ2(ε+ ρ+ µ)]
< 0

Λ<0
ε =

∂<0

∂ε
× ε

<0

= − σ1τδε

(ε+ ρ+ µ)[σ1δτ + σ2(ε+ ρ+ µ)]
< 0

Λ<0
σ =

∂<0

∂µ
× µ

<0

= −βΠ[(δτ + ρ)(ρ+ µ)(δ + µ) + (δτ + ρ)(δ − ρ)]

µ2 (ρ+ µ)2 (δ + µ)2 < 0

The sensitivity indices of the basic reproductive number with respect to main parameters are

found in Table 2. Those parameters that have positive indices (Π, β, σ1, σ1, and τ) show that

they have great impact on expanding the disease in the community if their values are increasing.

Also those parameters in which their sensitivity indices are negative (δ, ρ, ε, and µ) have an effect

of minimizing the burden of the disease in the community as their values increase. Therefore,

research advice for stakholders to work on decreasing the positive indeces and increasing negative

indices parameters

Table 2: Sensitivity indecies table.

Parameter symbol Sensitivity indecies

β +ve

σ1 +ve

σ2 +ve

τ +ve

ε -ve

δ -ve

ρ -ve

µ -ve
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4 Extension to an Optimal Control Model

Here we extend the basic model in (1) in to optimal control. As we indicated in section 1, Ethiopian

goverment have started a lot of activities to combat COVID-19. Some of preventive activities are;

forced isolation for 14 days for new arrivals, closing country border, quarantining and supporting

infected individuals with medication, restricting number of sits by half in all transport system,

convincing all media outlets to campaigning on COVID-19, announcing state of emergency and

others. As we observe the started activities are not done in optimal level. Therefore, we want to

show the concerned body the effectiveness of those activities if they are implemented in an optimal

level. To perform optimal control, we categorize those activities in to three broad control strategies

listed below.

(i) All rounded prevention strategies including social distancing and personal hygiene (by this

strategy we aimed to block susceptible from contacting the virus)

(ii) Supporting infectives with medication (Optimal support of infected individual in quarantine

center)

(iii) Awareness creation through all Media outlets.

After incorporating the three controls in model (1) gives the following optimal control model in

equation (15) below.

dS
dt

= π + ηR− (1− u3) (1− u1) β(σ1I + σ2E)S − µS
dE
dt

= (1− u3) (1− u1) β(σ1I + σ2E)S − (u2 + u3 + δ + µ)E

dI
dt

= (1− u2) τ δ E − (u2 + u3 + ε+ ρ+ µ) I

dR
dt

= (1− u2) (1− τ)δE + (1− u2) ε I − (µ+ η)R

(15)

The purpose of introducing controls in the model is to find the optimal level of the intervention

strategy required to reduce the spreads the pandemic in the population. Here we want to find the

optimal values u1, u2 and u3 that minimizes the objective functional subject to the differential

equations (15). The objective functional is given as

J = min
u1,u2,u3

tf∫
0

[
a1E + a2I +

1

2
(w1u

2
1 + w2u

2
2 + w3u

2
3)

]
dt (16)

where tf is the final time, a1 and a2 are weight costs of the Exposed humans and infected humans

respectively while w1, w2 and w3 are weight costs for each individual control measure. In this

paper, a quadratic function which satisfies the optimality conditions is considered for measuring
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the cost of the controls as applied by [21, 22, 23]. The goal is to find the optimal control (u∗1,u∗2,

u∗3) such that.

J(u∗1, u
∗
2, u
∗
3) = min{J(u1, u2, u3)|(u1, u2, u3) ∈ U}

where the control set

U = {(u1, u2, u3) | ui(t) is lebesgue measurable on [0, tf ], 0 ≤ ui(t) ≤ 1, i = 1, 2, 3}

4.1 Hamiltonian and optimality equation

We used Pontryangin’s Maximum Principle [24] to drive the necessary conditions that an optimal

control must satisfy. This principle converts equation (15) and (16) into a problem of minimizing

point-wise Hamiltonian (H), with respect to u1(t), u2(t) and u3(t) as:

H = H = a1E + a2I +
1

2
w1u1

2 +
1

2
w2u2

2 +
1

2
w3u3

2

+ λ1[Π + η R− (1− u3) (1− u1) β (σ2E + σ1I)S − µS]

+ λ2[(1− u3) (1− u1) β (σ2E + σ1I)S − (δ + u2 + u3 + µ) e]

+ λ3[(1− u2) τ δ E − (ε+ u2 + u3 + ρ+ µ) I]

+ λ4[(1− u2) (1− τ) δ E + (1− u2) ε I − (µ+ η)R]

Where λi, i = 1, 2, 3, 4 are the adjoint variable associated with S,E, I, and R to be determined

suitably by applying Pontryagin’s maximal principle [24] and also using [25], the existence of an

optimal control is guaranteed.

Theorem 4.1. For an optimal control set u1, u2, u3 that minimizes J over U, there are adjoint

variables, λ1, ..., λ4 such that:

dλ1
dt

= λ1[(1− u3) (1− u1) β (σ2E + σ1I) + µ]− λ2[(1− u3) (1− u1) β (σ2E + σ1I)]

dλ2
dt

= −a1 + λ1[(1− u3) (1− u1) β σ2S]− λ2[(1− u3) (1− u1) β σ2S − (δ + u2 + u3 + µ)]

−λ3[(1− u2) τ δ]− λ4[(1− u2) (1− τ) δ]

dλ3
dt

= −a2 + λ1[(1− u3) (1− u1) β σ1S]− λ2[(1− u3) (1− u1) β σ1S]

+λ3[ε+ u2 + u3 + ρ+ µ]− λ4[(1− u2) ε]

dλ4
dt

= −λ1[η] + λ4[µ+ η]

With transversality conditions, λi(tf ) = 0, i = 1, ..., 4. Furthermore, we obtain the control set

(u∗1, u
∗
2, u
∗
3) characterized by

u∗1 = max{0,min(1, ψ1)}

13
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u∗2 = max{0,min(1, ψ2)}

u∗3 = max{0,min(1, ψ3)}

Where

ψ1 =
β (1− u3)S (σ2E + σ1I) (λ2 − λ1)

w1

ψ2 =
λ2E + λ4 ((1− τ) δ E + ε I) + λ3 (δ τ E + I)

w2

ψ3 =
β (1− u1)S (σ2E + σ1I) (λ2 − λ1)

w3

Proof. The adjoint equation and transversality conditions are standard results from Pontryagin’s

maximum principle [24]. We differentiate Hamiltonian with respect to states S,E, I and R respec-

tively, and then the adjoint system is written as

dλ1
dt

= −∂H
∂S

= λ1[(1− u3) (1− u1) β (σ2E + σ1I) + µ]− λ2[(1− u3) (1− u1) β (σ2E + σ1I)]

dλ2
dt

= −∂H
∂E

= −a1 + λ1[(1− u3) (1− u1) β σ2S]− λ2[(1− u3) (1− u1) β σ2S − (δ + u2 + u3 + µ)]

−λ3[(1− u2) τ δ]− λ4[(1− u2) (1− τ) δ]

dλ3
dt

= −∂H
∂I

= −a2 + λ1[(1− u3) (1− u1) β σ1S]− λ2[(1− u3) (1− u1) β σ1S]

+λ3[ε+ u2 + u3 + ρ+ µ]− λ4[(1− u2) ε]

dλ4
dt

= −∂H
∂R

= −λ1[η] + λ4[µ+ η]

With transversality conditions, λi(tf ) = 0, i = 1, ..., 4. Similarly by following the approach of

Pontryagin et al. [24], the characterization of optimal controls u∗1, u
∗
2, u
∗
3, that is, the optimality

equations are obtained based on the conditions: ∂H
∂ui
, for i = 1, .., 3, which gives,

∂H

∂u1

= w1u1 + λ1[(1− u3) β (σ2E + σ1I)S] + λ2[− (1− u3) β (σ2E + σ1I)S]

∂H

∂u2

= w2u2 + λ2[−E] + λ3[−τ δ E − I] + λ4[− (1− τ) δ E − ε I]

∂H

∂u3

= w3u3 + λ1[(1− u1) β (σ2E + σ1I)S] + λ2[− (1− u1) β (σ2E + σ1I)S]

Setting ∂H
∂ui

= 0 at u∗i , the results are

u∗1 =
β (1− u3)S (σ2E + σ1I) (λ2 − λ1)

w1

u∗2 =
λ2E + λ4 ((1− τ) δ E + ε I) + λ3 (δ τ E + I)

w2

u∗3 =
β (1− u1)S (σ2E + σ1I) (λ2 − λ1)

w3

14
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When we write by using standard control arguments involving the bounds on the controls, we

conclude

u∗1 =


ψ1, if 0 < ψ1 < 1;

0, if ψ1 ≤ 0;

1, if ψ1 ≥ 1

, u∗2 =


ψ2, if 0 < ψ2 < 1;

0, if ψ3 ≤ 0;

1, if ψ3 ≥ 1

, u∗3 =


ψ3, if 0 < ψ3 < 1;

0, if ψ3 ≤ 0;

1, if ψ3 ≥ 1

In compact notation

u∗1 = max{0,min(1, ψ1)}, u∗2 = max{0,min(1, ψ2)}, u∗3 = max{0,min(1, ψ3)}

15
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The optimality system is formed from the optimal control system (the state system) and the

adjoint variable system by incorporating the characterized control set and initial and transversal

condition

dS
dt

= π + ηR− (1− u3) (1− u1) β(σ1I + σ2E)S − µS
dE
dt

= (1− u3) (1− u1) β(σ1I + σ2E)S − (u2 + u3 + δ + µ)E

dI
dt

= (1− u2) τ δ E − (u2 + u3 + ε+ ρ+ µ) I

dR
dt

= (1− u2) (1− τ)δE + (1− u2) ε I − (µ+ η)R

dλ1
dt

= λ1[(1− u3) (1− u1) β (σ2E + σ1I) + µ]− λ2[(1− u3) (1− u1) β (σ2E + σ1I)]

dλ2
dt

= −a1 + λ1[(1− u3) (1− u1) β σ2S]− λ2[(1− u3) (1− u1) β σ2S − (δ + u2 + u3 + µ)]

−λ3[(1− u2) τ δ]− λ4[(1− u2) (1− τ) δ]

dλ3
dt

= −a2 + λ1[(1− u3) (1− u1) β σ1S]− λ2[(1− u3) (1− u1) β σ1S]

+λ3[ε+ u2 + u3 + ρ+ µ]− λ4[(1− u2) ε]

dλ4
dt

= −λ1[η] + λ4[µ+ η]

u∗1 = β (1−u3)S(σ2E+σ1I)(λ2−λ1)
w1

u∗2 = λ2E+λ4((1−τ)δ E+ε I)+λ3(δ τ E+I)
w2

u∗3 = β(1−u1)S(σ2E+σ1I)(λ2−λ1)
w3

(17)

λi(tf ) = 0, i = 1, ..., 4 S(0) = S0 , E(0) = E0 , I(0) = I0 , R(0) = R0

4.2 Uniqueness of the Optimality System

Due to the a priori boundedness of the state, adjoint functions and the resulting Lipschitz structure

of the ODEs, we can obtain the uniqueness of solutions of the optimality system for the small time

interval. Hence the following theorem

Theorem 4.2. For t ∈ [0, tf ], the bounded solutions to the optimality system are unique. For the

proof of the theorem [26].
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5 Numerical Simulations

In this section, we examine the COVID 19 model and studied the effects of combined strategies

on controlling the transmission of the disease. The optimal control set was obtained by solving

the optimality system, consisting of the state and adjoint systems. An iterative scheme was used

for solving the optimality system. We start to solve the state equations with an initial guess for

the controls over the simulated time using the forward fourth order Runge–Kutta scheme. Be-

cause of the transversality conditions, the adjoint equations were solved by a backward fourth

order Runge–Kutta scheme using the current iterated solutions of the state equation. Then the con-

trols are updated by using a convex combination of the previous controls and the value from the

characterizations. This process is repeated and iterations are stopped if the values of the unknowns

at the previous iteration are very close to the ones at the present iteration. For numerical simulation

purpose, we have used empirical data of COVID-19 cases in Ethiopia for estimation of parameters

in Table 3.

Table 3: Parameter values for COVID-19 model.

Parameter symbol Value Source

π 13.5 Estimated

β 0.0143 Estimated

σ1 0.0001 Assumed

σ2 0.02 Assumed

δ 0.07 Estimated

µ 0.016 Estimated

ρ 0.0004 Estimated

τ 0.7 Assumed

ε 0.15 Estimated

η 0.15 Estimated

We investigated numerically the effect of the following optimal control strategies on the spread of

COVID 19 in a population. Considering strategies that implement one intervention only is not guar-

anteed to reduce and/or eradicate the disease totally from the community. So that those strategies

which incorporate more than one intervention are ordered below and compared pairwise:

• Strategy A: Preventive measures (u1) & supporting infectives with medication (u2)

• Strategy B: Preventive measures (u1) & media campaign (u3)
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• Strategy C: Supporting infectives with medication (u2) & media campaign (u3)

• Strategy D: Using all control techniques (u1,u2 & u3)

In addition to those parameter values in Table 3, we used a1 = 1, a2 = 5, w1 = 40, w2 = 150 and

w3 = 75 for simulation of COVID 19 pandemic disease model.

5.1 Strategy A: Control with preventive measures & supporting infectives with medication

Here we have investigated the impact of optimal prevention methods and supporting infected indi-

viduals in quarantine center with medication treatment. From the simulation results of Figure 2, we

see that the combination of the two method is effective in controlling COVID-19 in the specified

period. Moreover, we can see that after implementing this strategy the number of exposed and

infected human population goes to zero after 15 months.

Figure 2: Simulations of the COVID 19 model with preventive measure & supporting infectives with medication .

5.2 Strategy B: Control with preventive measures & media campaign

Here also we experimented by combining preventive measure and awareness creation through me-

dia campaign. From the numerical result depicted in Figure 3 below (the left hand side) show as

it is possible to combat the exposed human population of COVID-19 to zero after 8 months and it

will also start to relapse again after 10 months. The right hand side of Figure 3 also indicate that

as it is possible to minimize infected-COVID-19 humans but unable to eliminate by this strategy in

the stated time. Also this method is not effective once the infectious individuals are entered in the

country.
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Figure 3: Simulations of the COVID 19 model with Social distancing with personal hygiene & Media campaign .

5.3 Strategy C: Control with supporting infectives by medication & media campaign

Here we experimented the model considering optimal support of infected individuals in quaran-

tine center and creating awareness through media. Any activities from preventive technique of

the disease is not considered here. From the numerical result depicted in Figure 4 shows that as

COVID-19 will relapse for second time after it goes to zero in the specified time.

Figure 4: Simulations of the COVID 19 model with Supporting infectives with medication & Media campaign .

5.4 Strategy D: Using All Control Strategies

Here we have applied allstrategies to optimlize the objective function. The results from Figure 5

shows that bringing down the exposed and infected population in short period of time and it is best
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compared to all the above three control technique. Therefore, government decision makers and all

stakeholders consider in applying all strategies to combat COVID-19 in the specified time.

Figure 5: Simulations of the model with all control strategies.

6 Discussions and Conclusions

In this paper an SEIR deterministic model for the transmission dynamics of the pandemic COVID-

19 in the case of Ethipia was formulated. Model analysis demonstrates that its solutions are positive

and bounded, and there is a region where the model is well-posed mathematically and epidemiolog-

ically meaningful. The basic reproduction number <0 was computed and the stability of equilibria

points was investigated. Through Lyapunov’s theory, the disease free equilibrium point globally

asymptotically stable whenever the <0 < 1 was proven. Using center mainfold theory, bifurcation

analysis of the model was proven and the model exhabts forward bifurication at <0 = 1.

Second, by adding three times-dependent controls, we extend the basic model in to an optimal

control. By using Pontryagin’s Maximum Principle necessary conditions for the optimal control of

the transmission of COVID-19 were derived. From the numerical simulation it was found that the

integrated control strategy, strategy D: using all technique, is very efficient in short period of time.

Therefore, applying all rounded technique by the EFDRE , decision makers and stakeholders have

a significant contribution in combating this pandemic in very short period of time. The result also

shows, if the stakeholders could not do all of the intervention strategies together, the pandemic may

come agian and will transmit over the country.

This paper is still an ongoing research as many more investigations regarding his disease can be
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carried out. Yet, it serves as the starting phase to research more in depth on questions that COVID-

19 is spreading with incredible speed and have severe consequences. Moreover, to identify those

exposed individuals who doesn’t develop clinical sign, mass screening in any cost is recommended

to combat COVID-19.
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[16] B Ivorra, MR Ferrándezb, M Vela-Pérez, and AM Ramos. Mathematical modeling of the

spread of the coronavirus disease 2019 (covid-19) taking into account the undetected infec-

tions. the case of china. Research Gate, 2020.

[17] Giulia Giordano, Franco Blanchini, Raffaele Bruno, Patrizio Colaneri, Alessandro Di Filippo,

Angela Di Matteo, Marta Colaneri, et al. A sidarthe model of covid-19 epidemic in italy.

arXiv preprint arXiv:2003.09861, 2020.

[18] P. Van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission. Mathematical biosciences, 180

(1):29–48, 2002.

[19] C. Castillo-Chavez and B. Song. Dynamical models of tuberculosis and their applications.

Mathematical biosciences and engineering, 1(2):361–404, 2004.

[20] S. M. Blower and H. Dowlatabadi. Sensitivity and uncertainty analysis of complex models

of disease transmission: an hiv model, as an example. International Statistical Review/Revue

Internationale de Statistique, pages 229–243, 1994.

[21] Getachew Teshome Tilahun, Oluwole Daniel Makinde, and David Malonza. Modelling and

optimal control of typhoid fever disease with cost-effective strategies. Computational and

mathematical methods in medicine, 2017, 2017.

[22] Getachew Teshome Tilahun, Oluwole Daniel Makinde, and David Malonza. Co-dynamics of

pneumonia and typhoid fever diseases with cost effective optimal control analysis. Applied

Mathematics and Computation, 316:438–459, 2018.

[23] Getachew Teshome Tilahun, Oluwole Daniel Makinde, and David Malonza. Modelling and

optimal control of pneumonia disease with cost-effective strategies. Journal of Biological

Dynamics, pages 1–27, 2017.

[24] Lev Semenovich Pontryagin. Mathematical theory of optimal processes. CRC Press, 1987.

23

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


[25] Wendeil H Fleming and Raymond W Rishel. Deterministic and stochastic optimal control.

Applications of Mathematics. Volume, 1, 1976.

[26] K Renee Fister, Suzanne Lenhart, and Joseph Scott McNally. Optimizing chemotherapy in an

hiv model. Electronic Journal of Differential Equations, 1998(32):1–12, 1998.

24

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/


 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160473doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160473
http://creativecommons.org/licenses/by-nd/4.0/

