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Abstract 

The efficacy of digital contact tracing against COVID-19 epidemic is debated: smartphone 

penetration is limited in many countries, non-uniform across age groups, with low coverage 

among elderly, the most vulnerable to SARS-CoV-2. We developed an agent-based model to 

precise the impact of digital contact tracing and household isolation on COVID-19 

transmission. The model, calibrated on French population, integrates demographic, contact-

survey and epidemiological information to describe the risk factors for exposure and 

transmission of COVID-19. We explored realistic levels of case detection, app adoption, 

population immunity and transmissibility. Assuming a reproductive ratio 𝑅 = 2.6 and 50% 

detection of clinical cases, a ~20% app adoption reduces peak incidence of ~36%.  With 𝑅 =

1.7, >30% app adoption lowers the epidemic to manageable levels. Higher coverage among 

adults, playing a central role in COVID-19 transmission, yields an indirect benefit for elderly. 

These results may inform the inclusion of digital contact tracing within a COVID-19 response 

plan. 
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Introduction 

In the absence of vaccination and effective drugs for COVID-19, preventing transmission 

remains key to mitigating the pandemic. To this aim, lockdown was adopted in many 

European countries and have successfully slowed down the epidemic to manageable 

levels[1], [2]. These interventions had however a huge economic and societal cost and were 

relaxed as incidence went down. Yet, population immunity remains low [3], [4] and re-

emerging outbreaks are possible [5], [6]. Sustainable strategies are required to keep the 

epidemic under control while enabling a return to a close-to-normal functioning of the society. 

Widespread testing, case finding and isolation, contact-tracing, use of face masks and 

enhanced hygiene are believed to be crucial components of these strategies.  

Contact-tracing aims at avoiding transmission by isolating at an early stage only those 

individuals who are infectious or potentially infectious, in order to minimize the societal costs 

associated to isolation. Considerable resources are therefore directed at improving 

surveillance capacities to allow efficient and rapid investigation and isolation of cases and 

their contacts. To enhance tracing capacities, the use of digital technologies has been 

proposed, leveraging the wide-spread use of smartphones. Therefore, proximity-sensing 

applications have been designed and made available – e.g. in Australia, France, Germany, 

Iceland, Italy, Switzerland – to automatically trace contacts, notify users about potential 

exposure to COVID-19 and invite them to isolate. In many countries the application is privacy 

preserving and on a voluntary basis.  

The utility of these digital applications is however debated. Some built-in features make it 

more efficient than manual contact tracing: it is automated, reducing the burden of manual 

contact tracing and limiting recall bias; it is faster, as information can be transmitted in real 

time. However, coverage is uneven. In particular, most children and elderly do not own a 

smartphone or are less familiar with digital technologies. The overall adoption of the app 

among smartphone owners will also be a limiting factor, as well as the fraction of cases 
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actually triggering the alert to the contacts and the adherence to isolation of the app adopters 

who receive an alert. 

These variables must be gauged in light of the risk factors for exposure and transmission 

driving the COVID-19 epidemic. First, individuals of different age contribute differently to the 

transmission dynamics of COVID-19. Younger individuals tend to have more contacts than 

adults or the elderly. On the other hand, a marked feature of COVID-19 is the strong age 

imbalance among cases, that may be explained by both a reduced susceptibility [7], [8] and 

an increased rate of subclinical infections in children compared to adults [8]–[10]. As 

subclinical cases are harder to detect, this implies that identification of cases and of their 

contacts may be dependent on age. Second, SARS-CoV-2 transmission risk varies 

substantially by setting. Transmissions were registered predominantly in households, in  

specific workplaces and in the community (linked to shopping centers, meals, parties, sport 

classes, etc.) [11], [12]. This is due, at least in part, to the higher risk of contagion of crowded 

and indoor environments [11], [13]. Notably, contacts occurring in the community are also the 

ones more affected by recall biases, thus more difficult to trace with manual contact tracing.  

Several modelling studies have quantified the impact of contact tracing [14]–[18], with some 

of them addressing specific aspects of digital contact tracing [15]–[17]. Still the interplay 

between age and setting heterogeneity in determining the efficacy of this intervention is 

largely unexplored. We provide here a systematic exploration of the different variables at 

play. We considered France as a case study and integrated different sources of data to 

realistically describe the French population, in terms of its demography and social contact 

behavior. We accounted for the dynamics of contacts according to age and setting, and for 

the setting-specific risk of transmission. We used COVID-19 epidemiological characteristics 

for parametrization. We then modelled case detection and quarantining, isolation of their 

household contacts and digital contact tracing, under different hypotheses of potential 

reduction in transmissibility due to other effects (e.g. face-masks and increased hygiene). We 

quantified the impact of digital contact tracing on the whole population and on different 
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population groups and settings, as a function of several variables such as the rate of app 

adoption, the probability of detection of clinical cases, population immunity and transmission 

potential. Our results provide quantitative information regarding the impact of digital contact 

tracing within a broader response plan. 

Results 

Dynamic multi-setting contact network  

We modelled the French population integrating available demographic and social-contact 

data. We collected population statistics on age, household size and composition (Figure 1 A, 

B), workplace and school size, smartphone penetration (Figure 1 E), and commuting fluxes. 

Then, by following standard approaches in the literature [19], [20] individuals were created in-

silico with given gender and age and assigned to a municipality, a household, and a 

workplace/school according to the statistics. Smartphones were assigned to individuals 

depending on their age according to available statistics on French users (Figure 1 E) [21]. 

Overall smartphone penetration is 64%, that represent the upper bound limit of app adoption 

in the population – reached when 100% of individuals owning a smartphone download the 

app. This synthetic population reproduced the location statistics of individuals in different 

settings, yielding the basis of a multi-setting network of daily face-to-face contacts in 

household, school, workplace, community and transport (Figure 1 E) [22]–[24]. We 

parametrized the network from a social contact survey providing information on contacts by 

age and setting [25] (Figure 1 C, D). As contacts may occur repeatedly, we associated an 

activation rate to each contact and sampled each day contacts based on their activation rate 

(Figure 1 G). We imposed that 35% of the contacts registered during one day occur with 

daily frequency, as found in [25]. Figure 1 F and H show that the features of the resulting 

daily contact network matched the data: the distribution of the number of contacts was right-

skewed as the empirical one reported in [25] and the  contact matrix showed age 

assortativity and the characteristic parent-children (off-diagonal) contact pattern. As a case 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2020. ; https://doi.org/10.1101/2020.07.22.20158352doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.22.20158352
http://creativecommons.org/licenses/by-nd/4.0/


study we restricted our study to a municipality with a population size of ~100,000 individuals 

(see Material and Methods and Supplementary Material for additional details). 

COVID-19 epidemic dynamics 

We modelled coronavirus transmission and outcome as shown in Figure 2 A, B. Individuals 

could be susceptible, 𝑆, exposed, 𝐸, pre-symptomatic preceding subclinical infection, 𝐼+,-., 

pre-symptomatic preceding clinical infection, 𝐼+,., subclinical infectious, 𝐼-. , clinical infectious, 

𝐼., and recovered, 𝑅. Subclinical cases had symptoms that ranged from no symptoms to mild 

and continued their normal activity throughout the infectious period. Clinical cases had 

moderate to critical symptoms and stayed at home after the onset of symptoms [9], [10] – we 

did not consider hospitalization. We accounted for the heterogeneous susceptibility and 

clinical manifestation by age as parametrized from [7], [10] (Table 1). In order to parametrize 

infection natural history, we combined evidence from epidemiological and viral shedding 

studies. We used 5.2 days for the incubation period [26], 2.3 days for the average length of 

the pre-symptomatic phase [27], and 7 days on average for the infectivity period after 

symptoms’ onset [27].  

We first simulated an uncontrolled epidemic assuming transmission levels corresponding to 

𝑅/ = 3.1, within the range of values estimated for COVID-19 in France at the early stage of 

the pandemic [1], [4]. The generation time resulting from our model and parameters had 

mean value of 6.0 days (95% CI [2,17]), in agreement with epidemiological estimates [9], 

[27], [28]. Figure 2 B and C show the repartition of cases among age groups and settings at 

the early stage and during the whole course of the epidemic. Age-specific infection 

probability was higher among young adults, while clinical infections were shifted towards 

older population with respect to the overall (clinical and subclinical) cases, as noted in 

previous observational and modelling works [8]. The age profile changed in time with children 

infected later as the epidemic unfolded [8], [29]. Transmissions occurred predominantly in 

household and workplaces followed by the community setting [11]. 
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Contact tracing  

We quantified the impact of combined household isolation and digital contact tracing 

considering the possible scenario of a second epidemic wave in the country. We thus 

assumed some level of immunity to the virus – exploring a range from 0 to 15% of the 

population. We considered interventions based on the use of digital contact tracing, coupled 

with testing and isolation of clinical cases and households. 50% of individuals with clinical 

symptoms were assumed to get tested after consulting a doctor and to isolate if positive. 

Higher and lower percentages were also considered. 

Case tracing was assumed to start when a case with clinical symptoms tested positive and 

was invited to isolate. Household members were also invited to isolate. If the index case had 

the app installed, the contacts he/she registered in the previous 𝐷 = 7 days were notified and 

could decide to isolate. We explored different probabilities of case detection and several 

levels of app adoption in the population. In addition to the detection of clinical cases, we 

assumed that a small proportion (5%) of subclinical cases was also identified. These may be 

cases with very mild, aspecific symptoms who decided to get tested as part of vulnerable 

groups (i.e. co-morbidity) or because highly exposed to the infection (health care 

professionals). Isolated individuals resumed normal daily life if infection was not confirmed. 

We took 7 days as the time needed for being confirmed negative because multiple tests and 

some delay since the exposure are needed for a negative result to be reliable. Infected 

individuals got out of quarantine after 14 days unless they still have clinical symptoms after 

the time is passed. They may, however, decide to drop out from isolation each day with if 

they don’t have symptoms [17].  

Figure 3 summarizes the effect of the interventions. We compared the uncontrolled scenario 

(𝑅 = 𝑅/ = 3.1) with scenarios where the transmissibility is reduced due to the adoption of 

barrier measures (𝑅 down to 1.5). We also assumed 10% of the population to be immune to 

the infection [4]. Panels A-C shows the results for 𝑅 = 2.6 and 𝑅 = 1.7. With 𝑅 = 2.6 (Figure 
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3 A, C), the relative reduction of peak incidence due to household isolation only would be 

30%. The inclusion of digital contact tracing would increase the relative reduction to 36% with 

~20% app adoption, and to 67% with ~60% app adoption – i.e., 90% of individuals owning a 

smartphone use the app. This corresponds to an additional mitigation effect ranging from 

20% to 120% provided by contact tracing compared to household isolation only. With 𝑅 = 1.7 

(Figure 3 B, C), we find that ~20% app adoption would reduce the peak incidence by 45% 

(additional mitigation effect of 25%), while the reduction would reach 89% in a scenario of 

~60% app adoption (additional mitigation effect of 147%). According to the projections in 

Ref.[1], intensive care units occupation would remain below the saturation level with 

incidence below 0.4 /1000 hab. In the scenario with 𝑅 = 1.7, this would be reached with app 

adoption greater than ~30% (grey dashed line in Figure 3 B). Stronger reductions could be 

obtained with more efficient detection of clinical cases (Figure 3 E, H). Results show similar 

trends across different levels of population immunity, with higher relative impacts predicted 

for low immunity (Figure 3 F, I). 

We analyzed the simulation outputs to characterize index cases and their contacts and relate 

this to the reduction in number of cases by age and setting. We found that adults 

represented the majority of index cases (Figure 4 D), while their household contacts were 

mostly children. The app registered mostly contacts with adults, and the tracked contacts 

were occurring predominantly in workplaces and in the community (Figure 4 A). This results 

in a heterogenous reduction in transmission (𝑇𝑅𝑅) by setting and age group. Household 

isolation reduced transmission in all settings, with the smallest effect in workplaces (Figure 4 

B). Digital contact tracing has instead a high 𝑇𝑅𝑅 at work, in the community and in transports 

(Figure 4 C). Household isolation reached mostly children (< 15 years old) and the elderly 

(especially the 75+ group) with the smallest effect in the 15-59 years old (Figure 4 E). 

Adopting digital contact tracing led to an increased TRR with age, even among the oldest 

age range (Figure 4 F). This result shows the indirect effect of digital tracing: due to the 

central role of adults in the transmission of SARS-CoV-2 towards all age-groups, avoiding 
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adult infections led to less transmission to the elderly. We also tested the case in which 

elderly people (70+) owning a smartphone did not install the app at all, because less familiar 

with digital technologies, and we found no appreciable effect. These results and additional 

details are provided in the Supplementary Material.  

Traced and Isolated individuals  

Feasibility of contact tracing depends on the number of traced contacts who require 

assistance and virological tests. In a scenario with high detection rate (80%), we found that 

for each detected case 1.5 contacts were identified on average through household isolation 

but up to 7.5 with app adoption at 57% for 𝑅 = 2.6 and 10 for 𝑅 = 1.7  (Figure 5 D). This 

number was however subject to fluctuations (Figure 5 A). Overall, the maximal fraction of the 

population quarantined at any given time was ~50 per 1000 habitants in a scenario with 𝑅 =

2.6, and was between ~1 and ~4.5 per 1000 habitants when 𝑅 = 1.7 (Figure 5 B and E). The 

latter case corresponded to the situation in which high levels of app adoption were able to 

strongly reduce spreading, thus the proportion of isolated individuals declined in time, 

signaling the success of quarantining in preventing the propagation of the infection. A total of 

30 per 1000 habitants were isolated in a scenario with  𝑅 = 1.7, assuming high app adoption. 

At 𝑅 = 2.6, 1030 per 1000 habitants were isolated at the end of the epidemic meaning that 

certain individuals were isolated more than once. In all scenarios, the increase of app 

adoption inevitably determined an increase in the proportion of people that were 

unnecessarily isolated, i.e. of individuals that were not infected but still isolated (Figure 5C, 

F): this proportion increased from 61% to 84% with the increase of app adoption from 0% to 

57% (note that the case of 0% app adoption implies that 60% of individuals who were 

isolated through household isolation were not infected). These numbers were similar for the 

two tested values of 𝑅 = 1.7 and 2.6 (Figure 5 C and F). 
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Discussion 

Quantifying the impact of digital contact tracing is essential to envision this strategy within a 

wider response plan against the COVID-19 epidemic. We modelled this intervention together 

with household isolation assuming a 50% detection of clinical cases. In a scenario of high 

transmissibility (𝑅 = 2.6), we found that household isolation by itself would produce a 

reduction in peak incidence of 30%, while the inclusion of digital contact tracing could 

increase this effect by 20% for a reasonably achievable app adoption (~20% of the 

population), and by 120% for a large-scale app adoption (~60%). At a moderate 

transmissibility level (𝑅 = 1.7), the app would substantially damp transmission (36% to 89% 

peak incidence reduction for increasing app adoption), bringing the epidemic to manageable 

levels if adopted by 32% of the population or more. Importantly, the app-based tracing and 

household isolation have different effects across settings, the first intervention efficiently 

preventing transmissions at work that are not well targeted by the second. Moreover, app-

based contact tracing also yields a protection for the elderly despite the lower penetration of 

smartphones in this age category. 

In several countries, the lockdown has reduced transmission to very low levels.  However, 

low population immunity leaves countries at risk for possible renewed increases of the 

number of cases. This may potentially occur at any time – as evidenced by the current high 

incidence levels in the United States [29] and the resurgence of cases reported in the region 

of Pays de la Loire in France [5] –, and could become increasingly likely after summer. 

Indeed, during summer, high temperature and humidity, increased ventilation and outdoor 

activities reduce the risk of contagion [13]. These environmental effects will disappear with 

the return of the cold season. This urges the planning of sustainable non-pharmaceutical 

interventions, able to suppress COVID-19 spread while having limited impact on the 

economy and on individuals’ daily life. 
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Many countries are now increasing their capacity to detect cases and track their contacts. In 

France, hundreds of transmission clusters have been identified and controlled since the end 

of the lockdown period [30]. Still, traditional surveillance relies on human intervention and 

could saturate at increased epidemic activity. The automated tracking of contacts could then 

provide an important complementary tool. Here we found that digital contact tracing could 

reduce attack rate and peak incidence, in agreement with previous works [15], [16]. The 

impact of the measure would depend on population immunity, thus geographical 

heterogeneities should be expected, since immunity levels are likely higher in those areas 

more severely hit during the first wave. On the other hand, app adoption as well may be 

higher in these areas because of risk aversion behavior [31]. Also, higher participation rates 

may be expected in dense urban areas to protect from exposure from random encounters 

(e.g. in public transports).  

Under realistic hypotheses, the intervention would not be able alone to bring the epidemic 

under control in a scenario where transmission is high [15], [16], mainly due to the strong role 

of asymptomatic transmission in fueling the epidemic [1], [4]. We considered also lower 

values of 𝑅 as recent studies suggest that the combination of facemask, physical distance 

and hand hygiene may substantially hinder SARS-COV-2 transmission [32]. The use of 

facemasks in public spaces is recommended by the majority of public health institutions, and 

it is mandatory in certain cases. In France the adoption of face masks by the general 

population has increased over time reaching a peak at ~50% [30]. However, the 

quantification of the effect of these measures and their effect on COVID-19 reproductive ratio 

is uncertain. We found that a reduction of the epidemic to a manageable level would be 

possible with a moderate 𝑅	 (e.g. 𝑅 =1.7 explored here).  

Improved case finding is the first step towards a successful contact-tracing intervention. 

Many countries decided to screen anyone with symptoms compatible with COVID-19 [33]. 

According to the weekly report of Public Health France of July 9, tests had been prescribed 

to 97% of all patients declaring COVID-19 symptoms upon consultation [30]. This policy 
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could become less feasible during winter, due to the co-circulation of other respiratory 

infections, that would increase the rate of false positive and testing needs. Given that the 

majority of cases do not require hospitalization, case detection effectiveness is also 

influenced by the consultation rate. This has been estimated to be around ~30% with peaks 

at ~45% by the participatory surveillance platform covidnet.fr [30]. Higher detection levels 

would substantially improve the impact of contact tracing policies (Figure 3 E, H). Increased 

population awareness is thus essential for the efficient monitoring of the epidemic and its 

containment through contact tracing.  

Besides detection efficiency, the other important factor determining the efficacy of digital 

contact tracing is clearly the app adoption. Adoption levels have been low (<5%) in many 

countries (e.g. Italy 4% [34]), whereas higher levels were observed, e.g., in Australia (6 

millions download, 25% of the population) [35] and Iceland (~150 thousand, 38%) [36]. In 

France, it is reported to be around 3% [37]. These values may increase in case of a rebound 

of the epidemic, due to increased concern of the population. Individuals may be more incline 

to use the app if they perceive a direct and immediate benefit from its use. This may be 

implemented through, e.g., easy access to testing in case they are notified as contacts and 

assistance by public health professionals. Moreover, increased transparency and ethical 

debate are essential to reassure the population concerning privacy [38], [39]. 

The results presented here are based on an agent-based model that describes age-specific 

risk factors for exposure and transmission: contact rates, contacts by location, susceptibility 

to the virus, probability of being detected and rate of app adoption. The interplay between 

these features has a profound impact on COVID-19 spread and affects the efficacy of 

household isolation and digital contact tracing. To account for contact heterogeneities we 

used statistics on population demography, combined with social contact surveys to build a 

multi-setting contact network, similarly to previous works [14], [17], [22]–[24]. The network is 

also dynamic in time as it captures the repetition of a certain number of contacts (e.g. 

relationships) and the occurrence of random encounters. Social contact data provide an 
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invaluable information source to study the current COVID-19 outbreak [1], [4]. Previous 

projections on the impact of contact tracing rely on a similar approach in some cases [14]. 

Other works make use of high resolution data [15], [16], that are more reliable than contact 

surveys, but are restricted to specific settings or population groups. Despite the difference in 

the data source and approach, the results of these studies are consistent and in agreement 

with our work on the overall impact of the intervention. 

We modelled age-specific epidemiological characteristics based on available knowledge in 

the literature. Children are less impacted by the COVID-19 epidemic. This may be explained 

by reduced susceptibility and severity, with accumulating evidence that both effects are 

acting simultaneously [8]. The strength of these effects is still debated and the infection risk 

for children should not be minimized. However, these differences have implications for digital 

contact tracing. Indeed, it is precisely in the group that plays a central role in transmission 

and where cases are more likely symptomatic (i.e., adults) that the app coverage is already 

the highest. Our model shows that taken together, these characteristics reinforce the impact 

of digital tracing and provides indirect protection in the elderly population. This occurs even if 

no adoption is registered in the elderly population. 

Our study is affected by limitations. First, we analyzed the effect of digital contact tracing on 

COVID-19 incidence on the general population. Crucial information for public health 

authorities would be to quantify the effect in time of these measures on hospitalizations. This 

would require to couple our model for COVID-19 transmission in the general population with 

a model describing disease severity and within-hospital patient trajectories [14], [17]. 

Second, the model does not account for transmission in nursing homes. This setting is where 

the majority of transmissions among elderly occurred. At the same time, however, the 

response to the COVID-19 epidemic in this setting relies mostly on routine screening of 

symptoms and frequent testing of residents, together with face masks and strict hygiene for 

visitors. Third, clustering effects are partially captured by the model thanks to the repetition of 

contacts, but effects may be larger in real contact patterns. Results obtained on real contact 
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data, however, are similar to ours obtained on synthetically reconstructed contacts [15]. 

Eventually, parameterized with data from a social contact survey [25], the model cannot 

account for crowding events. These events were suggested to play an important role in the 

epidemic dynamics [12], and may also impact the effectiveness of contact tracing. Contact 

tracing may be more effective in networks showing large fluctuations in the number of 

contacts per individual [40]. Therefore, results presented here may be conservative. 

Material and Methods 

Synthetic population 

The model simulates the population of Metropolitan France representing individual 

inhabitants. This approach is similar to studies done previously e.g. for Italy[19] and for 

USA[20]. The French synthetic population is based on the National Institute of Statistics and 

Economic Studies (INSEE) censuses. The individuals were grouped by municipalities 

according to the administrative borders. The number of households and the age structure of 

their inhabitants, sizes of schools and workplaces, fluxes of commuters between 

municipalities also followed the distribution of these statistics found in the INSEE data. 

Population size was kept constant as it aims to simulate one season of the epidemic.  

To generate the population, we defined several statistics derived from INSEE publicly 

available data:  

• The list of municipalities (“les communes de France”) of Metropolitan France (2015) with 

each municipality described by its INSEE code, population size, number of schools of six 

different levels (from kindergarten to university), number of workplaces in given size 

categories (0-9, 10-49, 50-99, 100-499, 500-999 and over 1000 employees) (Populations 

légales 2017, INSEE, https://www.insee.fr/fr/statistiques/4265429?sommaire=4265511). 

• Statistics regarding the percentage of people in given age groups enrolled in each of six 

school levels, employed and unemployed (Bilan démographique 2010, INSEE, 

https://www.insee.fr/fr/statistiques/1280950).  
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• The age pyramid for France as the population fractions of individuals of a given age 

(Bilan démographique 2010, INSEE, https://www.insee.fr/fr/statistiques/1280950). 

• The number of people commuting to work between each pair of municipalities (Mobilités 

professionnelles en 2016: déplacements domicile - lieu de travail, INSEE, 

https://www.insee.fr/fr/statistiques/4171554).  

• The number of people commuting to school between each pair of municipalities 

(Mobilités scolaires en 2015: déplacements domicile - lieu d’études, INSEE, 

https://www.insee.fr/fr/statistiques/3566470).  

• The probability distributions of sizes of households in France (Couples - Familles - 

Ménages en 2010. INSEE, https://www.insee.fr/fr/statistiques/2044286/?geo=COM-

34150.)  

• The probability of age class of individuals depending on its role in the household: child of 

a couple, child of a single adult, adult in a couple without children, adult in a couple with 

children (Couples - Familles - Ménages en 2010. INSEE, 

https://www.insee.fr/fr/statistiques/2044286/?geo=COM-34150). 

With the above statistics, the synthetic population was generated in the following steps:  

1. Initialization of all the municipalities with an appropriate number of schools of each type 

and workplaces of given sizes.  

2. Creation of schools in each municipality according to given statistics.  

3. Creation of workplaces in each municipality according to given statistics.  

4. Definition of the commuters fluxes between municipalities.  

Each municipality has a defined number of inhabitants and individuals are created (one by 

one) until this number is reached. Each individual was assigned an age, a school or a 

workplace (or is assigned to stay at home) according to probability distributions derived from 

the data mentioned above.  
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The number of households in municipalities were not defined explicitly, but their number 

depends on the number of individuals. The municipal population size and statistics regarding 

family demographics constrain the number of households. Additional details on the algorithm 

for the population reconstruction are provided in the Supplementary Material. 

Face-to-face contact network 

The synthetic population encodes information on the school, workplace, household and 

community each individual belongs to. We used this information to extract a dynamic network 

representing daily face-to-face contacts. We parametrized this network based on contacts’ 

statistics for the French population[25]. 

First, we generated a time aggregated network representing all contacts that can potentially 

occur – we will call this acquaintance network, with some abuse of language since it includes 

also sporadic contacts. Second, to each contact we assigned a daily rate of activation. Then, 

in the course of the simulation we sampled contacts each day based on their rate.  

The acquaintance network has five distinct layers representing contacts in household (layer 

𝐻), workplace (layer 𝑊), school (layer 𝑆), community (layer 𝐶) and transports (layer 𝑇). The 

household layer is formed by a collection of complete networks linking individuals in the 

same household. The 𝑊, 𝑆, 𝐶, and 𝑇 layers are formed by collections of Erdős–

Rényi networks generated in each location 𝑖, with average degree 𝜒9. A location can be a 

workplace (𝑊 layer), a school (𝑆 layer) and a municipality (𝐶 and 𝑇 layers). 𝜒9 is extracted at 

random for each place and depends on the type and size of the location. In particular, when 

the size of a location is small we assume that each individual enters in contact with all the 

others frequenting the same place. As the size increases the number of contacts saturates.  

Once the acquaintance network was built a daily activation rate 𝑥 was assigned to each link 

according to a cumulative distribution that depends on the layer 𝑠. For simplicity we assumed 

this distribution to be the same for 𝑠 = 𝑊, 𝑆, 𝐶, while we allowed it to be different in household 
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(where contacts are more frequent) and in transports (where contacts are sporadic). 

Parameters were tuned based on average daily number of contacts, proportion of contacts 

by setting, and contact frequency as provided in [25] (Figure 1 C D). Additional details on the 

network reconstruction and parametrization are provided in the Supplementary Material. 

Transmission model 

We defined a minimal model of COVID-19 spread in the general population that accounts for 

two levels of symptoms: none to mild (subclinical cases, 𝐼-.), and moderate to severe (clinical 

cases, 𝐼.). We assumed that clinical cases stay at home after developing symptoms.  

Susceptible individuals, if in contact with infectious ones, may get infected and enter the 

exposed compartment (𝐸). After an average latency period 𝜖=>	they become infectious, 

developing a subclinical infection with probability 𝑝-.@  and a clinical infection otherwise. From 

𝐸, before entering in either 𝐼-.  or 𝐼., individuals enter first a prodromal phase (either 𝐼+,-. or 

𝐼+,.), that lasts on average 𝜇+=> days and where individuals do not show any sign of illness, 

despite being already infectious. Contact-tracing, population-screening and modelling studies 

provide evidence that infectivity is related to the level of symptoms, with less severely hit 

individuals being also less infectious [9]. Therefore, we assumed that subclinical cases, 𝐼+,-.  

and 𝐼-.  have a reduced transmissibility compared to 𝐼+,. and 𝐼.. This is modulated by the 

scaling factor 𝛽C.  We neglected hospitalization and death and assumed that with rate 𝜇  

infected individuals become recovered.  

COVID-19 has heterogeneous impact across age groups [7]–[9]. This may be driven by 

differences in susceptibility [7], differences in clinical manifestation [9], [10] or both [8]. We 

considered here both effects in agreement with recent modelling estimates [8]. Susceptibility 

by age, 𝜎@, was parametrized from [7], while clinical manifestation, 𝑝-.@ , was parametrized 

from a large-scale descriptive study of the COVID19 outbreak in Italy [10].  
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Transition rates are summarized in Figure 2 B, and parameters and their values are listed in 

Table 1. The incubation period was estimated to be around 5.2 days from an early analysis 

of 425 patients in Wuhan [26]. COVID-19 transmission potential varies across settings, 

populations and social contexts [11], [12]. In particular, indoor places were found to increase 

the odds of contagion 18.7 times compared to an open-air environment [13]. In our model we 

assumed all contacts at work, school and transport occur indoor and have the same 

transmission risk (𝜔F). In the contact survey of Béraud et al. [25], 46% of contacts in the 

community were occurring outdoors. Combining this information with the 18.7 indoor vs. 

outdoor risk ratio leads to a 60% relative risk of community contacts with respect to 

workplace/school/transport contacts. Contacts in household are generally associated to a 

higher risk with respect to other settings, because they last longer and there is a higher risk 

of environmental transmission. We assumed, in line with [17], that the transmission risk 

associated with them is twice the one in workplace/school/transport.  

Modelling contact tracing  

Self-isolation and isolation of household contacts  

Self-isolation and isolation of household contacts was modelled according to following rules:  

• As an individual shows clinical symptoms, s/he is detected with probability 	

𝑝G,..  If detected, case confirmation, isolation and contacts’ isolation occur with rate 𝑟G,. =

0.9 upon symptoms onset 

• Subclinical individuals are also detected with probability 	𝑝G,-. = 0.05 and rate 𝑟G,-. = 0.5. 

• The individual’s family members are isolated with probability 	𝑝.,L = 0.9  

• We assume contacts are tested and the follow up guarantees that all individuals who got 

infected prior to isolation are detected. Thus, contacts that are negative (either 

susceptible or recovered at the time of isolation) terminate their isolation after 7 days. 

The index-case and the positive contacts are isolated for 14 days. Contacts with no 

clinical symptoms have a probability 𝑝GMN+ = 0.02 of drop-out each day.  
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• For both the case and the contacts, isolation is implemented by assuming no contacts 

outside household and contacts within a household having a weight 𝜔O	reduced by a 

factor 𝜄 = 0.5.  

Digital contact tracing 

We assumed that contact tracing is adopted in combination with self-isolation and isolation of 

household members. Therefore, to the rules above, we added the following ones: 

• At the beginning of the simulation, a smartphone is assigned to individuals with 

probability 𝑝-Q@ , based on the statistics of smartphone penetration (0% for [0,11], 86% for 

[12,17], 98% for [18,24], 95% for [25,39], 80% for [40,59], 62% for [60,69], 44% for 70+) 

[21]. 

• Each individual with a smartphone has a probability 𝑝R to download the app (we explored 

values between 0 and 0.9) 

• Only contacts occurring between individuals with a smartphone and the app are traced. 

• If the individual owns a smartphone and downloaded the app the contacts that s/he has 

traced in the period since 𝐷 = 7 days before his/her detection are isolated with probability 

𝑝.,R = 0.9 

• We assume contacts are tested and the follow up guarantees that all individuals who got 

infected prior to isolation are detected. Thus, contacts that are negative (either 

susceptible or recovered at the time of isolation) terminate their isolation after 7 days. 

The index-case and the positive contacts are isolated for 14 days. Contacts with no 

clinical symptoms have a probability 𝑝GMN+ = 0.02 of drop-out each day.  

• For both the case and the contacts, isolation is implemented by assuming no contacts 

outside household and contacts within a household having a weight 𝜔O	reduced by a 

factor 𝜄 = 0.5.  
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Figures and Tables 

 

Figure 1 Synthetic population. A-E Key statistics used as input for the synthetic population reconstruction. A 

Age pyramid for France (source INSEE). B Household size (source INSEE). C Ratio of contacts by setting with 

respect to household contacts [25]. D Fraction of contacts occurring each day or less frequently [25]. E 

Smartphone penetration by age. The overall average adoption in the population is 64% [21]. F Distribution of the 

number of daily contacts. G Cumulative distribution of the activation rate associated to the contacts, calibrated in 

order to be consistent with the information of panel D. H Sketch of the construction of the contact network: 

contacts among individuals were represented as a multi-layer dynamical network, where each layer includes 

contacts occurring in a specific setting. I Age contact matrix computed from the contact network model. 
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Figure 2. Modelling COVID-19 epidemic. A, B Compartmental model summarizing the epidemic states and 

transitions between states. C Cases by age for an uncontrolled epidemic. We show all cases (clinical and 

subclinical) in red and clinical cases in black. The grey line shows the clinical cases in the early stage of the 

epidemic (here defined as the first 30 days), with less cases among children than in later stages. D Transmission 

by setting (H, W, S, C, T stand respectively for household, workplace, school, community, transport). The 

simulations were done with 𝛽 = 0.25 corresponding to 𝑅/ = 3.1. Additional aspects of the outbreak are reported in 

the Supplementary Material. 
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Figure 3 Impact of digital contact tracing and household isolation on the epidemic. A, B Temporal evolution 

of the incidence (clinical cases) with different app adoptions with 𝑅 = 2.6 and 𝑅 = 1.7, respectively. We explored 

app adoption levels from 0%, corresponding to household isolation only, to 57%, corresponding to the 90% of 

smartphone users. The black curve shows the scenario with no intervention (NI). Immunity is 10% and clinical 

case detection 50%. Incidence threshold level associated to ICU saturation is showed with a dashed grey line in 

panel B.  C Relative reduction (𝑅𝑅) in attack rate (AR) and peak incidence (PI) as a function of the app adoption 

for the same scenario as in A, B. 𝑅𝑅 is computed as STUV=S
STUV

 , where 𝑥	is either peak incidence or attack rate and 

𝑥MWX is the value of the quantity in the absence of any measure with the same value of 𝑅 and immunity. Here the 

attack rate is the cumulative number of clinical cases since the beginning of the simulation, i.e. the 10% of 

immune individuals are not included in the computation. D, G Peak incidence and attack rate for different values 
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of 𝑅 and different app adoptions. Immunity is 10% and case detection 50%. E, H Peak incidence and attack rate 

as a function of app adoption for different values of case detection. Immunity is 10%, 𝑅 = 2.6. F, I Peak incidence 

and attack rate as a function of app adoption for different values of immunity. Case detection is 50%, 𝑅 = 2.6.  

 

 

Figure 4 Effect of digital contact tracing and household isolation by age and setting. A Repartition among 

the different settings of the contacts detected by contact tracing (57% app adoption). B Relative reduction in 

transmission (𝑇𝑅𝑅) by setting obtained with household isolation. C  𝑇𝑅𝑅 obtained with digital contact tracing with 

respect to household isolation only, for three values of app adoption. D Repartition among the different age 

groups of the index cases and of the detected contacts, in a scenario with household isolation only, and with the 

inclusion of digital contact tracing (57% app adoption). The repartition of index cases is very similar in the two 

scenarios, thus only the one with household isolation is shown for the sake of clarity. E 𝑇𝑅𝑅 by age group of the 

infected as obtained with household isolation only. F  𝑇𝑅𝑅 of digital contact tracing with respect to household 

isolation only. We assume 𝑅 = 2.6, immunity 10% and probability of detection 50%. 
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Figure 5 impact of combined digital contact tracing and household isolation on the isolation of 

individuals. A Distribution of the number of isolated individuals per detected case (DC) for 57% of 

app adoption. D Average number of isolated individuals per detected case. B, E Percentage of the 

population isolated as a function of time for 𝑅 = 1.7 (B)  𝑅 = 2.6 (E). C, F: Fraction of unnecessary 

isolated, i.e. fraction of contacts isolated without being positive.  

Table 1. Compartmental model parameters and their values 

Parameter Description Values Source 

𝐼𝑃 Incubation period 5.2 days [26] 

𝜖 Rate of becoming infectious for 

exposed individuals  

(2.9 days)-1   𝐼𝑃 − 𝜇+=> 

𝜇+ Rate of developing symptoms for pre-

symptomatic individuals 

(2.3 days)-1   [27] 

𝜇 Recovery rate (7 days)-1   [27] 

𝛽C transmissibility rescaling according to 

the infectious stage 

0.51 for 𝐼+,-., 𝐼-. 

1 for 𝐼+,., 𝐼. 

[1] 
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𝜔- Transmission risk by layer 1 for 𝐻 layer 

0.3 for 𝐶 layer 

0.5 otherwise 

[17] 

𝛽	 Transmission rate Explored between 0.1 

to 0.25	

 

𝜎@ susceptibility 0.23 for 𝐴 in [0,14] 

0.68 for 𝐴 in [15,64] 

1 for 𝐴 in 65+ 

[7] 

𝑝-.@  Proportion of subclinical cases 0.27 for 𝐴 in [0,1]  

0.48 for 𝐴 in [2,6]  

0.57 for 𝐴 in [7,19]  

0.43 for 𝐴 in [20,29]  

0.38 for 𝐴 in [30,39]  

0.30 for 𝐴 in [40,49]  

0.24 for 𝐴 in [50,59]  

0.15 for 𝐴 in [60,69]  

0.11 for 𝐴 in [70,79]  

0.12 for 𝐴 in [80,89]  

0.26 for 𝐴 in 90+ 

[10] 

 

Supplementary Material 

Additional methods 

Algorithms for the generation of the synthetic population 

The generation of the synthetic population is a stochastic process resulting in contact 

networks being slightly different in each run. Thanks to this mechanism, we can account for 

some of the uncertainty concerning the input data. It also allows for population scaling (with 

scaling factor of 10) to reduce the population by respecting its composition and spatial 

distribution, thus increasing computational efficiency. Specifically, the scaling decreases the 
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number of individuals in municipalities and the fluxes of commuters between them, but it 

does not impact the number of municipalities nor the number of schools and workplaces. The 

smaller population has a smaller number of households, but it maintains the statistics 

regarding family size and age structure given by the INSEE data.  

Households 

Census data on age structure and household type and size are used to randomly assign age 

and locate individuals in households. Five different types of household are considered: single 

person, single with children, couple without children, couple with children, other household 

groups; some of the household types may also contain an additional adult member (usually 

an elderly person or a relative: if the number of additional adults is greater than one, the 

household falls in the "other" category). For each municipality m with population size popm, 

we generate new households until the size of the virtual population of the municipality virm 

reaches the real size of population popm. For each household, we determine its type, its size 

and the presence of an additional member (if the household type is not single-person or 

couple without children, and in case of household with children if the size is greater than the 

number of adults plus one): then according to the role of each individual (adult, child or other) 

we randomly extract his/her age, with some additional conditions:  

C1: the age of any child is between 15 and 45 years less than that of the youngest parent;  

C2: spouses’ ages differ by no more than 15 years.  

The detailed procedure is summarised in Algorithm 1.  

Algorithm S1: Creation of households in municipalities 

for each municipality do 

 

 

 

popm ← number of individuals in m; 

virm← 0; 

while virm < popm do 
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determine household typet ∼ M(pT), where M(pT)is a multinomial distribution with probabilities pT given in the first 

column of Table 1; 

determine age class of household head c ∼ M(pC(t)), where M(pC(t)) is a multinomial distribution with probabilities 

pC(t)given in Table 2; 

determine if the household contains an additional member according to probabilities pE(t) given in the second 

column of Table 1; 

determine age of household head a ∼ M(pA(c)), where M(pA(c)) is the multinomial distribution of the French age 

structure in the interval c; 

for each other member of household do 

 

 

 

 

 

determine the role r of the member (other adult in couple, children of couple; children of single, other); 

determine age class cm ∼ M(pCm(r)), where M(pCm(r)) is a multinomial distribution with probabilities pCm(r) given 

in Table 4; 

determine the exact age am ∼ M(pA(cm)) with the additional constraints C1 and C2; 

end 

virm← virm+ s 

end 

End 

 

Table S1 For each household type, the fist column shows its frequency; the second column the probability that 

the household type contains an additional member; the third column the frequency of individuals in each 

household type 

Type of household Frequency Fr. of add. member Fr. of individuals 
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Single without children 0.338 0.0 0.149 

Couple without children 0.268 0.0204 0.243 

Couple with children 0.277 0.0096 0.475 

Single with children 0.09 0.0123 0.106 

Other 0.027 0.0 0.027 

 

Table S2 For each household type, the frequency of the age class of the household head 

Type of household  0 - 14  15 - 19  20 - 24  25 - 39  40 - 54  
55 - 

64  
65 - 79  80 - 100 

Single without children  0.0  0.019  0.075  0.191  0.186  0.162  0.212  0.155 

Couple without children  0.0 0.029  0.132  0.263  0.264  0.133  0.094  0.085 

Couple with children  0.0  0.002  0.023  0.271  0.47  0.116  0.073  0.045 

Single with children  0.0  0.001  0.021  0.251  0.313  0.197  0.17  0.047 

Other  0.0 0.008  0.042 0.233  0.283 0.176  0.173  0.085 

 

Table S3 Probability distributions of the size of the household (except singles and couples without children, 

having size 1 and 2, respectively) for each age class of the household head. Rows are the age class of the 

household head, while columns are the size of the household 

Age class size: 1 size: 2 size: 3 size: 4 size: 5 size: 6 

0 - 19 0.0 0.3386 0.4432 0.1169 0.0479 0.0534 

20 - 24 0.0 0.1247 0.6325 0.1732 0.044 0.0256 

25 - 29 0.0 0.169 0.5217 0.2291 0.0585 0.0217 

30 - 34 0.0 0.1327 0.3919 0.343 0.1008 0.0316 

35 - 39 0.0 0.106 0.273 0.411 0.1594 0.0506 
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40 - 44 0.0 0.1087 0.2546 0.3984 0.1767 0.0616 

45 - 49 0.0 0.1123 0.3323 0.3568 0.1434 0.0552 

50 - 54 0.0 0.1021 0.4621 0.2887 0.1005 0.0466 

55 - 59 0.0 0.0997 0.5513 0.2269 0.0763 0.0458 

60 - 64 0.0 0.1119 0.5888 0.1884 0.0657 0.0452 

65 - 69 0.0 0.2312 0.5307 0.1469 0.0526 0.0386 

70 - 74 0.0 0.3896 0.4509 0.1026 0.0349 0.022 

75 - 79 0.0 0.5679 0.3392 0.0643 0.0183 0.0103 

80 - 100 0.0 0.7572 0.1956 0.0335 0.0087 0.005 

 

Table S4 Probability of age class of individuals depending on his role in the household, excluding the household 

head 

Age  

class 
Child of couple Child of a single 

Adult of couple 

with children 

Adult of couple 

without children 
Other 

0 - 4  0.2384  0.1288  0.0  0.0  0.0161 

5 - 9  0.2264  0.181  0.0  0.0  0.0176 

10 - 14  0.212  0.2125  0.0  0.0  0.0226 

15 - 19  0.1777  0.2131  0.0035  0.0008  0.0825 

20 - 24  0.0886  0.1144  0.0445  0.0164  0.1587 

25 - 29  0.0305  0.0448  0.071  0.0718  0.1051 

30 - 34  0.0105  0.0204  0.0414  0.1392  0.066 

35 - 39  0.0064  0.0182  0.0244  0.1848  0.0576 

40 - 44  0.0045  0.0181  0.0224  0.1873  0.0577 

45 - 49  0.0028  0.0172  0.0434  0.1642  0.0578 
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50 - 54  0.0014  0.0139  0.0902  0.111  0.057 

55 - 59  0.0006  0.0101  0.1379  0.0621  0.057 

60 - 64  0.0002  0.0053  0.1537  0.0306  0.0506 

65 - 69  0.0  0.0016  0.1126  0.0135  0.0364 

70 - 74  0.0  0.0005  0.0993  0.0086  0.0356 

75 - 79  0.0  0.0001  0.0812  0.0056  0.0382 

80 - 100  0.0  0.0  0.0745  0.0041  0.0835 
 

 

Employment 

School and industry census data are used to randomly assign an employment category to 

each individual on the basis of age: the probabilities are reported in Table S. The table 

assumes that all the children attend school from elementary to high school, while the 

attendance of universities is taken from census data. Census data contains the number of 

individuals commuting from one municipality to another one, specifying if they are students or 

workers, and the same for the number of individuals that study or work in the same 

municipality where they live. Such information is used to randomly assign students and 

workers to a municipality of work, which may be different from the one where they live, and 

then to a random school building or workplace inside this municipality. Students are assigned 

to a random school building, while workers are assigned to a random workplace type (5 

types, depending on the workplace size, i.e., the number of employees) and then to a 

random workplace building. Students are not grouped in classes. 

Table S5 Probability of workplace kind by age: individuals in the last column stay at home 

Age 

class  
creche  maternel  elementaire  college  lycee  universite  work  neet 

0 - 3  0.6  -  -  -  -  -  -  0.4 
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4 - 6  -  1.0  -  -  -  -  -  - 

7 - 11  -  -  1.0  -  -  -  -  - 

12 - 15  -  -  -  1.0  -  -  -  - 

16 - 18  -  -  -  -  1.0  -  -  - 

19 - 21  -  -  -  -  -  0.365  0.448  0.187 

22 - 23  -  -  -  -  -  0.332  0.471  0.197 

24 - 26  -  -  -  -  -  0.026  0.687  0.287 

27 - 62  -  -  -  -  -  -  0.705  0.295 

63 - 100  -  -  -  -  -  -  -  1.0 

 

Face-to-face contact network 

Acquaintance network  

For each place, 𝑖  – a workplace (𝑊 layer), a school (𝑆 layer) and a municipality (𝐶 and 𝑇 

layers) – we build an Erdős–Rényi network, with average degree 𝜒9.  The latter is a 

stochastic variable and depends on place layer, 𝑠9, and size, 𝑛9. We draw it from a gamma 

distribution with average 𝜒(𝑠, 𝑛)ddddddddd and coefficient of variation 𝐶𝑉.  

We expect that when the size of a place is small each individual enters in contact with 

everybody. As the size increases the number of contacts saturates. We model this by 

assuming 𝜒(𝑠, 𝑛)ddddddddd = fg	(h=>)
fgi(h=>)

. The function approaches (𝑛 − 1) for small 𝑛 and saturates to 𝑤- 

as 𝑛 increases (Figure S6). 

For each setting the parameter 𝑤- is tuned to reproduce the overall proportion of contacts 

occurring in the layer. 𝐶𝑉 rules the level of heterogeneity among places of the same kind and 

size. For simplicity we assume it to be the same for all settings. Additional details on the 

parametrization are provided below. 
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Figure S6 Average degree of the acquaintance network 𝜒(𝑠, 𝑛)ddddddddd as a function of the size of the place. As the size 

goes to infinity the degree saturates to 𝑤- that depends on the setting. Here we show as an example the curve for 

the workplace (𝑤k = 41.8). The other parameters estimated are 𝑤F = 18,23, 𝑤m = 4,3, 𝑤n = 20,9. 

Daily contact network  

Once the acquaintance network is built a daily activation rate 𝑥 is assigned to each link 

according to a cumulative distribution 𝐹-(𝑥) that depends on the layer 𝑠. We model 𝐹-(𝑥) with 

a sigmoid function with two parameters, 𝐴- and 𝐵-. For simplicity we assume 𝐹-(𝑥) to be the 

same for 𝑠 = 𝑊, 𝑆, 𝐶, while we allow it to be different in households (where contacts are more 

frequent) and in transports (where contacts are sporadic). On average, a fraction 〈𝑥〉- of the 

links of the acquaintance network is active each day. By indicating with 𝐾- and 𝑘- the 

average degree of a layer in the acquaintance and daily networks, respectively, we have 

〈𝑥〉- =
ug
vg

.  

Parametrization 

We tuned parameters 𝑤-,  𝐴-, 𝐵- and 𝐶𝑉 to reproduce the contact statistics in [25], namely:  

• the average daily number of contacts is 10; 

• the contact distribution is skewed with mode 3; 
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• being 𝑘- the average daily number of contacts in setting 𝑠 and 𝑟- =
ug
uw

, the survey reports 

𝑟k = 3.17, 𝑟F = 1.55, 𝑟m = 1.86, and 𝑟n = 0.23. 

35% of the registered contacts were with people met every day, while the rest with people 

met less frequently. 

Specifically, these data provide the following constraints:  

• Combining point 1) and 2) above we get 𝑘O(1 + 𝑟k + 𝑟F + 𝑟m) = 10, meaning 𝑘O = 1.28. 

The household statistics used for our synthetic population reconstruction yields 𝐾O =

1.97. This implies 〈𝑥〉O = 0.65. 

• We assume that the daily contact network has 35% of links with activity rate >0.95. In 

order to do so we must account for the fact that being 𝑓(𝑥) the distribution of activation 

rate values assigned to links of the acquaintance network, the distribution of links 

sampled in the daily network is biased toward higher rates, i.e. it is given by S〈S〉 𝑓(𝑥).  

We assume uncommon but still possible to meet more than once people in transports within 

a time frame of one or few months. Thus, we assume an activation rate for links in the 

transport layer as high as few percent or lower. Based on these constraints we design the 

frequency distribution as in Figure S2. 

Once 𝐹-(𝑥) is parametrized we tune the parameters 𝑤- of the acquaintance network to 

reproduce the proportion 𝑟- of daily contacts in different settings. We then fix 𝐶𝑉 = 0.2 to 

reproduce the mode of the distribution. The main properties of the network (contact 

distribution, link activation frequency, and age contact matrix) are shown in Figure S1 of the 

main paper. Other features are summaries in table S1. 
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Figure S2 Cumulative distribution of the daily activation rate of contacts. We model it with the function 𝐹(𝑥) =

𝐴 tanh=>(1 − 2𝑥) + 𝐵. Parameters are the following: 𝐴 = 0.25 for all settings; 𝐵O = 0.65,𝐵n = −0.40, 𝐵- = 0.56 

(𝑠 = 𝑆,𝑊, 𝐶). 

Table S6 Main network features 

Parameter Description  Value 

〈𝑥〉-, 𝑠 = 𝑆,𝑊,𝐶 Average activation rate of contacts for the 

school, workplace, community layer 

0.56 

〈𝑥〉O Average activation rate of contacts for the 

household layer 

0.65 

〈𝑥〉n Average frequency of contacts for the 

transport layer 

0.007 

𝑘O (𝐾O) Average degree of the daily network 

(acquaintance network) in a household 

1.79 (2.31) 

𝑘k (𝐾k) Average degree of the daily network 

(acquaintance network) in a workplace 

12.9 (22) 

𝑘F (𝐾F) Average degree of the daily network 

(acquaintance network) in a school 

7.9 (14) 
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𝑘m  (𝐾m) Average degree of the daily network 

(acquaintance network) in a community 

2.6 (4.3) 

𝑘n (𝐾n) Average degree of the daily network 

(acquaintance network) in transport 

1.1 (21) 

 

Details of the numerical simulations  

Simulations are discrete time and stochastic. At each time step, corresponding to one day, 

three processes occur: (i) the contact network is sampled according to the activation rate of 

each link; (ii) for each node, the infectious status is updated; and (iii) cases and contacts are 

isolated, or get out from isolation.  

The transmission process is modelled through the links of the multi-layer network as follows. 

At each time step, a susceptible node 𝑖  gets infected with the following probability 

Λ~ = 1 − �	∏ ∏ (1 − 𝜎@,9𝛽	𝛽C,�	𝜔-�∈�g	- 𝛿�	)�, 

where 𝑗 is a node belonging to the neighborhood 𝜐- of 𝑖 on layer 𝑠, and 𝛿� is 1 if 𝑗 belongs to 

any infectious stage (𝐼+,-., 𝐼+,., 𝐼-., 𝐼.) and 0 otherwise. Links of layer 𝑠 have weight 𝜔- that 

represent the average level of risk associated to contacts occurring in the setting 𝑠. We 

assume that individuals in the 𝐼. state stay at home due to illness, therefore they can infect 

only through the links of the household layer.  

Simulations are run on the synthetic municipality of Strasbourg. The population is reduced of 

a factor 3 to reduce computational time to feasible levels, yielding to a population of 92,423 

individuals.  

A single-run simulation is executed with no modelled intervention, until the desired immunity 

level is reached. This guarantees that immune individuals are realistically clustered in space. 
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Then the simulations of the epidemic with contact tracing are started, considering 15 

individuals initially infected randomly assigned in the population. 

We vary COVID-19 transmission potential by tuning the daily transmission rate per contact 𝛽. 

The reproductive number 𝑅 is computed numerically as the average number of infections 

each infected individual generates throughout its infectious period. To do so, population 

Immunity at the beginning of the simulation is set to 0 and 𝑅 is computed considering the 

infections generated by individuals who get infected the first two time steps of the simulations 

to guarantee that the whole population is susceptible. We find that 𝛽 = 0.1, 0.125, 0.15,

… , 0.25	corresponds to the following 𝑅 values: 1.47 95% CI [0.0, 4.86], 1.75 95% CI [0.0, 

5.78], 2.05 95% CI [0.0, 5.31], 2.25 95% CI [0.0, 5.31], 2.61 95% CI [0.0, 6.13], 2.95 95% CI 

[0.06, 7.29], 3.09 95% CI [0.68, 8.11]. We also compute numerically the generation time from 

the infector-infected pairs. 

 

Additional results 

Uncontrolled epidemic 

 

Figure S7 Epidemic in an uncontrolled scenario. A Incidence of clinical cases. B Incidence of all cases. C Attack 

rate. The bundle of curves shows 70 stochastic realizations. The epidemic is obtained with transmission rate 𝛽 =

0.25 corresponding to 𝑅/ = 3.1 (see Error! Reference source not found.). 
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App adoption variable by age 

The model accounted for age-varying smartphone penetration. However, we assumed that 

the probability of downloading the app, provided an individual owns a smartphone, is uniform 

and independent on age – uniform app adoption scenario, 𝑈. This hypothesis is simplified. 

Indeed, elderly people may be less incline to use the app even when they own a 

smartphone. We also tested the extreme case scenario in which no individual in the 70+ age 

cohort adopts the app – non-uniform app adoption scenario, 𝑁𝑈. We consider a 32% app 

coverage over the whole population, and we compared 𝑈 and 𝑁𝑈 scenarios, assuming the 

same number of apps are downloaded in the two cases. Figure S4 shows the attack rate 

relative reduction 𝐴𝑅𝑅 = @��
�=@���

�

@��
�  by age group, where 𝐴𝑅-.W@  is the attack rate of the 

epidemic for the age group, 𝐴, and the scenario, 𝑠𝑐𝑒 = 𝑈,𝑁𝑈. We found that 𝐴𝑅𝑅 is close to 

zero, meaning that 𝐴𝑅��@  ≃ 𝐴𝑅�@ , for all age groups. This means that distributing the app only 

to individuals younger than 70 years would not reduce the protection in the 70+ age group.  
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Figure S4 Comparison between the 𝑈 and the 𝑁𝑈 contact tracing scenario. Here 𝑅 = 2.6, Immunity is 10%, 

detection probability is 50% and app penetration is 32%. The line shows the average attack rate relative reduction 

and the shaded area is standard deviation. 
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