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Assessing the relative contributions of healthcare protocols for epidemic 

control: an example with network transmission model for COVID-19 

 

Abstract  

The increasing number of COVID-19 cases threatens human life and requires retainment 

actions that control the spread of the virus in the absence of effective medical therapy or 

a reliable vaccine. There is a general consensus that the most efficient health protocol in 

the actual state is to disrupt the infection chain through social distancing, although 

economic interests stand against closing non-essential activities and poses a debatable 

tradeoff. In this study, we used an individual-based age-structured network model to 

assess the effective roles of different healthcare protocols such as the use of personal 

protection equipment and social distancing at neighbor- and city-level scales. Using as 

much as empirical data available in the literature, we calibrated a city model and 

simulated low, medium, and high parameters representing these protocols. Our results 

revealed that the model was more sensitive to changes in the parameter representing the 

rate of contact among people from different neighborhoods, which defends the social 

distancing at the city-level as the most effective protocol for the control of the disease 

outbreak. Another important identified parameter represented the use of individual 

equipment such as masks, face shields, and hand sanitizers like alcohol-based solutions 

and antiseptic products. Interestingly, our simulations suggest that some periodical 

activities such as going to the supermarket, gas station, and pharmacy would have little 

contribution to the SARS-CoV-2 spread once performed within the same neighborhood. 

As we can see nowadays, there is an inevitable context-dependency and economic 

pressure on the level of social distancing recommendations, and we reinforce that every 

decision must be a welfare-oriented science-based decision. 
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Introduction 

Epidemics usually pose challenges to society by threatening human life, which 

frequently leads to social disruption and economic depletion (Meltzer et al., 1999). The 

most recent coronavirus disease (COVID-19) outbreak, caused by the severe acute 

respiratory syndrome [SARS]-CoV-2 virus, is a particularly urgent global event that 

already induced massive losses to human life and affected the economic development 

worldwide (Anderson et al., 2020; Baldwin and Mauro, 2020; Kabir et al., 2020). Since 

the first case of COVID-19 in Wuhan, Hubei province of China, the disease has 

established local transmissions in many countries, with the number of confirmed and 

fatal cases growing exponentially in several regions (Chinazzi et al., 2020; Wilder-

Smith et al., 2020). 

The rapid spread of this new coronavirus has motivated numerous studies on its 

epidemiological characteristics (Adhikari et al., 2020; Lipsitch et al., 2020; Rothan and 

Byrareddy, 2020). Clinical symptoms include high fever, dry cough, and respiratory 

distress (Lai et al., 2020). However, the disease onset may occasionally turn into 

severely progressive lung failure owing to alveolar damage (Xu et al., 2020). Clinical 

characteristics and the common course of ill patients carrying COVID-19 include absent 

to mild symptoms and are certainly context-dependent, but there is a considerable 

proportion of individuals that likely require medical assistance, especially those elderly 

people and/or with underlying comorbidities (K. Liu et al., 2020; Yang et al., 2020). In 

fact, a common concern for health systems is that an uncontrolled outbreak is definitely 

catastrophic, and really effective retainment measures are now the only realistic option 

to avoid the total collapse of healthcare facilities (Adams and Walls, 2020). 

There is an ongoing debate about the optimal mitigation strategies to prevent or 

reduce contagion among people. Strategies range from the use of physical barriers (e.g., 

masks), hand hygiene, avoidance of direct contact among people (e.g., handshakes and 

hugs) and social distancing at different scales such as staying meters apart from each 

other and traveling restrictions (Hellewell et al., 2020; Leung et al., 2020). However, the 

proposal of distancing interventions on a large scale, such as the suspension of classes 

and the lockdown of non-essential activities such as many commercial facilities, has 

been proved as a drawback to the economic interests (Ayittey et al., 2020; Bonaccorsi et 

al., 2020). This side effect stands against the social distancing protocols, highlighting 

that the optimal combination of retainment strategies needs to be a welfare-oriented 
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consensus between healthcare and economic sustainability (Gostin and Wiley, 2020). In 

this context, modeling the epidemic propagation focusing on these strategies can 

provide useful insights to guide field interventions and to understand COVID-19 

infection states (Ferguson et al., 2020). Qualitative information from these models can 

assist decision-makers and support critical intervention policies. 

It is a common perception that the novel coronavirus is transmitted under a 

contact network among humans (Guo et al., 2020; Rothan and Byrareddy, 2020). The 

spread of the virus in human networks occurs over time and across the geographical 

space. Therefore, enhanced models should account for such spatiotemporal dynamics, 

as well as the individual-level epidemiological phenomena (Li et al., 2019). Moreover, 

because susceptibility and mortality rates from COVID-19 are age-dependent (Li et al., 

2020; Moghadas et al., 2020), nearly optimal epidemiological models must attempt to 

incorporate these heterogeneities in order to produce more realistic results (Bian, 2004). 

Those semi-mechanistic models that define population dynamics considering 

age groups are known as individual-based age-structured network models (Ajelli et al., 

2010). In this endeavor, we built city-level simulations to investigate which strategy 

could maximize the mitigation of the infection outbreak. Models were calibrated with 

an empirical spatial structure and specific parameters of COVID-19, considering an 

extended susceptible-infected-recovered (SIR) epidemiological structure. In depth, we 

aimed to investigate the relative roles of health protocols such as the direct exposure to 

SARS-CoV-2, as well as the social distancing on both local and large scales. By varying 

model parameters related to these protocols, we were able to discuss better scenarios 

considering the delay in the infection peak and lower numbers of cases, as well as 

activities with a low potential to boost the outbreak. Our simulations indicate that 

changes in a single public protocol (e.g., social distancing and individual-level care) 

could result in quite different patterns of the infection wave. Meanwhile, we reveal that 

the carrying capacity of healthcare facilities will likely be overloaded and that social 

distancing, allied with investments in mass testing and hospital facilities, are the most 

appropriate engagements against COVID-19. 
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Results 

 We calibrated the simulations using an epidemiological model that considered 

all combinations of relatively low, intermediate, and high probabilities of personal 

exposure to SARS-CoV-2 (β), as well as the probability of contact among people in 

local (v), and regional (k) scales. As long as β, v, and k increases, the individual-level 

chances of being exposed to the virus and the encountering probability on local and 

regional scales also increased, respectively. 

In this sense, it was clear that there was a trend of faster and higher infection 

peaks as long as the values of the three parameters increased from scenarios S1 to S27 

(Figure 1; Table S1). For those models parametrized with high values (i.e., models with 

two or three red dots in Figure 1), the infection outbreak peaked 6-8 weeks after the first 

case, on average. While these scenarios yielded infection waves with many infected 

individuals already in the first weeks, their peaks were the narrowest though (Table S1). 

Given the specified model structure, those results forecasting early wave peaks emerged 

under moderate to high probabilities of the individual-level exposure to SARS-CoV-2 

virus (high β), in combination with higher encountering rates among people (v and k) 

(Figure 1; Table S1). 

Infection waves peaked later when models were calibrated with lower values of 

the three parameters. Under these circumstances, waves peaked nearly two times (14-16 

weeks) after the first case, on average, when compared to the aforementioned scenarios 

(Figure 1; Table S1). These scenarios produced flattened infection curves and later 

peaks, especially when the model assumed that people were less exposed to the virus 

(low β) and had a low probability of encountering at both local (low v) and regional 

(low k) scales. Considering our model city, all scenarios potentially overloaded the 

nominal carrying capacity of the healthcare system (Figure 1). Nevertheless, there was a 

clear trend that those simulations with steeper smooth waves (bottom scenarios in 

Figure 1) had a short-lasting overwhelm of the modeled hospital capacity. 
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     Figure 1. Outcomes of the simulations of COVID-19 infection curves. On the left: green, 
yellow, and red circles indicate low, intermediate, and high levels of model parameters β, v, and 

k for each of the 27 simulation scenarios. Parameter values are depicted in the box on the right 

panel. On the right: grey shades portray the progression of the infection across simulation time 

steps, which was obtained through the smoothing of all simulations under each scenario. The 
width of each shade is scaled to the height of each infection wave. Blue horizontal bars 

represent the period when the healthcare system is simulated as overloaded, according to 

empirical data on available beds. Red circles with crosses portray the peaks of infections. 

 

 To accurately identify the relative effectiveness of each of the mitigation 

strategies against COVID-19, we modeled the outputs of simulations as a function of 

different levels of parameters. When we considered the results in terms of the rapid 

growth of the infection (i.e., day of infection peak, the ratio of total population infected 

by the virus, and the number of infected people), there were significant influences when 

increasing parameters β and k (Table 1). In depth, these results point towards consistent 

effectiveness against the disease burden by decreasing both the exposure rate of 

individuals and increasing social distancing on a city-level scale (Table 1) and that this 

relationship seems to be non-linear (Figure 2). We found that those models calibrated 

with low exposure rate and high social distancing on a large scale had delayed infection 

peaks and less infected people (Table 1; Figure 2). 

Similarly, in terms of saturation of the healthcare system (i.e., first, last day and 

duration of the overwhelm, and the proportional deficit in the number of beds), the 

model indicated that both exposure rate (β) and social distancing at a large scale (k; i.e., 

city-level) also had significant influences (Table 1). All aspects of the infection wave 

related to the time that the health system would be saturated decreased with both 
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exposure rate and social approximation of people (Figure 2B). These scenarios reveal 

that the infection waves could be dramatically earlier and intense if people get infected 

at an increased rate. However, the predictions also reveal more dramatic forecasts, 

where the number of healthcare units should likely be three to fivefold the number of 

potentially available beds (Figure 2B). The results reveal no significant effect of the 

social distancing protocols on a local level (i.e., neighborhood). 

 

Table 1. Partial regression coefficients obtained from multi-response models through 

canonical powered partial least squares (CPPLS) regressions. The predictor matrix 

considered all three model parameters (β, v, and k). We built separate models for each response 

matrix: infection peak (peak day, the ratio of infected people and the number of cases at the 

peak) and healthcare saturation (first and last day, duration of the period, and estimated deficit 

in the number of hospital beds). Significant values under Jack-knife t-tests (considering α = 

0.01) are in bold. See Methods for details. 

 Parameter 
Estimate 

Std. Error D.f. t P 

Infection peak 

Day      

β -0.624 0.135 26 -4.619 0.000 

v -0.029 0.122 26 -0.241 0.811 

k -0.560 0.112 26 -4.980 0.000 

Ratio      

β 0.645 0.122 26 5.272 0.000 

v 0.030 0.115 26 0.264 0.794 

k 0.579 0.111 26 5.193 0.000 

Num. of cases      

β 0.646 0.123 26 5.270 0.000 

v 0.031 0.115 26 0.267 0.792 

k 0.577 0.112 26 5.164 0.000 

Healthcare saturation 

First day      

β -0.622 0.120 26 -5.202 0.000 

v -0.085 0.122 26 -0.696 0.493 

k -0.577 0.123 26 -4.680 0.000 

Last day      

β -0.631 0.115 26 -5.500 0.000 

v -0.071 0.116 26 -0.614 0.545 

k -0.578 0.120 26 -4.833 0.000 

Duration (days)     

β -0.635 0.109 26 -5.846 0.000 

v 0.001 0.110 26 0.012 0.991 

k -0.550 0.113 26 -4.852 0.000 

Deficit      
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β 0.643 0.116 26 5.533 0.000 

v 0.048 0.114 26 0.421 0.677 

k 0.579 0.121 26 4.802 0.000 

 

 

Figure 2. Relationships between model parameters and the response variables. (A) 

Infection peak; (B) Healthcare saturation. 

 

Discussion 

As an increasing number of COVID-19 cases is still being identified due to the 

impressive transmissibility of SARS-CoV-2 (He et al., 2020; Y. Liu et al., 2020), 

economic consequences became a major concern (Kabir et al., 2020; McKee and 

Stuckler, 2020). It is therefore fundamental to determine the relative effectiveness of 

control measures on disease retainment and to inform decisions about an adequate 

framework for management and mitigation strategies. For this reason, model projections 

considering different levels of these protocols are maybe the best coalition between 

researchers and policy-makers during this epidemic (Ferguson et al., 2020; Kucharski et 

al., 2020).  

It is noteworthy that those countries that took slightly delayed actions (i.e., days 

or a few weeks after first confirmed cases) had rapid spreads of COVID-19, 
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accompanied by high mortality, which imposed extraordinary demands to the public 

health systems (Legido-Quigley et al., 2020; Sen-Crowe et al., 2020). Studies 

demonstrate that strategies became much more effective when combined with the 

detection and isolation of cases (Anderson et al., 2020; Ferguson et al., 2020; 

Kretzschmar et al., 2020). Unfortunately, many low-income countries may not afford or 

are too large to conduct mass testing (Mayorga et al., 2020). Thus, the brunt of retaining 

the spread of COVID-19 lays on social distancing and associated efforts to manage and 

control the infection progress (Crokidakis, 2020).  

Social distancing and the isolation of infected people is a core intervention 

protocol for many infectious diseases and acts by reducing the potential for onward 

transmission, especially when ‘herd immunity’ protocols are unfeasible (Anderson et 

al., 2020; Lewnard and Lo, 2020). Our simulations under an empirically-parametrized 

city model confirmed that social distancing, especially limiting inter-neighborhood 

movements, would have the largest impact on containing the evolution of COVID-19 

within cities. There are many ways such as stay-at-home recommendations, home-based 

offices, and online teaching classes, ranging from voluntary to context-dependent 

mandatory reasons, which can greatly contribute to reducing the spread of the new 

coronavirus (Gostin and Wiley, 2020). Our results reinforce that these may be the best 

current strategies. Notwithstanding, health workers must continue their work, as well as 

supermarkets, public transportation employees, police, firemen, and others still need to 

have contact outside their households, where transmission chains may still remain 

(Kretzschmar et al., 2020). Fortunately, we found that the movements of people within 

their residential neighborhoods had lower effects on the evolution of the epidemic 

curves. This likely suggests that some periodically necessary activities, such as going to 

the supermarket, gas station, pharmacy, bank agency, and others, would have little 

effect overall, once performed within the same neighborhood. 

In our projections, respecting social distancing protocols likely delay and reduce 

the peak of the infection curve, thereby scattering the number of severe cases over a 

longer period. More importantly, under this delayed peak, healthcare systems are able to 

increase their carrying capacity by building up mobile cabin hospitals, which can 

provide better treatments for ill people and partially reduce the mortality rate 

(Moghadas et al., 2020). Early actions are fundamental and optimal interventions may 

precede the overwhelm of healthcare carrying capacity (Prem et al., 2020; Shoukat et 
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al., 2020). As a fortunate example, since March 20, 2020, Maringá (the city used as a 

model) declared partial lockdown, with considerably reduced traffic of people. The 

main interventions included the closure of educational institutions and non-essential 

commercial activities, as well as the complete lockdown from 21:00 pm to 05:00 am for 

a few weeks. These preventive social distancing protocols were determined only two 

days after the confirmation of the first case, which contributed even more to increase its 

effectiveness. However, some cities such as large Brazilian capitals are now 

experiencing dramatic scenarios, even with early stay-at-home recommendations 

(Crokidakis, 2020; Dana et al., 2020). Although social distancing may reduce the 

effective spread of the SARS-CoV-2 virus, it can never be reduced to zero and many 

people tend to underestimate this protocol since its effects may take weeks to appear 

(Hellewell et al., 2020). 

 Equally worrisome is the fact that our projections put the direct exposure of each 

individual in the frontline of the factors pushing the infection progress towards the 

worst-case scenarios. These results deal directly with the rate at which citizens are 

exposed to the virus. The use of personal protective equipment (PPE), such as surgical 

or fabric-made masks, face shields, and hand sanitizers like alcohol-based solutions and 

antiseptic products has been strongly recommended to the general public (WHO, 2020). 

However, this strategy creates a debate. On one hand, the willingness of people to be 

protected whenever performing any outside activity, or for those who work with 

essential services and are frequently at moderate to high exposure risks (Bourouiba, 

2020). On the other hand, the rational use of this equipment, once the global demand 

has grown nearly as exponential as the outbreak itself (Feng et al., 2020). 

So far, the most effective action seems to be imposing and encouraging the 

rational use of masks and the offer of hygiene items by decree or other legal 

dispositions. However, although most of these policies have been adopted in several 

countries (e.g. Japan, UK, Singapore, and Germany), there is not enough evidence for 

the real effectiveness of wearing masks alone or in combination with washing hands 

frequently in preventing the contact- or aerosol-based transmission of SARS-CoV-2 

(Feng et al., 2020; Y. Liu et al., 2020; Rothan and Byrareddy, 2020). Besides, the 

incorrect use of PPE is thought to be worse than not using at all, as well as exaggerated 

acquisition and overpricing of PPE could be similarly adverse. In this sense, we 

particularly recommend that people should use PPE adequately, especially when there is 
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potential to spread or get in contact with droplets in the air. Nevertheless, we underline 

that social distancing protocols seem considerably more effective. 

Just like any model, ours have limitations as well. First, we used a fixed number 

of hospital beds, which is certainly unrealistic if we consider that there is a current effort 

to expand the nominal carrying capacity of these facilities in many cities (Croda et al., 

2020). However, no matter what estimate we use to forecast the deficit in the number of 

available beds, projections show that there will not be enough ventilators to treat 

COVID-19 patients in the next few months, even in the best-case scenarios (Ranney et 

al., 2020). Second, we did not account for time-varying or dynamic public health 

protocols. As we can see nowadays, there is an inevitable context-dependency and 

economic pressure on the level of social distancing recommendations. Certainly, models 

with a real-time structure accounting for this dynamic would be more appropriate to 

build an evidence-based political framework. 

 

Methods 

Modelling framework 

We used an individual-based age-structured network model with an underlying 

modified susceptible-infected-recovered (SIR) epidemiological structure. The modeling 

approach starts with two main components, the node transition graph and the contact 

network (Fig. S1). The node transition graph consists of five compartments: susceptible 

(S), exposed (E), infected (I), recovered (R), and deceased (D). Each individual may 

only be in one of these compartments at each time and the rate of transition from one to 

the next is modulated by parameters β (transmission rate), δ (infection rate), γ (recovery 

rate), and θ (mortality rate). The sequence of the modeled progression of COVID-19 

infection assumes that each individual may transit from susceptible (S) to infected (I) 

and then the model estimates when they are able to recover from a given condition. 

 The contact network is represented by the number of individuals (N; i.e., 

circles/nodes) as well as by their interactions (i.e., edges/links), whenever an 

opportunity for transmission arises (Fig. S1). Theoretically, we assume that the 

interaction between two nodes occurs whenever there is potential contact between 

individuals (e.g., hugs, handshakes, or airdrops), or individuals may interact with 
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previously infected objects (e.g., doorknobs, handrails, and elevator panels). Thus, these 

opportunities serve as windows for the spread of the virus from an already infected 

individual to a new potential host. 

 In practice, we explicitly modeled each individual and its probabilities of 

movement through the node transmission network. At first, all individuals were 

assigned as susceptible (S), because of no-known previous immunity against COVID-19 

(Shi et al., 2020). Thereafter, the transition of each node to the exposed (E) 

compartment depended on the transmission rate β and the combined proportion of 

infected individuals, both nearby and in potential neighborhoods (𝑌𝑖). Thus, the 

probability of a susceptible individual to become exposed to the virus took place at rate 

β𝑌𝑖. This product forces the transmission probability to be directly proportional to the 

number of network-level infected individuals, which seems quite realistic. Once 

individuals enter the exposed (E) compartment, the transition to the infected (I) stage 

depends on the infection rate δ, which, in practice, portrays the average incubation time 

(i.e., days until the pathogen will replicate enough so individuals become infectious). At 

this stage, those recently infected individuals add up to 𝑌𝑖, which increases the overall 

virulence of the network. Infected individuals would then be transferred to the 

recovered compartment (R) or be unfortunate otherwise (i.e., move to the deceased (D) 

compartment), depending on rates γ and θ, respectively. The aforementioned structure 

yielded the following time-dependent Poisson process: 

Pr[𝑥𝑖(𝑡 + ∆𝑡) = 1|𝑥𝑖(𝑡) = 0, 𝑋(𝑡)] = 𝛽𝑌𝑖∆𝑡, 

Pr[𝑥𝑖(𝑡 + ∆𝑡) = 2|𝑥𝑖(𝑡) = 1, 𝑋(𝑡)] = 𝛿𝜑𝑖∆𝑡, 

Pr[𝑥𝑖(𝑡 + ∆𝑡) = 3|𝑥𝑖(𝑡) = 2, 𝑋(𝑡)] = 𝛾∆𝑡, 

Pr[𝑥𝑖(𝑡 + ∆𝑡) = 4|𝑥𝑖(𝑡) = 2, 𝑋(𝑡)] = 𝜃∆𝑡, 

where 𝑥𝑖 = {0, 1, …, 4}, which depicts whether the node i is susceptible, exposed, 

infected, recovered, or deceased, respectively (Fig. S1). To include more realism in the 

model, we included an age-dependent parameter modulating the E-to-I transition 

probability (𝜑
𝑖
) that portrays the susceptibility of each i individual to become infected at 

its specific age (Wu et al., 2020; see Model Parametrization). 
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Figure S1. Diagram of the individual-based network model consisting of the transition 

graph and the contact network. Colored circles represent the five compartments of the model 

for each node (i.e., individual): susceptible (S), exposed (E), infected (I), recovered (R), and 

deceased (D). The transition between compartments is modulated by transmission rate (β), 

infection rate (δ), recovery rate (γ), and mortality rate (θ). Each circle in the contact network 

represents an individual and links are potential opportunities (i.e., contacts) for COVID-19 

transmission. 

 

City structure and movement of people 

 To incorporate a spatially explicit structure, we modeled the distribution and 

movement of people based on the city of Maringá, PR, Brazil (23º25’38”S / 

51º56’15”W; Fig. S2). This is the seventh largest city in southern Brazil and has a 

successfully implemented and developed urbanizing plan, which translates into a 

relatively high efficiency related to the movement of people across the city and 

alleviates potential traffic bottlenecks. The network city model included empirical 

demographic information obtained from the 2010 census, consisting of 357,077 citizens 

(N) unevenly distributed across 48 census zones (i.e., neighborhoods; Fig. S2; IBGE, 

2010). The city covers approximately 487.7 km² (303 sq mi) in the Northern region of 

Paraná, South Brazil. 

 Data for each census zone represented the locations considered in the network 

model. We extracted the centroid of each zone according to their geographic 

coordinates (black circles in Fig. S2). To model the movement across the city, we 
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considered that people were assumed to move freely within each location. Under this 

structure, each individual had an equal probability v of contact with all other individuals 

within the same zone (Sahneh et al., 2017). However, their movement was constrained 

among locations. 

 The transmission of the virus from one zone to another was assumed to occur 

through the movement of individuals across the network. In the city model, for instance, 

the most frequent reason why people leave their residential neighborhoods is for 

working purposes (Amram et al., 2019; Wang et al., 2018). Therefore, the spread of the 

virus resulting from contact among people was proportional to their proximity within 

the city network, assuming that people tend to work near their own households. This 

weighting was based on an exponential distance kernel 𝑒−𝑘𝑑 , where k scales the 

probability of individuals from different zones to be in contact, and d is the geographic 

distance (km) between the centroids of each zone.  

 

 

Figure S2. Location of the neighboring zones in the network city model - Maringá, PR, 

Brazil. Shades of red are scaled to the total number of citizens in each census zone, according to 

the 2010 national census. Roads and avenues are depicted by grey traces. The medical cross in 

the middle spots the neighborhood where the first COVID-19 case was empirically reported and 

inserted in each simulation. 
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Model parametrization  

 We parameterized the model using as much information as available in the 

literature. Under our model structure, parameters δ, γ, and θ were previously 

approximated and were fixed through all simulations. We then invariably used δ = 

0.196 day-1 that portrays 5.1 days of incubation, and γ = 0.090 day-1, which depicts an 

11.1-day period of recovery (Lauer et al., 2020; Pan et al., 2020). The θ = 0.00014 value 

was also fixed, which yielded a fatality ratio of nearly 1.5% (Verity et al., 2020; Wu et 

al., 2020). We initially calibrated the parameter representing the encountering 

probability within zones as v = 0.7, as suggested in the literature (Sahneh et al., 2017; 

Sekamatte et al., 2019). Lacking proper knowledge of the remaining parameters, we set 

β = 0.2 and k = 0.01. Nevertheless, the model is valid for any value of these parameters 

(Sekamatte et al., 2019).  

 

Simulation scenarios 

 To achieve our objective of comparing different healthcare protocols to retain 

the spread of the virus, we conducted simulations using different values of the exposure 

rate (β), as well as varying city-level (k) and location-level (v) probabilities of 

individuals to get in contact. We then simulated time series based on the 

aforementioned modified SIR model using all possible combinations of parameters β 

{0.1, 0.2, 0.4}, v {0.2, 0.5, 0.7}, and k {0.01, 0.02, 0.05}. The 27 resulting scenarios 

considered different combinations of relatively low, medium, and high values of β, v, 

and k. This structure was fundamental to isolate the effects of each parameter on the 

simulated infection waves and to confront the outputs. 

We set the model up to start by distributing the 357,077 citizens across the city. 

To each individual, we assigned a ‘home’ location using the population density of each 

zone as probabilities (Fig. S2). To include the age-structured information that would 

approach more realism in simulations, we then randomly assigned an age between 0 and 

99 years to each individual, following the empirical age pyramid in Fig. S3 (IBGE, 

2010). According to the age of each citizen, we then parametrized the age-dependent 

infection probability (𝜑
𝑖
) according to Wu et al. (Wu et al., 2020) (Fig. S3). Each 

simulation started (t = 0) with a single COVID-19 case in the Central zone (medical 

cross in Fig. S2), the location where the first case was recorded on March 18, 2020 in 
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the model city (SMS/MGA, 2020). We then allowed the model to evolve daily until t = 

270, representing nine months in the future, approximately. For each scenario, we 

performed 100 simulations. To average the SIR curves of all simulations under each 

scenario, we fitted local polynomial regressions (locally estimated scatterplot smoothing 

– LOESS) to each node transition compartment, with a smoothing parameter of α = 0.3. 

From simulated curves, we extracted three response variables related to the infection 

peak: day of the peak, ratio of infected people, and number of cases at the peak.  

 

 

 

Figure S3. Age-specific numbers of individuals (green bars) and susceptibility to infection 

by SARS-CoV-2 (red circles). The age pyramid was obtained empirically using data on 

357,077 citizens from the 2010 national census on our model city (Maringá, PR, Brazil). The 

age-dependent relative mean susceptibility to infection was obtained from Wu et al. (2020). The 

reference group to calculate values are people between 30 and 39 years, for which susceptibility 

is considered as 1. 

 

Empirical healthcare data 

 To infer about prioritizing the efforts of public health personnel, we compared 

the outcomes of simulations with the nominal carrying capacity of healthcare facilities 

potentially able to treat COVID-19 cases in Maringá (Fig. S4). We then compared this 

information with the simulations under all scenarios. We did this because the potential 

collapse of healthcare systems is a major concern worldwide (Adams and Walls, 2020). 

We considered that the number of available hospital beds in Maringá was 1,657, 

without distinction between ordinary and intensive care units, for simplicity. From these 

beds, the average normal occupancy is estimated at 58.75% (SMS/MGA, 2020), which 
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yields 684 beds virtually available for COVID-19 cases. Fortunately, most people with 

infections caused by the SARS-Cov-2 virus only develop mild symptoms and do not 

require medical care. However, we considered that people would develop severe or 

critical symptoms at an approximated rate of 0.19 (Wu and McGoogan, 2020). From 

these severe/critical cases, there is an expected age-dependent probability of hospital 

admission at 0.025 (0-19 years), 0.32 (20-49 years), 0.32 (50-64 years), and 0.64 (65+ 

years) (Moghadas et al., 2020; Shoukat et al., 2020). Using these probabilities and the 

empirical age-structured data from the 2010 census, we extracted the median of a fitted 

Gamma distribution (Fig. S5) to represent the proportion of infected people demanding 

hospital beds at each time step (0.0379; interquartile range = 0.0180-0.0697). In the 

course of each infection wave, we were then able to approximate the duration (i.e., 

days) of the overload of the carrying capacity of hospitals, as well as a rough deficit in 

the number of beds available at the projected infection peaks. 

 

 

Figure S4. Time series of COVID-19 cases in the model city (Maringá, PR, Brazil). Red 

circles represent the number of confirmed cases, after clinical testing. Green circles depict the 

number of fully recovered cases, available back until April 14, 2020. Black circles represent the 

number of confirmed deaths. Vertical dashed lines are for the beginning of the social distancing 

protocol (black) and the start of the gradual recovery of working and social activities (red). 
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Figure S5. The estimated median probability of hospital admission. This probability 

combines the chance of an infected individual to develop severe/critical symptoms and the 

chance of requiring hospitalization such as internal assistance, intensive care, and mechanical 

ventilation (see Empirical healthcare data). 

 

Regression models 

 Finally, to investigate the relative role of each public health protocol against the 

spread of SARS-CoV-2 virus, we used multi-response partial least squares regression 

models (PLS). Specifically, we used the canonical powered extension of PLS (CPPLS), 

which is suitable for multivariate responses and relationships considering discrete and 

continuous variables with potential correlation (Indahl et al., 2009). We built models 

using the varying model parameters (β, v, and k) as the predictor matrix. As response 

matrices, we used the three variables related to the infection peak (i.e. peak day, ratio of 

infected people and number of cases at the peak) and the four variables related to the 

saturation of the healthcare system (i.e. first and last day, duration and deficit), 

separately. Variables were centered (i.e., scaled) prior to model fitting to allow for 

comparisons among parameter estimates. Models were fitted using package ‘pls’ 

(Mevik et al., 2019) in the R Environment (R Core Team, 2019). The significance of 

parameter estimates was achieved using approximated Jack-knife t-tests (Martens and 

Martens, 2000). 
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Supplementary material 

 

Table S1. Model parameter and outputs with 95% confidence interval for the individual-based 

age-structured network model simulating the COVID-19 spread using Maringá, PR, Brasil as 

model city. Please refer to the full text for details. 

 Parameters Infection peak Healthcare saturation 

 beta v k Day Ratio # of cases First day Last day Duration Deficit (beds) 

S1 0.1 0.2 0.01 236 
0.078 

[0.077,0.08] 
27985 

[27374,28596] 
187 

[185,188] 
269 

[267,270] 
83 

[80,86] 
1.566 

[1.532,1.6] 

S2 0.1 0.2 0.05 69 
0.146 

[0.144,0.148] 

52187 

[51522,52852] 

89 

[89,90] 

166 

[165,167] 

78 

[76,79] 

2.92 

[2.883,2.957] 

S3 0.1 0.2 0.1 52 
0.213 

[0.211,0.215] 
75920 

[75202,76638] 
45 

[44,45] 
106 

[105,107] 
62 

[61,64] 
4.248 

[4.208,4.288] 

S4 0.1 0.5 0.01 208 
0.085 

[0.083,0.086] 
30259 

[29647,30872] 
163 

[161,164] 
253 

[251,254] 
91 

[88,94] 
1.693 

[1.659,1.727] 

S5 0.1 0.5 0.05 68 
0.146 

[0.144,0.148] 
51982 

[51282,52682] 
86 

[85,86] 
162 

[160,163] 
77 

[75,79] 
2.909 

[2.87,2.948] 

S6 0.1 0.5 0.1 51 
0.22 

[0.218,0.222] 
78503 

[77847,79160] 
43 

[43,44] 
104 

[103,105] 
62 

[60,63] 
4.393 

[4.356,4.429] 

S7 0.1 0.7 0.01 187 
0.091 

[0.089,0.093] 
32445 

[31765,33125] 
141 

[139,142] 
227 

[225,229] 
87 

[84,91] 
1.815 

[1.777,1.854] 

S8 0.1 0.7 0.05 68 
0.16 

[0.158,0.162] 
57121 

[56456,57785] 
84 

[84,85] 
157 

[156,158] 
74 

[72,75] 
3.196 

[3.159,3.233] 

S9 0.1 0.7 0.1 51 
0.22 

[0.218,0.222] 
78662 

[78020,79304] 
42 

[42,43] 
103 

[102,104] 
62 

[60,63] 
4.402 

[4.366,4.438] 

S10 0.2 0.2 0.01 114 
0.153 

[0.151,0.155] 
54575 

[53835,55316] 
88 

[87,88] 
163 

[161,164] 
76 

[74,78] 
3.054 

[3.012,3.095] 

S11 0.2 0.2 0.05 50 
0.211 

[0.21,0.213] 
75510 

[74919,76101] 
47 

[47,48] 
109 

[108,109] 
63 

[61,63] 
4.225 

[4.192,4.258] 

S12 0.2 0.2 0.1 41 
0.242 

[0.24,0.244] 
86310 

[85610,87011] 
19 

[19,19] 
82 

[81,82] 
64 

[63,64] 
4.83 

[4.79,4.869] 

S13 0.2 0.5 0.01 104 
0.165 

[0.163,0.167] 

59064 

[58362,59767] 

75 

[74,75] 

145 

[144,146] 

71 

[70,73] 

3.305 

[3.266,3.344] 

S14 0.2 0.5 0.05 48 
0.212 

[0.21,0.214] 
75810 

[75142,76478] 
45 

[45,45] 
107 

[106,108] 
63 

[62,64] 
4.242 

[4.205,4.279] 

S15 0.2 0.5 0.1 41 
0.242 

[0.24,0.244] 
86276 

[85598,86954] 
18 

[18,18] 
80 

[79,81] 
63 

[62,64] 
4.828 

[4.79,4.866] 

S16 0.2 0.7 0.01 101 
0.169 

[0.167,0.171] 
60355 

[59641,61068] 
71 

[71,72] 
142 

[141,143] 
72 

[70,73] 
3.377 

[3.337,3.417] 

S17 0.2 0.7 0.05 49 
0.213 

[0.211,0.215] 
76011 

[75325,76697] 
44 

[44,45] 
105 

[104,106] 
62 

[60,63] 
4.253 

[4.215,4.292] 

S18 0.2 0.7 0.1 42 
0.237 

[0.235,0.24] 
84804 

[84075,85533] 
19 

[18,19] 
82 

[81,83] 
64 

[63,66] 
4.745 

[4.704,4.786] 

S19 0.4 0.2 0.01 70 
0.215 

[0.213,0.217] 
76923 

[76228,77618] 
45 

[45,45] 
103 

[103,104] 
59 

[59,60] 
4.304 

[4.265,4.343] 

S20 0.4 0.2 0.05 39 
0.244 

[0.242,0.245] 
86977 

[86329,87625] 
22 

[22,22] 
83 

[83,84] 
62 

[62,63] 
4.867 

[4.831,4.903] 

S21 0.4 0.2 0.1 34 
0.244 

[0.242,0.246] 
87197 

[86527,87868] 
12 

[12,12] 
68 

[67,68] 
57 

[56,57] 
4.879 

[4.842,4.917] 

S22 0.4 0.5 0.01 68 
0.22 

[0.218,0.222] 
78555 

[77936,79174] 
39 

[39,39] 
100 

[99,100] 
62 

[61,62] 
4.396 

[4.361,4.43] 

S23 0.4 0.5 0.05 38 
0.243 

[0.241,0.245] 
86899 

[86227,87570] 
19 

[19,20] 
81 

[81,82] 
63 

[62,64] 
4.862 

[4.825,4.9] 

S24 0.4 0.5 0.1 34 
0.242 

[0.24,0.244] 

86348 

[85655,87042] 

12 

[12,12] 

68 

[68,69] 

57 

[57,58] 

4.832 

[4.793,4.871] 

S25 0.4 0.7 0.01 62 
0.225 

[0.224,0.227] 
80428 

[79822,81036] 
38 

[38,38] 
98 

[97,98] 
61 

[60,61] 
4.5 

[4.467,4.534] 

S26 0.4 0.7 0.05 37 
0.241 

[0.24,0.243] 
86210 

[85526,86894] 
19 

[19,20] 
82 

[81,83] 
64 

[62,65] 
4.824 

[4.786,4.862] 

S27 0.4 0.7 0.1 34 
0.243 

[0.241,0.244] 
86628 

[85965,87291] 
11 

[11,12] 
67 

[66,68] 
57 

[55,58] 
4.847 

[4.81,4.884] 

β = Transmission rate; v = Probability of contact within zones; k = Probability of contact among zones 
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