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Abstract

We evaluate potential temperature and humidity impact on the infection rate of COVID-19 with a data up to June 10th

2020, which comprises a large geographical footprint. It is critical to analyse data from different countries or regions
at similar stages of the pandemic in order to avoid picking up false gradients. The degree of severity of NPIs is found
to be a good gauge of the stage of the pandemic for individual countries. Data points are classified according to the
stringency index of the NPIs in order to ensure that comparisons between countries are made on equal footing. We find
that temperature and relative humidity gradients don’t significantly deviate from the zero-gradient hypothesis. Upper
limits on the absolute value of the gradients are set. The procedure chosen here yields 6·10−3 ◦C−1 and 3.3·10−3 (%)−1

upper limits on the absolute values of the temperature and relative humidity gradients, respectively, with a 95%
Confidence Level. These findings do not preclude existence of seasonal effects and are indicative that these are likely
to be nuanced.
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1. Introduction1

In the last century the world has previously experienced three pandemics [1], the Asian, Spanish and Hong Kong2

influenza viruses. These pandemics had widespread consequences killing millions of people around the world [2, 3, 4].3

There are many different factors that effect the transmission rate of a specific pandemic. These factors include, but4

are not limited to, climate change conditions, population density and medical quality [5]. The most recent pandemic5

is the novel COVID-19 Coronavirus caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2)6

[6, 5]. The initial outbreak took place in December 2019 in Wuhan city, Hubei province, China [7]. This virus was7

declared pandemic by the World Health Organisation (WHO) on March 11, 2020 after it had spread into more than8

114 countries with a total of 118,000 cases at the time [8]. As of June 18, 2020 the total number of cases identified by9

the WHO stands at around 8.2 million with fatalities reported at 445 thousands [9]. The spread of this virus is mainly10

based on human-to-human contact or droplets [10].11

This paper aims to address the seasonality of the COVID-19 virus and whether it is driven by macroscopic tem-12

perature and/or humidity gradients. As the Southern Hemisphere has plunged into winter, concerns emerge regarding13

possible acceleration of the spread. Conversely, the Northern Hemisphere has transitioned to summer, where some14

countries appear confident that warmer weather will ease pressures from the pandemic.15

A number of studies have been performed at different stages of the pandemic globally. Currently, the pandemic16

has reached a stage where many countries have completed their “first wave”. This wave cycle is defined by a slow17

initial growth, followed by an acceleration leading to an apex and then a gradual decline. However, the evolution of18

the pandemic does not occur in the same time frame for all countries. The length of the cycle and its initial parameters19
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vary from country to country. If one analyses the infection rate in different countries at a fixed time it is possible to run20

into the error of comparing outcomes at different stages of the pandemic. For instance, at a given time a country can21

be at the early stages of the pandemic, which is characterized by low infection rates, while another can on be its way22

to reaching the apex with large infection rates. If both countries happen to display different temperatures or humidity23

levels, the analysis will yield an apparent gradient. Also, if one analyses infection rates over prolonged periods of time24

over which climatic conditions change significantly in a country, the analysis will also pick up an apparent gradient25

in the absence of genuine dependencies. The ”first wave” in Europe commenced towards the end of the winter and26

was completed in the spring. At the time when the infection rates were large in some European countries in other27

continents, such as South America which happened to be warmer and more humid, displayed lower infection rates.28

From here One may be tempted to conclude on the presence of a gradient.29

In order to reduce the probability of picking false gradients it is essential to compare infections rates for different30

countries at similar stages of the progression of the pandemic. Given the large geographical footprint of the pandemic31

attained so far it is possible to achieve a large enough differential in temperature and humidity in order to pin down32

potential macroscopic gradients. This is achieved here by classifying the data according to the level of severity of33

the non-pharmaceutical interventions (NPIs) applied in a country. We find that the severity of the total NPI policy34

is a good metric to gauge the progression of the pandemic. It must also be noted that countries with a number of35

positive cases below a certain threshold are not considered. This is motivated by the need to exclude countries that36

find themselves at the early stages of the pandemic, which is a difficult period to model. Several measures have been37

put in place by different countries in an attempt to limit the spread of this virus. Most countries around the world have38

adopted similar regulation related to combating the spread of COVID-19. Some of the most widespread strategies are:39

lockdown implementation, bans on mass gatherings, the closure of schools and work places and travel restrictions. A40

stringency index introduced by the Oxford COVID-19 Government Response Tracker team can be used to provide a41

picture of the stage at which any country enforced its strongest measures. The index is a number from 0 to 100 that42

reflects a weighted average of the inididual indicators indicators (related to each implemented NPI). A higher index43

score indicates a higher level of stringency.44

In our work we are looking at countries with more than 5000 cases and thus far as of June 10, 2020 there are 6545

countries that fit the criteria. Other human Corona viruses such as SARS-CoV and Middle East Respiratory Syndrome46

(MERS-CoV) survived for 2 - 9 days on different materials surfaces under high temperatures such as 30◦ [11]. Their47

survival increased to 28 days under lower temperatures such as 4◦. Additionally, SARS-CoV survives longer under48

lower temperatures and relative humidity, which could be the reason why countries with high temperature and relative49

humidity such as Malaysia, Indonesia and Thailand did not have major outbreaks of SARS-CoV in 2003 [12]. Several50

studies concluded that low temperature [13, 14] and low humidity favor the transmission of the virus [5, 15]. From51

this it is expected that the spread will reduce with a rise in both temperature and humidity. In contrast to these, there52

are studies which suggest that temperature does not play any significant role in the spread of COVID-19 [16, 17, 18].53

Prata et al. [19] found a negative correlation between temperatures and number of daily cases of COVID-19 within54

the range 16.84◦C to 25.84◦C. However, the study shows that there is no evidence that there will be a decrease in the55

number of cases for temperatures above 25.84◦C.56

2. Non-Pharmaceutical Interventions and the Stringency Index57

Non-pharmaceutical Interventions, or NPIs, are response measures put in place by a government to try and combat58

the spread of virus or infectious disease. There are a number of NPIs that most governments across the world have59

enforced. A global analysis of the impact of NPIs on the COVID-19 spread dynamics have shown that it is valuable to60

use a stringency index to classify these NPIs. The global analysis was done using the Oxford COVID-19 Government61

Response Team (OxCGRT) [20] stringency index as well as an adapted US stringency index that was designed by our62

team to be as similar as the OxCGRT index as possible for comparison purposes. The world average for the coefficient63

that linearises the level of transmission with respect to the OxCGRT stringency index is αs = 0.01 ± 0.0017 (95%64

C.I.) [21].65

The OxCGRT stringency [22], p in our notation, can be understood as a number from 0-100 that is a weighted66

average of a number of relevant NPI indicators. The OxCGRT has created a database of NPI indicators and the67

corresponding dates of initiation. The stringency index is also included in this database. The OxCGRT stringency68

index can be useful in quantifying and characterising a country’s response to the COVID-19 pandemic. This makes69
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Figure 1: Comparison of ensemble average NPI stringency index, p, against the ensemble average of infection rates, β, as a function of days from
the last major change in control value.

it a useful comparative parameter. It can also be used to show the progression of a pandemic in a country and to70

determine an overall classification of a response as ”tight” or ”loose” control.71

Figure 1 illustrates the impact of NPIs on the infection rate of the pandemic. The graph is obtained from data of72

47 countries and states of the US before the release of lockdown restrictions. This graph bears witness of the strong73

correlation between the application of the NPIs and the control over the pandemic.74

The OxCGRT original version that was used for this paper takes into account the following NPIs in the stringency75

index calculation:76

1. S1 - School Closure77

2. S2 - Workplace Closure78

3. S3 - Cancel Public Events79

4. S4 - Close Public Transport80

5. S5 - Public Information Campaign81

6. S6 - Domestic Travel Bans82

7. S7 - International Travel Bans83

The OxCGRT stringency index is given by:84

p =
1
7

7∑
J=1

pJ , (1)

where pJ is defined by:85

pJ =
S J + GJ

NJ + 1
, (2)

with GJ = 1 if the effect is general (and 0 otherwise), and NJ is the cardinality of the intervention measure [22, 20].86

In the case where there is no requirement of general vs. targeted (S7), the +1 in the denominator and the GJ in the87

numerator are omitted from the equation to form:88
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Label NPI
U1: Stay at Home Order
U2: Educational Facilities Closed
U3: Non-essential Services Closed
U4: Travel Severely Limited
U5: Initial Workplace Closure
U6: Banned Mass Gatherings

Table 1: Table Showing US Interventions Acquired from the IHME.

p7 =
S 7

N7
, (3)

The OxCGRT database contains data for 133 countries however no data is included for US states. In order to be89

able to compare US states to countries, we mapped the known available levels of intervention in the US to match90

the OxCGRT system as accurately as possible. We used the Institute for Health Metrics and Evaluation (IHME) [23]91

dashboard to obtain six dates at which specific states imposed different NPIs. At the time of development the known92

NPIs for the US taken from the IHME dashboard were as follows:93

Although some of the above US interventions were not directly comparable to the OxCGRT indicators, their94

individual impact on the stringency index was still valid and should be included in the calculation of the index. By95

including U1 and U3 with the appropriate weight into the calculation use for the OxCGRT index, an equivalent US96

index is created. The following equation was developed:97

p =
1
7

(1(v1) + 1(v2) + 1(v3) + 2(v4) + 1(v5) + 1(v6)), (4)

where vi is a number out of 100 indicating the extent to which each of the interventions are imposed.98

Due to lack of data on the Travel Severely Limited intervention on the IHME dashboard. It was required to source99

US travel restrictions information from other US news sources [24, 25, 26]. Using the same logic used by OxCGRT100

team the following equation for vi was introduced:101

vi = 100
Ui

Ni
, (5)

where Ui is ordinal and can vary from 0 to the cardinality of the specific intervention measure, Ni. This is done to102

incorporate levels of implementation of a specific intervention into the stringency calculation. Based on the data the103

only intervention that requires levels of implementation is the U4 intervention. The ordinal levels, 0-3, were allocated104

for U4 in order to include the relevant levels of implementation that were found to be applicable to the Travel Severely105

Limited intervention.106

3. Materials and Methods107

3.1. The epidemiological parameters108

Our study uses one of the simplest compartmental models in the form of SIRD modelling. The model consists of109

four compartments, S , I,R and D which represent the number of susceptible population, active cases, recoveries and110

number of deaths, respectively. The variables represent the number of people at the particular day in each compart-111

ment. The infection rate, β, the recovery rate, γ, and the mortality rate, d are defined. These parameters are given in112

the following formulae:113

β =
dI + dR + dD

dt
, (6)

where114

γ =
dR
dt

(7)

4

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 25, 2020. ; https://doi.org/10.1101/2020.07.20.20158071doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.20.20158071


Figure 2: World map with daily β infection rate for the 1st June 2020

and115

d =
dD
dt

(8)

These parameters are computed on a daily basis. Figure 2 shows a snapshot of the infection rate globally for June116

1st 2020. A global analysis indicates that the recovery rate evolves slowly with time. In addition, the US stopped117

reporting recoveries early on in the pandemic. This data sample is particularly relevant to the analysis in that the118

differentials of temperature and humidity in the US are large. As a result, the temperature and humidity gradients are119

computed with respect to the infection rate, as opposed to the reproductive number.120

3.2. Disentangling climate modulations and the temporal evolution121

As indicated in Section 1, the pandemic evolves in time undergoing different phases within a wave. A wave cycle122

can span months during which climate modulations may induce significant variations in temperature and humidity.123

Therefore, it is of the essence to make every effort to disentangle the intrinsic temporal evolution of a pandemic due to124

the specific characteristics of a country from climate modulations that may potentially impact it. This is a challenging125

exercise for a country in isolation. In the absence of a reliable overarching model, potential seasonality effects driven126

by regional temperature and humidity need to be extracted iteratively by means of a global analysis that later could be127

feed into a more localised scrutiny of the pandemic.128

Should significant temperature and humidity gradients be impacting the dynamics of the pandemic at the macro-129

scopic level, variations should be observed in a global and regional analysis of the data. In order to probe these130

potential gradients one has to compare epidemiological indexes in groups of countries that are at similar stages of the131

temporal evolution of the pandemic. This can be achieved by comparing infection rates as a function of the stringency132

index of the NPIs.133

Most of the countries that have undergone the first gave went through at least three stages. Following the establish-134

ment of community transmission, a first stage in the pandemic is characterised by relatively large infection rates. At135

this point NPIs are not stringent or not sufficiently adhered to by the population. This state is referred to here as loose136
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Countries with > 5000 Cases No Split Loose Control Tight Control
Asia 18 1695 348 248
Africa 8 651 72 126
Europe 25 2124 411 336
North America 6 493 56 84
South America 7 572 51 98
Oceania 1 99 29 14
Global 65 5634 967 906
USA 22* 1617 541 595

*States with more than 2000 cases.

Table 2: Number of data points for each of the three cases considered in this study.

control. At this stage, the cumulative distribution of cases can be approximated by a single exponential. A second137

stage follows, where stringent NPIs are enforced. These measures are referred to here as tight control. The growth of138

cases decelerates, where the pandemic reaches an apex. The infection rates decrease more or less monotonically and,139

in many cases, the reproductive number drops below unity. Finally, a third stage follows, where Governments release140

lockdown measures more or less gradually with different levels of success.141

As discussed in Section 1, an attempt is made here to avoid picking up false temperature and humidity gradients142

when comparing infection rates in countries or groups of countries that happen to be at different stages of the pan-143

demic. A first iteration is performed here by evaluating temperature and humidity gradients in groups of countries144

that display ”loose” or ”tight” NPI control. This approach is effective as long the data displays sufficiently large dif-145

ferentials of temperature and humidity. In this light the data from the States of the US is an interest showcase, where146

progression of the pandemic displayed strong commonalities in the backdrop of large temperature and humidity dif-147

ferentials, e.g. the Midwest versus Florida and Arizona.148

Given the differentials present in the data (see Section 4), this first iteration should be able to pick up gradients149

greater or comparable to 10−2. In order to refine the measurement of the gradient an approach more sophisticated than150

the discrete classification adopted here. For this purpose, parametric corrections would need to be implemented in the151

data to account for the stringency and the efficiency of the NPIs.152

3.3. Data collection and processing153

The study is done at the global level starting from January 24th 2020 up to June 1st 2020. The United States154

of America is considered separately because the stringency index is not available in the OxCGRT data base. The155

stringency index for the different states of the US is computed by the authors (see Section 2). This is done for the156

period January 25th 2020 to April 14th, 2020.157

The epidemiological data was collected from the Johns Hopkins University data repository which contains the158

global daily updates of the total cases, number of death and recovery cases [27]. In our study we focus on three cases.159

For the first case we consider all countries with more than 5000 total cases and US States with more than 2000 total160

cases. This is enforced in order to ensure that the epidemiological parameters be stable, as these are calculated on a161

daily basis.162

For the second case, which is called loose control, we look at points where infection rate is not 0 and the stringency163

index is less than 50; lastly we have the tight control data sample, which focuses on the the period that starts two weeks164

after the maximum stringency index is achieved.165

Table 2 shows the of countries with more than 5000 cases and US States with more than 2000. The number of166

data points before and after splitting into loose and tight NPI control are also given in Table 2.1167

3.4. Temperature and Relative Humidity168

The Integrated Surface Database (ISD) belonging to the National Oceanic and Atmospheric Administration (NOAA)169

consists of hourly and synoptic observations from over 35 000 stations worldwide [28]. These stations are identified170

1A data point is defined a vector of epidemiological parameters such that the estimated infection rate is not equal to zero. Data points are
estimated on a daily basis.
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Figure 3: Maps of temperature (left) and relative humidity (right). Top plots depict global map, with USA being the bottom. Data correspond to
June 1st 2020.

by 11 character code made up of USAF (U.S. Air Force) and WBAN (Weather-Bureau-Army-Navy) fixed weather171

station identifiers in the database. The database contains different climate change parameters such as temperature, dew172

point, wind speed and sea level pressure, amongst others. Relevant data for this study, dew point, Td, and temperature,173

T , both measured in tenths of degrees Celsius (◦C) was extracted using station identifiers and averaged per specific174

regions or countries [29]. The former indicates the quantity of moisture in the air whilst the latter indicate the air175

temperature. Other variables, such as saturated vapor pressure which measures the pressure applied by air mixed with176

water vapor [30], actual vapor pressure which measures the water vapor in a volume of air [31] and relative humidity177

are computed.178

Vapor pressure (E) is calculated using temperature using the expression:179

E(hPa) = 6.11 × e( 7.5×T
237.3+T ). (9)

Saturated vapor pressure (Es) uses the dew point with:180

Es(hPa) = 6.11 × e( 7.5×Td
237.3+Td

). (10)

Here we use the relative humidity. This is given by the ratio of the two pressures and is measured in percentage:181

RH =
E
Es
× 100% (11)

Figure 3 shows the global and USA maps with daily temperatures (left) and relative humidity (right) for June 1st
182

2020.183

4. Results and Discussion184

The graphs in Figure 4 show the regression analysis of the transmission rate against temperature (top row ) and185

relative humidity (bottom row) for the overall global data set discussed in Section 3. Results are shown for all three186
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Figure 4: Regression analysis for relative humidity (top graphs) and temperature (bottom graphs) using global data, as detailed in Section 3. Results
are shown for the full data set (left), loose control (centre) and tight control (right).

cases we have considered: the full data set, loose and tight controls, respectively. One appreciates the wide span187

of temperatures and relative humidity displayed by the data sample used here. The differential in relative humidity188

ranges from 90% to 80% for the full data set and the tight control sample, respectively. The corresponding differentials189

for temperature are 50 ◦C and 44 ◦C, respectively. Temperatures remain in the range between -15 ◦C and 40 ◦C. The190

differentials displayed in the data are sufficiently large to pick up gradients down to 10−2. For this purpose a regression191

analysis is performed with a first order polynomial of temperature and relative humidity. The available data does not192

seem to indicate that more complex functional forms are required. Statistical error propagation for the epidemiological193

parameters is performed.194

Tables 3 and 4 report the result of the regression analysis for the temperature and relative humidity analyses,195

respectively. Results are given in terms of central values and the 68% Confidence Intervals. The compatibility with196

the zero-gradient (absence of gradient) hypothesis is evaluated by means of a p-value analysis. Results from the global197

analysis indicate that the gradients are below 10−3 and that results are compatible with the zero-gradient hypothesis198

with a probability of better than 15%. These results indicate that the correlation between temperature and relative199

humidity with infection rates is weak.200

The analysis is also performed for various continents, where the American continent is split into North, USA and201

South America. Results are also given in Tables 3 and 4 for temperature and relative humidity, respectively. In few202

instances the compatibility of the observed result with the zero-gradient hypothesis falls below 0.1%. However, this203

level of disagreement with the zero-gradient hypothesis is not observed consistently across the three data sets for any204

of the geographical regions considered here.205

In the absence of conclusive evidence of temperature or humidity gradients in the data, upper limits on the absolute206

value of the gradients are set. These are set using the global data set with the tight control requirement. This choice207

yields more conservative limits compared to other data sets. This procedure yields 6·10−3 ◦C−1 and 3.3·10−3 (%)−1
208

upper limits on the absolute values of the temperature and relative humidity gradients, respectively, with a 95%209

Confidence Level.210

The procedure followed here (see Section 3) is intended to capture the leading terms in the underlying dynamics211

driven by temperature or humidity. These terms appear small and seem compatible with the intrinsic uncertainties212

derived from reporting and epidemiological parameters. Given that the size of the terms are below the threshold of the213

analysis sensitivity, further implementation of more sophisticated functional forms of multi-dimensional approaches214

are not warranted here.215

It is relevant to note that the weak correlation between temperature and humidity with the infection rate is observed216

in the full data set, even before the classification according to the severity of the NPIs is implemented. This seems to217
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Full Data Loose Control Tight Control

Gradient (◦C−1) p-value Gradient (◦C−1) p-value Gradient (◦C−1) p-value

Asia 2.17 · 10−3 ± 4.31 · 10−4 < 0.001 −4.17 · 10−3 ± 2.79 · 10−3 0.136 1.70 · 10−3 ± 1.38 · 10−3 0.218
Africa −1.37 · 10−3 ± 5.61 · 10−4 0.014 3.52 · 10−3 ± 2.90 · 10−3 0.226 −1.45 · 10−3 ± 1.83 · 10−3 0.427
Europe −1.60 · 10−3 ± 1.91 · 10−3 0.402 −9.96 · 10−4 ± 1.81 · 10−3 0.581 −3.00 · 10−3 ± 4.52 · 10−3 0.511
North America 3.80 · 10−4 ± 5.98 · 10−4 0.525 4.33 · 10−3 ± 5.67 · 10−4 < 0.001 −1.32 · 10−3 ± 5.04 · 10−4 0.008
South America −3.51 · 10−3 ± 5.48 · 10−3 0.005 −1.97 · 10−2 ± 2.78 · 10−3 < 0.001 −1.87 · 10−3 ± 4.06 · 10−3 0.644
Oceania 1.49 · 10−3 ± 1.10 · 10−3 0.177 −2.94 · 10−2 ± 7.08 · 10−3 < 0.001 1.55 · 10−3 ± 2.39 · 10−3 0.516
USA −5.75 · 10−4 ± 2.51 · 10−3 0.819 2.32 · 10−3 ± 2.92 · 10−3 0.427 −2.22 · 10−3 ± 3.70 · 10−3 0.548
Global 8.32 · 10−4 ± 1.63 · 10−3 0.607 −7.45 · 10−4 ± 1.39 · 10−3 0.593 3.96 · 10−5 ± 3.00 · 10−3 0.989

Table 3: Temperature gradients with 68% Confidence Intervals and p-values for the zero-gradient hypothesis (see text).

Full Data Loose Control Tight Control

Gradient (%−1) p-value Gradient (%−1) p-value Gradient (%−1) p-value

Asia −2.71 · 10−4 ± 6.15 · 10−4 0.660 −1.17 · 10−3 ± 6.49 · 10−4 0.070 −5.66 · 10−4 ± 5.59 · 10−4 0.312
Africa −3.80 · 10−4 ± 1.57 · 10−4 0.016 −3.17 · 10−3 ± 7.90 · 10−4 < 0.001 −5.56 · 10−4 ± 6.19 · 10−4 0.370
Europe −8.08 · 10−4 ± 5.72 · 10−4 0.158 −2.33 · 10−4 ± 7.08 · 10−4 0.742 −8.64 · 10−4 ± 1.96 · 10−3 0.659
North America −1.12 · 10−3 ± 7.35 · 10−4 0.095 −4.96 · 10−3 ± 1.35 · 10−3 < 0.001 −2.34 · 10−3 ± 1.27 · 10−3 0.067
South America −3.35 · 10−3 ± 2.35 · 10−3 0.155 −6.97 · 10−3 ± 2.11 · 10−3 < 0.001 3.19 · 10−3 ± 3.52 · 10−3 0.365
Oceania 1.31 · 10−3 ± 5.16 · 10−4 0.011 −3.57 · 10−3 ± 1.65 · 10−3 0.030 1.87 · 10−3 ± 5.81 · 10−4 0.001
USA 4.96 · 10−4 ± 3.71 · 10−3 0.894 6.86 · 10−3 ± 4.46 · 10−3 0.124 −2.24 · 10−3 ± 5.63 · 10−3 0.691
Global −8.47 · 10−4 ± 5.96 · 10−4 0.155 −4.40 · 10−4 ± 6.22 · 10−4 0.480 −4.04 · 10−4 ± 1.65 · 10−3 0.807

Table 4: Relative Humidity gradients with 68% Confidence Intervals and p-values for the zero-gradient hypothesis (see text).

indicate that the size of the geographical footprint could play a significant role in removing biases. These biases could218

have been responsible for apparent gradients observed in studies performed with smaller data sets collected at earlier219

stages of the global pandemic.220

5. Conclusions221

Here we evaluate potential temperature and humidity impact on the infection rate of COVID-19. The data set used222

here comprises a large geographical footprint of data up to June 10th 2020. This period covers the ”first wave” of the223

pandemic in a large number of countries.224

Our analysis indicates that it is critical to evaluate temperature and humidity gradients in different countries or225

regions at similar stages of the pandemic in order to avoid picking up false gradients. The degree of severity of NPI226

policy is found to be a good measure of the progression of the pandemic in a given country. As a result, data points227

are classified according to the stringency index of the NPIs in order to ensure that comparisons are made on equal228

footing.229

We find that temperature and relative humidity gradients do not significantly deviate from the zero-gradient hy-230

pothesis. This implies that changes in temperature and relative humidity do not seem to have an effect on the value231

of the transmission rate or there is a small correlation between the transmission rate and temperature and relative232

humidity. Our results seem to be in agreement with other studies that has concluded that there is no evidence as to233

whether the spread of the COVID-19 is temperature dependent [16, 17, 18, 32].234

In the absence of conclusive evidence of temperature or humidity gradients in the data, upper limits on the absolute235

value of the gradients are set. The procedure chosen here yields 6·10−3 ◦C−1 and 3.3·10−3 (%)−1 upper limits on the236

absolute values of the temperature and relative humidity gradients, respectively, with a 95% Confidence Level.237

The results obtained here speak to the absence of significant macroscopic temperature or humidity gradients.238

However, these results do not preclude the existence of seasonality effects in infection rates. It indicates that seasonal239

effects are likely to be nuanced and should not be reduced to temperature or humidity differentials.240
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