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Abstract 

Background: 

Multiple sclerosis (MS) disease risk is associated with reduced sun exposure. This study assessed the 

relationship between measures of sun-exposure (vitamin D (vitD), latitude) and MS disease severity, 

the mechanisms of action, and effect-modification by medication and sun-sensitivity associated MC1R 

variants. 

Methods: 

Two multi-center cohort studies (nNationMS=946, nBIONAT=991). Outcomes were the multiple sclerosis 

severity score (MSSS) and the number of Gd-enhancing lesion (GELs). RNAseq of four immune cell 

populations before and after UV-phototherapy of five MS patients. 

Results: 

High serum vitD was associated with reduced MSSS (PNationMS=0.021; PBIONAT=0.007) and reduced risk 

for disease aggravation (PNationMS=0.032). Low latitude was associated with higher vitD, lower MSSS 

(PNationMS=0.018), fewer GELs (PNationMS=0.030) and reduced risk for aggravation (PNationMS=0.044). The 

influence of latitude on disability seemed to be lacking in the subgroup of interferon-β treated patients 

(interaction-PBIONAT=0.042, interaction-PNationMS=0.053). In genetic analyses, for carriers of 

MC1R:rs1805008(T), who reported increased sensitivity towards sunlight (PNationMS=0.038), the 

relationship between latitude und the number of GELs was inversed (PNationMS=0.001). Phototherapy 

induced a vitD and type I interferon signature that was most apparent in the transcriptome of 

monocytes (P=1×10-6).  

Conclusion: 

VitD is associated with reduced MS severity and disease aggravation. This is likely driven by sun-

exposure, as latitude also correlated with disability and serum vitD. However, sun-exposure might be 

detrimental for sun-sensitive patients. A direct induction of type I interferons through sun-exposure 

could explain a reduced effect of latitude in interferon-β treated patients. This could also explain 

opposite effects of sun-exposure in MS and the type I interferon and sun-sensitivity-associated 

disease Lupus. 
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Introduction 

Multiple sclerosis (MS), characterized by demyelinating lesions, is the most common 

neuroinflammatory disease of the central nervous system and presumably of autoimmune origin (1). In 

most cases, the disease is diagnosed at a young age, predominantly occurs in women, and follows a 

relapsing-remitting course, which can be superseded by a secondary, progressive stage (2). 

Treatment options include interferon-β (IFN-β) (a type I interferon normally involved in the defense 

against viral infections), monoclonal antibodies against leukocyte migration-mediating adhesion 

molecules, and other immunomodulatory drugs (3). Etiologically, environmental factors have been 

shown to play an important role (4) and insufficient sunlight exposure has been suspected to be critical 

for the initial development of MS (5). The best characterized mediator of ultraviolet radiation (UVR)-

dependent effects is vitamin D (vitD), that is generated from its precursor 7-dehydrocholesterole in the 

skin, further metabolized in the liver and in the kidney, and that exerts its function in its active form 1-

α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), also known as calcitriol (6). Precursors of active vitD can 

also be found in food in the form of ergocalciferol (or vitamin D2), which is however of little relevance 

for total vitD serum levels (7). For MS, low vitD levels have been shown to be associated with disease 

risk (8) and mendelian randomization studies hint towards a causal role for vitD (9, 10). However, it is 

possible that alternative ultraviolet radiation dependent pathways play a role, as well (11). 

Furthermore, it is still a topic of debate whether UVR-/vitD only modulate disease risk, or if disease 

severity is affected, as well. In mouse models, UVR was shown to ameliorate disease severity (12). 

Human observational studies suggested an influence of vitD on disease activity (13, 14) and 

prospective trials also suggested an effect on the formation of lesions, but the primary endpoints of 

supplementation studies have not been met so far, raising doubt about the role of vitD (15-17). It has 

also been argued that reverse causation could influence the results from observational studies, i. e. 

low vitamin D could be caused by disease activity rather than vice versa (5). Reports on the effect of 

latitude (which can be regarded as an independent measure of sun-exposure) on disease severity are 

scarce and could either not identify any effects or showed contradictory effects (18, 19). Recently, 

studies also suggested vitD-independent effects of UVR in MS (20, 21). Besides the assumed main 

effects of UVR/vitD on MS severity, there might be factors that could alter the effects of UVR-/vitD. 

Medication - especially IFN-β therapy - has been suggested to modulate vitD-production, and the 
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correlation between vitD and disease activity has been shown to disappear after IFN-β treatment-

onset (22, 23). Another potentially modifying factor of UVR-effects is the melanocortin 1 receptor 

(MC1R). The MC1R is responsible for melanin synthesis upon UVR exposure and carrying loss of 

function variants results in a red hair and fair skin phenotype with increased sun-sensitivity (24, 25). 

The MC1R is also known to confer immunosuppressive effects and functional signaling ameliorates 

disease course in mouse models of MS (26). Moreover, the MC1R agonist adrenocorticotropic 

hormone (ACTH) is used to treat disease exacerbations in MS and part of the effect of ACTH could be 

mediated through MC1R (27). Therefore, the MC1R could be modifier of UVR-effects in MS. 

This study aims to provide a better understanding of the effects of UVR/vitD on MS severity, to dissect 

the mechanistic network involved in this, and to deduce the role of modulatory factors like medication 

& sun-sensitivity associated genotypes. In the setting of two large, independent multicenter studies the 

effects of the sun-exposure measures vitD and latitude on disease severity were investigated. To 

assess the role of further mechanistic pathways in mediating-/modifying UVR or vitD effects, 

interactions between sun-exposure measures and either medication or MC1R genotype were 

assessed. Finally, in an unbiased approach the UVB-induced transcriptomic changes in immune cells 

of MS patients from our 2014 pilot study were assessed, illuminating the pathways triggered by UVR. 
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Methods 

Patients 

Data from the NationMS cohort, a prospective multicenter observational study, were used. In total, 

clinical data of 946 clinically isolated syndrome (CIS) / relapsing remitting multiple sclerosis patients 

(RRMS) recruited between 2010-2017 in 21 centers in Germany, were obtained (28). Patients were 

followed up and longitudinal data is available for 798 patients (Fig. 1). Included were patients with age 

≥ 18, who were diagnosed with either clinically isolated syndrome with fulfillment of three Barkhof 

criteria or confirmed relapsing remitting MS according to revised 2005 McDonald criteria. All patients 

were treatment-naïve at baseline with onset of symptoms no longer than 2 years before inclusion. The 

study was approved by the lead ethics committee (Ethik-Kommission der Ruhr-Universität Bochum, 

registration number: 3714-10) and all local committees. Informed written consent was obtained from all 

participants and the study was performed according to the Declaration of Helsinki. For replication, data 

of 990 patients from the BIONAT cohort (Study identifier: NCT00942214), a French, multicenter, 

cohort, at their baseline assessment, were acquired (29). BIONAT patients were not treatment-naïve 

before inclusion. Study investigators for NationMS and BIONAT can be found in the supplementary 

material. For RNA sequencing, peripheral blood mononuclear cell samples (PBMC) of five patients 

from our 2014 pilot study were used (12). 

Genotyping and estimation of population stratification 

Genotyping and quality control was performed as previously published (30, 31). Briefly, genotyping 

was performed using an Illumina OmniExpress chip and quality control (QC) was performed in PLINK 

v1.90. Genotypes for the most common MC1R variants were extracted (rs1805008:C>T, 

rs885479:G>A, rs2228479:G>A), and population stratification was calculated by multidimensional 

scaling (MDS) as previously published (30).  

Serum vitamin D measurements 

For NationMS, vitamin D was measured as the serum level of 25(OH)D3. Measurement was 

performed in NationMS for n=761 patients with a commercially available kit for liquid chromatography-

mass spectrometry (LC-MS/MS) (Recipe, Munich, Germany) on a Shimadzu 8040 LC–MS/MS 

instrument coupled to a UHPLC system (Nexera, Shimadzu). For BIONAT, total 25(OH)D2+3 
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measurements were available for 579 patients. Total vitD has been measured using a commercially 

available electro-chemiluminescence competitive 25-hydroxyvitamin D binding assay (Cobas, Roche), 

and quantified on a Roche Cobas 8000 e602 analyzer (Roche Diagnostics, Mannheim, Germany). As 

food-derived vitD2 only contributes little to total serum vitD levels, there are only minimal differences 

between total vitD and vitD3 serum levels. 

Questionnaire on skin type 

Two hundred twenty-nine patients of the NationMS cohort were asked to report their skins potential 

reaction to sunlight at noon for one hour without the use of sunscreen in summer. Possible answers 

were ‘Tan’, ‘Sunburn with a delayed tan’, ‘Sunburn without tan and without blisters’ and ‘Sunburn 

without tan and with blisters’. Patients were asked to report skin reddening, a feeling of heat and 

itching after 12-24 hours as a sunburn, and liquid-filled skin alterations with a diameter ≥5 mm as 

blisters. The resulting variable was treated as ordinal. 

Disease severity outcomes 

The multiple sclerosis severity score (MSSS) according to Roxburgh (32) was used as the primary 

measure of disability in both cohorts. Additionally, for the NationMS cohort, magnetic resonance 

imaging (MRI) was carried out according to standardized protocols (33) and assessed for gadolinium 

(Gd)-enhancing lesions in T1-weighted images. Electromagnetic Field strength was 3 Tesla across all 

centers and evaluation was carried out at each site separately by certified neuro-radiologists. To 

assess disability accumulation over time in the NationMS cohort, the change in the expanded disability 

status scale (EDSS) was assessed between follow up 2 (T2, 2 years from baseline) and baseline visit. 

Furthermore, relapses during the course of the study were recorded. 

Statistical analysis 

The MSSS was modelled as a continuous variable and the influence of the UVR-exposure-measures, 

latitude and vitD levels, was assessed using linear models. In the NationMS cohort these analyses were 

adjusted for age, sex, body mass index (BMI, weight/height²), smoking (yes/no), alcohol (yes/no), month 

of assessment (treated as a categorical variable with 12 factor-levels), clinical subtype (CIS or RRMS) 

and the site/symptom of first disease manifestation (categorical). A random intercept was used to adjust 

for center variability, which was omitted when assessing the influence of latitude (latitude is intrinsic to 
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the variability between centers and inclusion would lead to unresolvable multi-collinearity). For the 

BIONAT cohort, these analyses were adjusted for age, sex, month of assessment, site/symptom of first 

manifestation, and prior medication (other covariates not available for BIONAT). Center variability was 

treated as in the NationMS cohort. For BIONAT, also the interaction of vitD /-or latitude and prior 

treatment was tested, followed by subgroup analyses to obtain subgroup specific estimates. The number 

of Gd-enhancing lesions in NationMS was modelled using a zero-inflated negative binomial-model to 

account for overdispersion. Confounder-adjustment was done as in the linear model. Plots for Gd-

enhancing lesions include a left y-axis, showing the observed number of lesions, and a right y-axis, 

showing the mean number of lesions over x. The influence of the MC1R genotype on skin reaction to 

sun exposure was modelled using cumulative link models (CLMs, ‘ordinal regression’) and adjusted for 

age, sex, BMI, alcohol consumption, smoking, population stratification (first three MDS components). 

To assess whether MC1R genotype modifies the effect of UVR exposure on severity, an interaction-

term between MC1R genotype and measures of sun-exposure (latitude or vitD) was added to the models 

for disease severity and adjusted as the prior models for disease severity plus population stratification. 

To assess the influence of vitD and latitude on the risk for relapses in the NationMS cohort, (mixed 

effects-) cox-regression was performed and adjusted as the baseline models for disease severity plus 

medication after baseline (therapy was initiated after baseline visit). The difference between the EDSS 

two years after baseline and the baseline EDSS was calculated and declared as ΔEDSS. The ΔEDSS 

was modelled using linear and linear mixed models and adjusted as the baseline model plus the type of 

medication initiated after baseline visit. Additionally, the models were adjusted for the number of lesions 

and the EDSS at baseline to account for differences in baseline severity. Model fit was assessed by 

inspection of scaled quantile residuals (34). Model coefficients, confidence intervals and P-values were 

reported from fully adjusted models with significance threshold of α = 0.05 using two-sided tests. Genetic 

analyses of the MC1R genotype that were not of confirmatory nature (i. e., assessing disease severity 

and not skin reaction), were assessed for genome-wide significance (α = 5×10-8).  

RNA sequencing analysis 

RNA-sequencing (RNAseq) was performed using samples of five patients from our 2014 pilot study 

(35). Frozen PBMC samples from before and after six weeks of phototherapy (ten samples in total) 

were thawed and stained for CD3, CD4, CD8, CD14, CD19 and CD56 (all antibodies from Biolegend). 

Viable cells were identified by forward and sideward scatter characteristics. T-cell subsets were 
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identified as CD56-CD3+ cells being either CD4+CD8- or CD8+CD4- cells. B-cells were identified as 

CD3-CD56-CD14-CD19+, and monocytes were identified as CD3-CD19-CD56-CD14+ cells. Cells 

were sorted on a FACS Aria III machine and subjected to RNA isolation. RNA sequencing was 

performed on an Illumina NextSeq 500. QC was done using FastQC and read quantification was done 

in Kallisto (36). Differential gene expression analysis was performed using the quasi-likelihood 

approach in edgeR (37). To test the enrichment of the vitD- and type I interferon-associated genes, 

distribution-free permutation tests were performed (38). Due to the limited sample size and the 

exploratory nature of this part of the study, genes with P-values < 0.05 were used for enrichment tests. 

Genes associated with the respective pathways were extracted from wikipathways (39), collapsing the 

quality approved gene-/protein lists from the pathways ‘Vitamin D receptor-pathway’ (WP2877) and 

‘Non-genomic effects of vitamin D’ (WP4341) to generate a reference set of vitD-associated genes. 

For the type I interferon pathway, the gene-/protein lists from the ‘Type I interferon signaling pathway’ 

(WP585) and the ‘DDX58/IFIH1-mediated induction of interferon-alpha/beta’-pathway (WP1904) were 

collapsed to generate a reference set of type I interferon-associated genes. For permutation tests, the 

overlap of genes regulated by phototherapy (P<0.05) for each respective cell type with the reference 

gene-set was calculated. Next, random samples of the same size as the list of genes with P<0.05 

were taken from the list of all genes expressed by the respective cell type, and the overlap with the 

reference gene-set was calculated. To obtain a P-value the random sampling was repeated 100,000 

times and the number of occasions when randomly sampled genes overlapped equally or more than 

the test-set with the reference sets was divided by the number of permutations (n=100,000) (38).   

Software 

Statistical analyses were conducted in R v3.6.0 using the packages stats, lme4, glmmTMB, ordinal 

and DHARMa. To extract and process data from NASA’s OMI dataset the package RNetCDF was 

used. The remaining data were manipulated and plotted using the R packages tidyR, ggplot2 and 

RColorBrewer. For population stratification estimation, PLINK v1.90b5.2 was used. For analysis of 

RNAseq data, Kallisto and edgeR were used. For pathway extraction from wikipathways the package 

rWikiPathways was used. 

Data availability 
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Data and R code is available from the authors upon reasonable request. Full results from RNAseq can 

be found in the supplementary material.  
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Results 

Cohort Characteristics 

For the NationMS cohort, data of 946 treatment-naïve patients at baseline with CIS or RRMS were 

acquired (duration < 2 years). The study procedure is shown in (Fig. 1). Baseline characteristics are 

described in Table 1. Genotyping for MC1R was successful and passed QC for 883 (97.25%) patients 

of the 908 patients that had full demographic and clinical information available. The most common MC1R 

variant allele was rs1805008:T (n=148/883, 16.76% with ≥ 1 risk allele, minor allele frequency 

(MAF)=8.60%), followed by rs2228479:A (n=140/883, 15.86% with ≥ 1 risk allele, MAF=8.10%), and 

rs885479:A (n=76/883, 8.61% with ≥ 1 risk allele, MAF=4.42%). Patients were subjected to regular 

follow-ups. In total, 798 patients were longitudinally followed (Fig. 1). Of these, 155 (19.42%) patients 

remained untreated after baseline assessment while 643 (80.58%) received treatment. The most 

prescribed medication was IFN-β (n=359, 44.99 %) (Table 2). Moreover, 355 patients (44.49%) reported 

a relapse in the time after baseline assessment with a mean time to relapse of 360.34 (SD=359.55) 

days. For another 671 patients, disability was assessed two years after baseline, and 156 patients 

(22.38%) had an increase of at least one point on the EDSS.  

For the BIONAT cohort, data of 990 MS patients at their baseline assessment were acquired (Fig. 1). 

Full information on demographics, clinical subtype, medication and MSSS was available for 808 

(81.62%). Most patients had already received therapy before the baseline assessment. The most 

prescribed medication was IFN-β (59.77%) (Table 2).  

Characteristics of the five patients treated with UVB-phototherapy were previously published (12). Two 

of the patients were treated with IFN-β, one with GA, one with Natalizumab and one had not received 

any treatment. 

Low vitamin D levels and high latitude are associated with clinical disease severity  

Based on the available evidence before start of the study, the association between latitude, vitD and 

clinical severity was assessed (Fig. 2). In the NationMS cohort vitD levels were associated with lower 

disability, as assessed by the MSSS (β=-0.014, 95% Confidence interval (CI)=[-0.026 to -0.002], 

P=0.021). Higher latitude (corresponding to lower sun exposure) was associated with worse MSSS 

scores in the NationMS cohort (β=0.092, 95% CI=[-0.016 to 0.168], P=0.018) (Fig 2 A). The risk for 
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Gd-enhancing lesions increased by 8.31% for every one degree increase in latitude (RR=1.08, 95% 

CI=[1.01 to 1.16], P=0.030) (Fig. 2 B). Connecting these two results, lower latitude was expectedly 

associated with higher vitD levels (β=-0.56, 95% CI=[-1.030 to -0.090]) (Supplementary Fig. 1).  

The effect of latitude is absent in patients treated with Interferon-β 

The hypotheses were then also tested in the BIONAT cohort. Here, higher vitD levels showed an 

association with lower disability, as well (β=-0.022, 95% CI=[-0.037 to -0.007], P=0.007) (Fig. 2 C). 

However, in contrast to the results from the NationMS cohort, there was no clear trend for an effect of 

latitude on the MSSS (β=-0.004, 95% CI=[-0.076 to 0.068], P=0.913). As not all BIONAT patients were 

therapy-naïve at baseline and IFN-β therapy has been shown to cloud the effects of vitD, it was 

hypothesized that the missing effect of latitude could also be due to confounding by IFN-β therapy 

(40). Interaction-analyses indeed showed that the effect of latitude on disability was significantly 

different depending on IFN-β treatment status (β=0.145, 95% CI[0.005 to 0.283], interaction-P=0.042), 

and subsequent subgroup analyses confirmed that higher latitude was associated with increased 

MSSS in patients whose last medication was not IFN-β (β=0.115, 95% CI[0.001 to 0.227], P=0.047), 

while patients treated with IFN-β did not show this effect (β=-0.048, 95% CI[-0.141 to 0.045], P=0.310) 

(Fig. 2 D). Consistent with the results from the NationMS cohort, also in the BIONAT cohort lower 

latitude was associated with higher vitD levels (β=-0.44, 95% CI=[-0.87 to -0.018], P=0.041), and in 

line with previous reports IFN-β-treated patients had higher vitD levels than therapy-naïve patients 

(β=4.020, 95% CI[0.450 to 7.560], P=0.031) (Supplementary Fig. 1) (22). 

High Vitamin D and low latitude are associated with reduced risk for relapses and disability 

accumulation 

To further test the predictive capacity of vitD and latitude with regard to disease burden accumulation, 

data on confirmed relapses after baseline in the NationMS cohort were assessed (Fig. 3). In a mixed 

effects cox regression vitD (treated as continuous variable) reduced the risk for a relapse by 1% for 

every 1 ng/mL of serum vitD (hazard ratio (HR)=0.99, 95% CI=[0.978 to 0.999], P=0.044). For the 

purpose of visualization vitD was grouped into three categories: 1) the 20% of patients with the highest 

vitD levels (≥30.31 ng/mL); 2) the 20% of patients with the lowest vitD levels (≥10.86 ng/mL); and 3) 

the patients in-between (Fig. 3 A). This categorization is also close to common definitions of optimal 

(≥30 ng/mL) and deficient (<10 ng/mL) vitD levels (41, 42). Furthermore, baseline vitD was inversely 
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associated with a lower ΔEDSS (β=-0.010, 95% CI=[-0.019 to -0.001], P=0.031) (Fig. 3 B). Latitude 

showed no significant effect on the risk for relapses in an unstratified analysis (Fig. 3 C). If stratified by 

medication as in the BIONAT cohort, patients at lower latitudes trended towards a lower risk for 

relapses when they were untreated or received GA (HR=0.937, 95% CI[0.835-1.042], P=0.22), while 

there was no clear trend for IFN-β treated patients (HR=0.964, 95% CI[0.881-1.055], P=0.427)  (Fig. 3 

D+E). Regarding changes in disability, lower latitude was associated with a lower ΔEDSS (β=0.67, 

95% CI=[0.013 to 0.124], P=0.017) and if stratified by medication, the effect seemed to be stronger in 

patients who were not treated with IFN-β (Naïve-/GA-subgroup: β=0.124, 95% CI=[0.004 to 0.244], 

P=0.043; IFN-β-subgroup: β=0.024, 95% CI=[-0.058 to 0.107], P=0.556), although this was of 

borderline-significance (interaction-P=0.053) (Fig. 3 F-H). 

Sun-sensitivity-associated MC1R missense variants might modify UVR-mediated effects 

MC1R missense variants strongly increase an individual’s sensitivity to UVR and could, therefore, 

modify the beneficial effect of UVR on MS disease severity. First, the previously described influence of 

MC1R genotype on sun sensitivity was confirmed using ordinal regression (Fig. 4 A-C). Whereas there 

was no statistically significant effect for the low-penetrance variants rs885479 (OR=2.05, 95% 

CI=[0.764 to 5.541], P=0.153) and rs2228479 (OR=0.97, 95% CI=[0.492 to 1.911], P=0.936), the T 

allele of the high-penetrance variant rs1805008 increased the odds for a severe reaction to sunlight by 

91.5% (OR=1.92, 95% CI=[1.040 to 3.560], P=0.038) (Fig. 4 A). Next, as rs1805008:T carriers 

reported severe reactions to sunlight, the effect of an interaction-term between measures of sun 

exposure (latitude, vitD) and rs1805008 on clinical severity was assessed (at baseline). No significant 

interactions were found regarding the MSSS (Fig. 4 D). The interaction term of rs1805008:T and 

latitude was nominally significant in the analysis of Gd-enhancing lesions (interaction-P=0.001). In 

subgroup analyses for carriers of rs1805008:T, the risk for Gd-enhancing lesions increased by 20.5% 

for every 1° decrease in latitude (RR=1.21, 95% CI=[1.010 to 1.437], P=0.034), while it was reduced 

by 11.6% in non-carriers for every 1° decrease in latitude (RR=0.88, 95% CI=[0.808 to 0.947], 

P=9.2×10-4) (Fig. 4 E). Both subgroup analyses were nominally significant. Inconsistencies between 

read-outs might be due missing correlation between Gd-enhancing lesions and the MSSS (ρ=0.03, 

P=0.33). No interaction between rs1805008:T and vitD levels regarding Gd-enhancing lesions was 

found, though (RR=1.00, 95% CI=[0.968 to 1.137], P=0.825). 

The type I interferon pathway is upregulated upon UVB phototherapy in MS patients 
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As it is unclear which molecular pathways mediate the beneficial effects of UVR in MS, PBMC 

samples of five UVB-treated MS patients from our 2014 pilot study were FACsorted for CD4 T-cells, 

CD8 T-cells, monocytes and B-cells, and subjected to RNAseq analysis (Fig. 5 A). For CD4 T-cells 

there were 268 genes that were regulated with P<0.05; 524 genes for CD8 T-cells, 411 genes for 

monocytes, and 407 genes for B-cells. Among these were previously described markers of vitD 

signaling, e. g. VDR (CD4 T-cells), NR4A2, NR4A3 (CD4-, CD8 T-cells and monocytes) and CD14 

(monocytes) (Fig. 5 B-E). Furthermore, a first visual inspection suggested an enrichment of genes 

belonging to the type I interferon-family, including IFITM1, IFITM2, IFITM3, MX1, IRF8, IRF7, IFI44L, 

IFIT2 and IFIT3, and this was most apparent in monocytes (Fig. 5 B-E). Regulation of exemplary 

genes for both pathways are plotted in Figure 5 (Fig. 5 F-I). A downregulation of the Aryl-hydrocarbon 

receptor-associated genes AHR and TIPARP was observed, as well. Next, to check whether the vitD- 

and the type I interferon-pathway were significantly enriched, permutation tests using reference gene-

sets from wikipathways were performed. A significant enrichment of vitD-associated genes was found 

in CD8 T-cells (gene ratio (GR)= 0.108, P=0.002), monocytes (GR=0.079, P=0.018), and B-cells 

(GR=0.114, P=1×10-4). Furthermore, type I interferon-pathway-associated genes were significantly 

enriched in CD8 T-cells (GR=0.101, P=0.018), monocytes (GR=0.156, P=1×10-6), and B-cells 

(GR=0.083, P=0.027) (Fig. 5 J-M). 
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Discussion 

Low exposure to UVR and low vitD levels have been associated with the development of MS (5). It is 

still a topic of debate though, whether UVR, vitD and/or other UVR-dependent pathways, have an 

influence on disease severity and -worsening over time, as well. Most work has focused on vitD and 

only few studies investigated alternative UVR-mediated pathways. In the current study, data of two 

large, independent multicenter cohorts was used to test the association of latitude and vitD with MS 

disease severity. In this regard, modification of UVR-dependent effects by medication and sun-

sensitivity-associated MC1R missense alleles was investigated, as well. To explore by which 

mechanisms UVR modulates MS severity next generation sequencing was performed to assess the 

UVB phototherapy-induced changes in immune cells in a small group of patients. 

In line with previous studies, we observed lower disease severity in patients with higher vitD levels in 

the NationMS cohort (5). Expectedly, vitD levels were also strongly associated with latitude. Therefore, 

latitude itself is a sound proxy for sun exposure / vitD on a population level, especially if the sampling 

month is considered, as well. Consistently, latitude also showed a significant association with severity 

in the NationMS cohort. This means it is unlikely that reverse causation drives the association between 

vitD and disease severity. If there was reverse causation, the association between low vitD and 

increased severity would be expected, but there should be no association of high latitude (and 

therefore, low sun exposure) with increased severity. Although the absence of reverse causation does 

not imply a causative role for vitD since any UVR-induced metabolite that behaves similar to vitD 

would show the same pattern, this does support relevant effects of UVR in MS. In the BIONAT cohort 

vitD was also associated with reduced disability. Interestingly, the effect of latitude was only observed 

in patients who were not treated with IFN-β before. Since interactions between IFN-β treatment and 

vitD have been shown before (22, 23), it is likely that the normal association between latitude and vitD 

is altered by IFN-β treatment, which is also in line with the observation that patients with IFN-β therapy 

had significantly higher vitD levels compared to treatment-naïve patients in this study.  

To uncover the UVR-induced transcriptomic changes in immune cells in MS patients, the effect of UVB 

phototherapy was assessed using next generation sequencing. Due to the limited sample size and the 

high false discovery rate burden, genes with P<0.05 were regarded as regulated and provided 

sensible results. The regulation of genes such as NR4A2, NR4A3, CD14 and the gene for the vitamin 
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D receptor (VDR), which have been reported multiple times to indicate a vitD response (43, 44) is in 

line with the profound vitD increase upon phototherapy that was previously demonstrated in these 

patients (12). As vitD counter-acts parathyroid hormone (PTH) expression (45), it is likely that the 

downregulation of the NR4A-family is due to a reduction of PTH, as PTH has been shown to increase 

NR4A-expression (46). This is also in line with the observed general enrichment of vitD-associated 

genes in permutation tests. Moreover, we identified regulation of the type I interferon pathway by 

phototherapy. As an upregulation of type I interferon-associated genes was observed in all donors of 

whom only two received IFN-β therapy, this relationship cannot be explained by IFN-β therapy, but 

instead is likely to be a direct result of phototherapy. Type I interferon induction was most apparent in 

monocytes – the natural producers of type I interferons in the context of pathogen control (47). A UVR 

dependent induction of type I interferons could also explain why the effect of latitude on disability in 

the BIONAT cohort was absent in IFN-β treated patients. If part of the effect of UVR is mediated 

directly through type I interferons, it is possible that IFN-β treatment could mask the effects of UVR / 

latitude. In fact, the type I interferon genes found to be regulated have previously been shown to be 

regulated upon IFN-β therapy in RRMS patients who were classified as IFN-β therapy responders (48, 

49). The downregulation of AHR and TIPARP, known counter-actors of type I interferons-signaling, 

further supports a direct upregulation of type I interferons through phototherapy (50). Mechanistically, 

it is possible that the type I interferon-expression is modulated by vitD, as interactions between vitD 

and IFN-α/β have been described (22, 51). This is also in line with reports showing that vitD and IFN-β 

triggered gene expression partly overlaps (52).  

Moreover, in vitro- and animal studies have proposed that UVR could also induce type I interferons via 

nucleic acid-damage and induction of damage associated molecular patterns (DAMPs) that can be 

sensed by toll-like receptors and the stimulator of interferon genes (STING) (53, 54). Interestingly, type 

I interferons were also shown to be induced in the skin of healthy human individuals upon UVR 

exposure, which lines up with the results from this study (55). If the type I interferon-pathway was 

indeed regulated by UVR, this could provide a link between MS and Lupus. In direct contrast to MS, in 

Lupus, an autoimmune disease that can manifest locally (e. g. cutaneous lupus erythematosus or 

CLE) or systemically (systemic lupus erythematosus or SLE), exposure to UVR is known to be 

disease-worsening (56). Furthermore, Lupus is known to be partly driven by type I interferons and 

patients often show an increased type I interferon blood-signature (57). Blockade of the type I 
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interferon-pathway has been demonstrated to reduce disease severity in SLE (58). On the contrary, 

MS is associated with a reduced type I interferon signature and patients respond positively to IFN-β 

therapy (59).  

Furthermore, although sun exposure seems to be beneficial for MS patients, it is also important to 

consider individual patient characteristics, such as skin type and sun sensitivity, and we therefore also 

investigated modulatory effects of sun-sensitivity-associated MC1R variants. In line with the concept of 

weak and strong MC1R variant alleles (24), only the high-penetrance variant rs1805008(C>T) showed 

a significant effect on self-reported skin reaction to sun exposure, whereas no association was found 

for rs885479(G>A) and rs2228479(G>A). The inversed effect of latitude on the number of Gd-

enhancing lesions in carriers and non-carriers of the rs1805008 variant is in line with the observation 

of increased sun-sensitivity and a higher grade of inflammation induced through sun-exposure, 

combined with the reduced responsiveness to anti-inflammatory stimuli of α-melanocyte stimulating 

hormone in carriers of MC1R variant alleles (60, 61). The fact that this inversed association was not 

present across read-outs could be due to the fact that there was no evidence for correlation between 

the MSSS and the number of Gd-enhancing lesions. Furthermore, as the effects of MC1R in this study 

were only nominally significant, the results must be interpreted with care and require confirmation in 

larger cohorts. 

In summary, this study provides evidence for an effect of UVR on MS severity. This argues for a 

recommendation of moderate sun-exposure for MS patients. Mechanistically, vitD is supported as one 

of the main mediators of UVR-effects, but a role for the type I interferon- and the MC1R-pathway is 

brought up, as well. Differential effects of UVR in carriers and non-carriers of MC1R variants were 

observed, suggesting detrimental effects of UVR in sun-sensitive patients. Therapy with IFN-β 

reduced the effect of latitude on severity that was observed in naïve patients, and the type I interferon 

pathway was upregulated by phototherapy in immune cells of MS patients. A direct upregulation of 

type I interferons through UVR would explain why no effect of latitude was observed in IFN-β treated 

patients. Therefore, this study thereby suggests type I interferon pathway as a novel and direct 

mediator of UVR-effects in MS. This also provides a framework to better understand the opposite 

effects of sun exposure in MS and the type I interferon-mediated and sun-sensitivity-associated 

disease Lupus. 
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Table 1: Cohort baseline characteristics 

 NationMS BIONAT 

Number of 
patients 

908 808 

Median Age 
(IQR) 

32.43 (26.76 to 41.15) 37 (30 to 43) 

Median BMI 24.22 (21.56 to 27.64) - 

Male (%) 271/908 (29.85) 196/808 (24.26) 

Smokers (%) 305/908 (33.59) - 

Consume 
alcohol (%) 

674/908 (74.23) - 

RRMS (%) 485/908 (53.42) 808/808 (100) 

Mean 25(OH)Da 21.56 ng/mL 20.95 ng/mL 

Median MSSS 
(IQR) 

4.31 (2.83 to 5.58) 5.23 (3.41 to 6.92) 

≥ 1 Gd-
enhancing 
lesion (%) 

350 (38.55) - 

Most common 
site / symptom 
of first 
manifestationa 
(%) 

Sensory system 
(411/908, 45.26%)  

Spinal cord 
(138/611, 22.59 %)  

Abbreviations: 25(OH)D = 25-hydroxy-vitaminD, BMI = body mass index (weight/height²), Gd = Gadolinium, IQR = 
interquartile range, MSSS = multiple sclerosis severity score, RRMS = relapsing-remitting multiple sclerosis. a 

According to the number of patients with available data (see Figure 1) 
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Table 2: Medication before-/after first assessment 

NationMS 

Medication after first assessment Number Percent (of 798 total) 

Fingolimod 21 2.63 

Fumarat 64  8.02 

Glatiramer acetate 162 20.30 

Interferon-β 359 44.99 

Monoclonal antibodiesa 23 2.88 

Naïve  155 19.42 

Teriflunomide 14 1.75 

BIONAT 

Medication before first 
assessment 

Number Percent (of 808 total) 

Glatiramer acetate 236 29.21 

Interferon-β 483 59.78 

Naïve  89 11.01 
a The monoclonal antibodies Natalizumab, Rituximab and Alemtuzumab were grouped due to low frequencies 
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Figure 1: Study Flow-Chart  

Data of 946 therapy-naïve patients were acquired for the NationMS cohort and data of 990 BIONAT 

patients with a history of previous medication for multiple sclerosis have been acquired. Datasets were 
filtered for missing information with 908 NationMS and 808 BIONAT patients remaining at baseline. 
For the analysis of disease severity BIONAT patients were further excluded when information on site 

of first event was unknown/unavailable (remaining total n=611, n for remaining patients with available 
information on serum vitamin D = 451). To assess the influence of latitude on serum vitD levels this 
information was not necessary and n=594 patients were assessed. For NationMS, longitudinal 

information on relapses was available for n=798 and information on disability two years after baseline 
was available for 671 patients.   
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Figure 2: Influence of sun exposure measures on clinical severity  

A Dotplots for multiple sclerosis severity score (MSSS) in relation to 25(OH)D3 levels and latitude (of 
the patients’ medical center) with least squares linear regression lines ± standard error for NationMS 

(nvitD=761, n lat=908). B Dotplot for gadolinium (Gd)-enhancing lesions in relation to 25(OH)D3 levels 
(n=761) and latitude (n=908) for the NationMS cohort. Left y-axis corresponds to the dotplot displaying 

observed counts, right y-axis corresponds to the red line displaying mean number of lesions ± 
standard error. C Dotplot for MSSS in relation to 25(OH)D2+3 with least squares linear regression line ± 
standard error for BIONAT. D Dotplots for MSSS in relation to latitude stratified by previous treatment  

(nIFN-β=363, nNaive/GA=248) with least-squares regression line ± standard error. Analyses for NationMS 

are adjusted for age, sex, body mass index, smoking, alcohol consumption, clinical subtype, 
neurological site of first manifestation, month of assessment and center. Analyses for BIONAT are 

adjusted for age, sex, neurological site of first manifestation, month of assessment and center. 
Adjustment for center was omitted when analyzing the effect of latitude.   
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Figure 3: Influence of vitamin D and latitude on risk for relapses and disability accumulation  

A Time-to-event curves displaying the proportion of relapse-free patients over time for the NationMS 

cohort grouped by serum 25(OH)D3 levels (Colorcode: Jade=The 20% of patients with the lowest 

25(OH)D3 levels, cutpoint: <10.086 ng/mL; Black=the 20% of patients with the highest 25(OH)D3 
levels, cutpoint: ≥30.31 ng/mL; Orange=patients in between) and complemented with a table 
displaying the number at risk over time. B Dotplot for the change in EDSS (ΔEDSS) in relation to 

baseline 25(OH)D3 levels with least squares linear regression line ± standard error. C-D Time-to-event 
curves displaying the proportion of relapse-free patients over time for the NationMS cohort grouped by 

latitude (north defined as ≥ median latitude within the cohort = 50.85 °N) and complemented with a 
table displaying the number at risk over time. D and E display the results for the analyses if stratified 
by medication. F-H Dotplot for the ΔEDSS in relation to latitude with least squares regression line ± 

standard error. G and H display the results for the analyses if stratified by medication. Analyses are 
adjusted for age, sex, body mass index, smoking, alcohol consumption, clinical subtype, neurological 

site of first manifestation, month of assessment, medication after baseline assessment and center. 
Differences in baseline-severity were adjusted by using the baseline MSSS and the number of lesions 

at baseline as covariates. Adjustment for center was omitted when analyzing the effect of latitude.  
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Figure 4: Interaction of MC1R genotype and sun exposure  

A-C Barplots displaying the fraction of total patients (ntotal=229) who reported their reactions to sun 
exposure at noon in summer for the MC1R genotypes A rs1805008(C>T), B rs885479(G>A) and C 

rs2228479(G>A). This analysis was adjusted for age, sex, body mass index, smoking, alcohol 
consumption and population stratification. D Dotplots for MSSS in relation to latitude with leastsquares 
linear regression line stratified by rs1805008 genotype. E Dotplots for gadolinium-enhancing lesions in 

relation to latitude (left y-axis) complemented with the mean number of lesions (black line, right y-axis). 
Analyses for D & E were adjusted for age, sex, body mass index, smoking, alcohol consumption, 

clinical subtype, neurological site of first manifestation, month of assessment and center. Adjustment 
for center was omitted when analyzing the effect of latitude.   
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Figure 5: Transcriptional effects of UVB-phototherapy in immune cells  

A Multiple sclerosis patients had been treated with UVB-phototherapy during the course of our 2014 

pilot study (Breuer et al., 2014). PBMC Samples of five patients before and four weeks after 

phototherapy (10 samples in total) have been used to isolate CD4 T-cells that were subjected to 

RNAisolation and RNA-sequencing with subsequent bioinformatics analyses including differential 
expression analysis and gene set enrichment analysis (over-representation analysis). B-E Labeled, 
Volcano plots for CD4-, CD8 T-cells, monocytes and B-cells. F-I Before after plots for exemplary 

genes associated with either the vitD or the type I interferon pathway, regulated by photherapy in 
respective cell-types. J-M Venn diagrams for the overlap between significantly regulated genes in the 

respective cell types and the vitamin D and type I interferon gene-sets (extracted from wikipathways). 
P-values were calculated from distribution-free permutation-tests. The numbers for the reference gene 

sets refer to the number of genes belonging to the reference gene set and that have detectable 
expression in the respective cell type.   
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KKNMS study group members 
 
Department of Neurology. Klinikum Augsburg. Augsburg. Germany 

- Antonios Bayas   
- Susanne Rothacher 
- Stephanie Starke 

Department of Neurology. Charité - Universitätsmedizin Berlin. Corporate member of Freie Universität 
Berlin. Humboldt-Universität zu Berlin and Berlin Institute of Health. Berlin. Germany 

- Friedemann Paul 
- Judith Bellmann-Strobl 
- Janina Behrens   
- Jan-Markus Dörr 
- Rene Gieß 
- Joseph Kuchling 
- Ludwig Rasche 

Department of Neurology. St. Josef-Hospital. Ruhr-University Bochum. Bochum. Germany 
- Ralf Gold 
- Andrew Chan 
- Gisa Ellrichmann 
- Anna Lena Fisse 
- Anna Gahlen 
- Thomas Grüter 
- Aiden Haghikia 
- Robert Hoepner 
- Ümmügülsün Koc 
- Carsten Lukas 
- Jeremias Motte 
- Kalliopi Pitarokoili 
- Anke Salmen 
- Ruth Schneider 
- Joanna Schöllhammer 
- Christoph Schroeder 
- Björn Ambrosius 
- Seray Demir 

Department of Neurology. Medical Faculty. University of Düsseldorf. Düsseldorf. Germany 
- Clemens Warnke 
- Thomas Dehmel 
- Kathleen Ingenhoven  

Department of Neurology. University Hospital Erlangen. Friedrich-Alexander-University Erlangen-
Nürnberg (FAU). Schwabachanlage 6. 91054. Erlangen. Germany 

- Ralf Linker 
- De-Hyung Lee 
- Alexandra Lämmer 
- Eva Sauer 

MS Day Hospital and Institute of Neuroimmunology and Multiple Sclerosis. University Medical Center 
Hamburg-Eppendorf. Hamburg. Germany 

- Christoph Heesen 
- Jan-Patrick Stellmann 

Clinical Neuroimmunology and Neurochemistry. Department of Neurology. Hannover Medical School 
and Centre for Systems Neuroscience. Hannover. Germany 

- Martin Stangel 
- Lena Boenig 
- Stefan Gingele 
- Martin Hümmert 
- Philipp Schwenkenbecher 
- Thomas Skripuletz 
- Wolfram Suehs 

Molecular Neuroimmunology Group Department of Neurology University of Heidelberg Heidelberg 
Germany 

- Brigitte Wildemann 
- Mirjam Korporal-Kuhnke 
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- Hanna Oßwald 
- Alexander Schwarz 
- Andrea Viehöver 

Clinic for Neurology & Palliative Medicine. Cologne-Merheim. Cologne. Germany 
- Volker Limmroth 
- Kathrin Gerbershagen 

Department of Neurology. University of Leipzig. Leipzig. Germany 
- Florian Then Bergh 
- Barbara Ettrich 
- Steffi Gray 
- Sarah Haars. 
- Johannes Orthgieß 
- Nicole Schwanitz 
- Muriel Stoppe 
- Astrid Unterlauft  

Department of Neurology. University Medical Center of the Johannes Gutenberg University Mainz. 
Mainz. Germany 

- Sandra Paryjas 
- Stefan Bittner 
- Vinzenz Fleischer 
- Sergiu Groppa 
- Felix Lüssi 
- Johannes Piepgras 
- Timo Uphaus 

Department of Neurology. Philipps-University of Marburg. Marburg. Germany 
- Björn Tackenberg 
- Michael Pütz 
- Christian Eienbröker 
- Maria Seipelt  

 
Institute of Clinical Neuroimmunology. Biomedical Center and University Hospitals. Ludwig-Maximilians-
Universität München. Munich. Germany 

- Reinhard Hohlfeld 
- Tania Kümpfel 
- Joachim Havla 
- Ingrid Meinl 
- Hannah Pellkofer 
- Elisabeth Schuh 

Department of Neurology. Klinikum rechts der Isar. Technische Universität München. Munich. Germany 
- Bernhard Hemmer 
- Lilian Aly 
- Achim Berthele 
- Viola Pongratz 
- Kirsten Brinkhoff 
- Dorothea Buck 
- Christiane Gasperi 
- Mirjam Hermisson 
- Muna-Miriam Hoshi 
- Miriam Kaminski 
- Ana Klein 
- Benjamin Knier 
- Markus Kowarik 
- Helena Kronsbein 
- Klaus Lehmann Horn 
- Meike Mitsdörffer 
- Verena Pernpeintner 
- Veit Rothhammer 
- Andrea Schweikert 
- Rebecca Selter 

Department of Neuroradiology, Klinikum rechts der Isar, Medical Faculty, Technical University of 
Munich, Germany 

- Mark Mühlau 
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- Claus Zimmer 
- Jan Kirschke 

Max Planck Institute of Psychiatry. Munich. Germany; Neurological Clinic Cham. Sana Kliniken des 
Landkreises Cham GmbH Park. Germany 

- Frank Weber 
- Heike Staufer 
- Matthias Knop 
- Sandra Nischwitz 
- Philipp Sämann 

Department of Neurology with Institute of Translational Neurology. University of Münster. Münster. 
Germany 

- Heinz Wiendl 
- Sven Meuth 
- Luisa Klotz 
- Gerd Meyer zu Hörste 
- Julia Krämer 
- Lena Schünemann 
- Catharina Gross 
- Steffen Pfeuffer 
- Tobias Ruck 
- Selma Belgriri 
- Alexander Buchheister 
- Nora Bünger 
- Kerstin Göbel 
- Lucienne Kirstein 
- Nico Melzer 
- Ole Simon 
- Antje Echterhoff  

Department of Neurology. Neuroimmunological Section. University of Rostock. Rostock. Germany 
- Uwe Zettl 
- Alexander Winkelmann 

Institute of Medical Psychology and Behavioral Neurobiology. University of Tübingen. Germany; 
International Max Planck Research School (IMPRS) for Cognitive and Systems Neuroscience. 
Tübingen. Germany 

- Ulf Ziemann 
- Ahmed Abdelhak 
- Markus Kowarik 
- Markus Krumbholz 
- Margarete Paech 
- Christoph Ruschil 
- Maria-Ioanna Stefanou. 
- Johannes Tünnerhoff 
- Lena Zeltner 
- Hajera Sheikh 

Department of Neurology. University of Ulm. Ulm. Germany. 
- Hayrettin Tumani 
- Tanja Fangerau 
- Florian Lauda 
- Daniela Rau 
- Daniela Taranu 
- André Huss 
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BIONAT study group members 
 

- David Brassat. MD. PhD - CRC SEP – Neurosciences – CHU Toulouse and CPTP INSERM 
U1043 CNRS U5282 – Université Toulouse III – France 

- Béatrice Pignolet. PhD - CRC SEP – Neurosciences – CHU Toulouse and CPTP INSERM 
U1043 CNRS U5282 –France 

- Florence Bucciarelli. MSc - CRC SEP – Neurosciences – CHU Toulouse and CPTP INSERM 
U1043 CNRS U5282. France 

- Lise Scandella - CRC SEP – Neurosciences – CHU Toulouse and CPTP INSERM U1043 CNRS 
U5282 – Université Toulouse III – France 

- Christine Lebrun-Frenay. MD - CRCSEP Côte d’Azur. CHU de Nice Pasteur. Université Nice 
Côte d’Azur. Nice. France (sample and clinical data collection) 

- Marc Debouverie. MD. PhD - Department of Neurology. Nancy University Hospital. F-54035 
Nancy. France  

- Sophie Pittion-Vouyovitch. MD – Department of Neurology. Nancy University Hospital. F-54035 
Nancy. France (sample and clinical data collection) 

- Bruno Brochet - CHU Pellegrin Bordeaux. France (sample and clinical data collection) 
- Aurelie Ruet - CHU Pellegrin Bordeaux. France (sample and clinical data collection) 
- Gilles Defer. MD. PhD - CHU Caen - France (sample and clinical data collection) 
- Nathalie Derache - CHU Caen – France (sample and clinical data collection) 
- Jérôme de Sèze. MD. PhD - CHU Strasbourg. France (sample and clinical data collection) 
- David Laplaud. MD. PhD – CHU Nantes. France (sample and clinical data collection) 
- Sandrine Wiertlewski. MD - CHU Nantes. France (sample and clinical data collection) 
- Oliver Casez. MD – CHU Grenoble. France (sample and clinical data collection) 
- Pierre Clavelou. MD. PhD - Neurology. CHU Montpied. Clermont-Ferrand. France 

- Pierre Labauge. MD. PhD – CHU Montpellier. France (sample and clinical data collection) 
- Jean Pelletier. MD. PhD - APHM. Hôpital de la Timone. Pôle de Neurosciences Cliniques. 

Service de neurologie. CRCSEP Marseille. France 
- Audrey Rico. MD - APHM. Hôpital de la Timone. Pôle de Neurosciences Cliniques. Service de 

neurologie. CRCSEP Marseille. France (sample and clinical data collection) 
- Sandra Vukusic. MD. PhD - CHU Lyon Bron. France (sample and clinical data collection) 
- Olivier Outteryck. MD (Neurology. Université de Lille. France; sample collection and clinical 

data collection). 
- Jean-Claude Ongagna. MD (Neurology. Hôpital Civil. Strasbourg. France; sample collection 

and clinical data collection). 
- Jean-Christophe Ouallet. MD (Neurology. CHU Pellegrin. Bordeaux. France; sample collection 

and clinical data collection). 
- Prof Patrick Hautecoeur. MD (Neurology. CH St Vincent. GHICL. Lille. France; sample 

collection and clinical data collection). 
- Prof Ayman Tourbah. MD (Neurology. CHU Reims. France; sample collection and clinical data 

collection). 
- Giovanni Castelnovo. MD (Neurology. CHU Nîmes. France; sample collection and clinical data 

collection). 
- Eric Berger. MD (Neurology. CHU Besançon. Besançon. France; sample collection and 

clinical data collection). 
- Hélène Zéphir. MD (Neurology. Université de Lille. France; sample collection and clinical data 

collection). 
- Philippe Cabre. MD (Neurology. CHU Fort de France. Fort de France. France; sample 

collection and clinical data collection). 
- Prof William Camu. MD (Neurology. CHU Montpellier. France; sample collection and clinical 

data collection). 
- Prof Eric Thouvenot. MD (Neurology. CHU Nîımes. Nîmes. France; sample collection and 

clinical data collection). 
- Prof. Thibault Moreau. MD (Neurology. CHU Dijon. Dijon. France; sample collection and 

clinical data collection). 
- Agnès Fromont. MD (Neurology. CHU Dijon. Dijon. France; sample collection and clinical data 

collection). 
- Caroline Papeix. MD (Neurology. Hôpital de la Salpétrière. Paris. France; sample collection 

and clinical data collection. 
- Prof Catherine Lubetzki. MD (Neurology. Hôpital de la Salpétrière. Paris. France; sample 

collection and clinical data collection). 
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- Prof Patrick Vermersch. MD (Neurology. Université de Lille. France; sample collection and 
clinical data collection). 

- Mikael Cohen. MD (Neurology. Hôpital Pasteur. Nice. France; sample collection and clinical 
data collection). 

- Prof. Lucien Rumbach. MD (Neurology. CHU Besançon. Besançon. France; sample collection 
and clinical data collection). 
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Supplementary Figure 1: Effect of sampling month, latitude and medication on serum vitamin D  

A Influence of recent UVR exposure and sampling month on serum vitamin D levels in the NationMS 

cohort. Black loess curve depicts recent UVR exposure at a patients’ medical center (6 weeks before 

sampling; sum of daily UVR intensities as extracted from NASA’s OMI dataset on erythemal UVR at a 
1×1° resolution in latitude and longitude) and corresponds to the left y-axis. Orange loess curve 
depicts serum vitamin D levels and corresponds to the right y-axis. B Dot-plot showing the influence of 

latitude on serum vitamin D with a least-squares regression line ± standard error. Values in the right 
panel were corrected for sampling month by first regressing sampling month on serum vitamin D and 

using the model residuals plus the model intercept as month-corrected vitamin D levels for the 
NationMS cohort. C Influence of recent UVR exposure and sampling month on serum vitamin D levels 

in the BIONAT cohort. Black loess curve depicts recent UVR exposure at a patients’ medical and 

corresponds to the left y-axis. Orange loess curve depicts serum vitamin D levels and corresponds to 
the right y-axis. D Dot-plot showing the influence of latitude on serum vitamin D with a least-squares 

regression line ± standard error. Values in the right panel were corrected for sampling month by first 
regressing sampling month on serum vitamin D and using the model residuals plus the model intercept 
as month-corrected vitamin D levels for the BIONAT cohort. E Violin-plot showing serum vitamin D-
levels with regard to prior medication for the BIONAT cohort. 
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