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Abstract: 7 

Introduction. Twin studies indicate that a substantial fraction of ovarian cancers should be 8 

predictable from genetic testing.  Genetic risk scores can stratify women into different classes 9 

of risk.  Higher risk women can be treated or screened for ovarian cancer, which should 10 

reduce overall death rates due to ovarian cancer.  However, current ovarian cancer genetic 11 

risk scores, based on SNPs, do not work that well.  We developed a genetic risk score based 12 

on structural variation, quantified by variations in the length of chromosomes. 13 

Methods. We evaluated this genetic risk score using data collected by The Cancer Genome 14 

Atlas. From this dataset, we synthesized a dataset of 414 women who had ovarian serous 15 

carcinoma and 4225 women who had no form of ovarian cancer.  We characterized each 16 

woman by 22 numbers, representing the length of each chromosome in their germ line DNA.  17 

We used a gradient boosting machine, a machine learning algorithm, to build a classifier that 18 

can predict whether a woman had been diagnosed with ovarian cancer in this dataset. 19 

Results. The genetic risk score based on chromosomal-scale length variation could stratify 20 

women such that the highest 20% had a 160x risk (95% confidence interval 50x-450x) 21 

compared to the lowest 20%.  The genetic risk score we developed had an area under the 22 

curve of the receiver operating characteristic curve of 0.88 (estimated 95% confidence 23 

interval 0.86-0.91). 24 

Conclusion. A genetic risk score based on chromosomal-scale length variation of germ line 25 

DNA provides an effective means of predicting whether or not a woman will develop ovarian 26 

cancer. 27 

  28 
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 29 

Introduction: 30 

Ovarian cancer kills about 150,000 women per year worldwide[1].  The most common 31 

form of ovarian cancer, ovarian serous carcinoma is often diagnosed late (stage III (51%) or IV 32 

(29%)) and has a relatively bleak 5-year survival rate [2]. If women with an elevated risk of 33 

developing ovarian cancers could be identified, interventions could be taken that would reduce 34 

the number of women who die from ovarian cancer.  These interventions include prophylactic 35 

oophorectomies, which would completely avoid ovarian cancer, and more targeted screening, 36 

which could identify ovarian cancers in earlier stages, where surgery is an effective cure[3–6].  37 

These interventions could both increase 5-year survival times and reduce the overall number of 38 

deaths due to ovarian cancer. 39 

A substantial fraction of ovarian cancers should be predictable by genetic testing.  The 40 

heritability of ovarian cancer has been measured at about 40% (95% confidence interval 23%-41 

55%) by the Nordic Twin Study[7].  The maximum discriminative accuracy of a genetic risk test 42 

is a function of both the heritability and the prevalence of the disease [8,9].  Based on the 43 

measured heritability (about 40%) and prevalence (about 0.1%) of ovarian cancer, the maximum 44 

accuracy, measured by the area under the receiver operating characteristic curve (AUC), should 45 

be greater than 0.95, where 1.0 indicates a perfect test. Current genetic risk scores do not 46 

approach that level of accuracy. 47 

Most current genetic risk scores are derived from single nucleotide polymorphisms 48 

(SNPs) identified by genome wide association studies[10–15]. These tests, called polygenic risk 49 

scores, construct a score based on a linear combination of the value of a collection of SNPs.  This 50 

strategy has been moderately successful with ovarian cancer.  One study followed this strategy to 51 
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construct a polygenic risk score where women who scored in the top 20% had a 3.4-fold 52 

increased risk compared to women who scored in the bottom 20%[16]. 53 

We developed an alternative strategy to compute genetic risk scores.  Our strategy is 54 

based on structural variation rather than SNPs and uses machine learning algorithms, which 55 

include non-linear effects, rather than linear combinations. 56 

Methods: 57 

We tested this strategy with data from the Cancer Genome Atlas (TCGA) project.  TCGA 58 

was a project sponsored by the National Cancer Institute to characterize the molecular 59 

differences in 33 different human cancers[17–19].  The project collected samples from about 60 

11,000 different patients, all of whom were being treated for one of 33 different types of tumors.  61 

The samples collected usually included tissue samples of the tumor, tissue samples of normal 62 

tissue adjacent to the tumor and normal blood samples.  (Normal blood samples were not 63 

available from patients diagnosed with leukemias.) 64 

Most of the patient normal blood samples were processed to extract and characterize 65 

germline DNA.  All germline DNA samples were processed by a single laboratory, the 66 

Biospecimen Core Resource at Nationwide Children’s Hospital.  Single nucleotide 67 

polymorphisms (SNPs) were measured from the patient samples with an Affymetrix SNP 6.0 68 

array.  This SNP data was then processed (by the TCGA project) through a bioinformatics 69 

pipeline [20], which included the packages Birdsuite [21] and DNAcopy [22].  The result of this 70 

pipeline is, for each sample, a listing of a chromosomal region (characterized by the chromosome 71 

number, a starting location, and an ending location) and the associated value given as the 72 

“segmented mean value.”  The segmented mean value is defined as the logarithm, base 2 of one-73 
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half the copy number.  A normal diploid region with two copies will have a segmented mean 74 

value of zero.   75 

NCI has provided most of the TCGA data on the Genomic Data Commons [23].  The 76 

copy number variation is called the masked copy number variation on the Genomic Data 77 

Commons.  The masking process removes “Y chromosome and probe sets that were previously 78 

indicated to have frequent germline copy-number variation.” [20]. 79 

This research uses de-identified coded datasets produced by TCGA.  Therefore it is not 80 

considered human subjects research. 81 

We accessed the TCGA data through Google’s BigQuery, a cloud-based database.  This 82 

resource is hosted and maintained by the Institute of Systems Biology [24].  We used the copy 83 

number segment (masked) table extracted from the Genomic Data Commons in February 2017. 84 

We also used information from the Biospecimen (extracted April 2017) and Clinical (extracted 85 

June 2018) tables.  The copy number table contained all the information for the chromosome 86 

scale length variation data.  The Biospecimen table was used to identify which samples were 87 

from normal blood (representing germ line DNA).  The Clinical table provided information on 88 

the individual patient’s gender, race, and ovarian cancer status.  Information in the different 89 

tables was tied together by the sample barcode parameter. 90 

We used the statistical computer language R to query the BigQuery database, collect the 91 

data and manipulate it into different forms.  We took extensive care to avoid typical problems 92 

that lead to falsely high AUCs in machine learning. For instance, we ensured that no data leakage 93 

occurred, which can lead deceivingly high AUCs when copies of a sample appear in both the 94 

training and test sets.   95 
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We used the H2O machine learning package in R to create machine learning models. 96 

H2O takes care of setting many of the proper default values, depending on whether the goal of 97 

the model is classification or regression.  For the gradient boosting machine (GBM)  models, 98 

H2O performs preprocessing, randomization, encoding categorical variables, and other data 99 

processing steps appropriate for the chosen model. 100 

H2O has an automated machine learning algorithm, named AutoML[25].  Given a 101 

spreadsheet like- dataset, AutoML will run through four different machine learning algorithms 102 

and evaluate which provides the best models for the given problem.  For each of the machine 103 

learning algorithms, it will evaluate several different hyperparameters.  The process is limited by 104 

the amount of time devoted to it.  After the allotted time, AutoML reports a scoreboard ranking 105 

the best algorithms. For the gradient boosting machine algorithm, we started with the default 106 

H2O settings.  These default settings build trees to a maximum depth of five trees with a sample 107 

rate of 1 [26].  For the results reported in Table 2, we used an allotted time of one hour.  In tests, 108 

we found that the results do not change substantially with times up to 10 hours. 109 

We used 5-fold cross validation with the GBM algorithm to produce Table 3 and Figure 110 

2.  Cross validation uses repeated model runs with non-overlapping data.  This approach allows 111 

one to use of all samples in the limited dataset.  For Table 3 and Figure 2, we estimated 95% 112 

confidence intervals for the odds ratios following the method described in [27]. 113 

Figure 3 was produced with a single model run by splitting the dataset into a training set 114 

containing 80% of the data and a test set containing 20% of the data. 115 

Results: 116 

Using the TCGA dataset, we identified a measure that we call chromosome-scale length 117 

variation.  Taken together, structural variations like insertions, deletions, translocations and copy 118 
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number variations slightly alter the overall length of an individual’s chromosome. Thus, the 119 

lengths of the set of chromosomes can be used to characterize a person. A histogram showing the 120 

distribution of relative chromosome lengths taken from germ line DNA samples in the TCGA 121 

dataset is shown in Figure 1.  By convention, these lengths are reported in units of log base 2.  A 122 

value of “0” represents the consensus, average, chromosome length. 123 

Figure 1. This figure shows a histogram of chromosome scale 124 

length variation for most of chromosomes 1,6,13, and 17. For most 125 

patients in the TCGA dataset, a normal blood sample was taken, 126 

genomic DNA was extracted from that sample and analyzed with 127 

an Affymetrix SNP 6.0 array.  The data from this array was 128 

processed by the TCGA project through a bioinformatic pipeline 129 

that resulted in a segment mean value, which is a number equal to 130 

the log base two of one half the copy number value.  This 131 

histogram indicates that most people have a nominal value of 0, 132 

indicating exactly two copies of the diploid chromosome.  A value 133 

of 0.02 would indicate the person has on average 2.028 copies of 134 

the chromosome, or about 1.4% longer than the average length of 135 

the chromosome. 136 

 137 

From the TCGA dataset, we synthesized a case-control study to test whether 138 

chromosome-scale length variation data can construct a genetic risk score.  We identified 4225 139 

women who had not been diagnosed with any form of ovarian cancer and 414 women who had 140 

been diagnosed with ovarian serous carcinoma. Statistical descriptions of the two populations are 141 

shown in Table 1. 142 

 143 

Table 1.  From the TCGA dataset, we constructed two groups, both 144 

solely composed of women.  The first group, containing 414 145 

women, all had been diagnosed with ovarian serous carcinoma.  146 

None of the second group, with 4225 women, had been diagnosed 147 

with any form of ovarian cancer.  This table compares the two 148 

populations. 149 

 Diagnosed with Ovarian Not diagnosed with Ovarian 
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Serous Carcinoma cancer 

Total 414 4225 

Mean age 58.3 years 59.7 years 

% Black 25/414 = 6% 492/4225 = 12 % 

% White 352/414= 85% 3064/4225= 73% 

% Asian 14/414 = 3% 259/4225 6% 

 150 

Next, we evaluated the effectiveness of several different machine learning algorithms. 151 

We measured how well these algorithms could classify a woman, based solely on the set of 23 152 

chromosome-scale length variation measurements, into either the class with ovarian cancer or 153 

without. The measurement of success we used was the area under the curve (AUC) of the 154 

receiver operating characteristic curve.  The results of these measurements are shown in Table 2. 155 

Table 2. This table lists five different machine learning algorithms 156 

we evaluated for predicting ovarian cancer from chromosome-157 

scale length variation data using the H2O package in R.  The 158 

algorithms are ranked by the best AUC it achieved using 5-fold 159 

cross validation. 160 

Algorithm AUC 

Gradient Boosting Machine 0.88 

Distributed Random Forest 0.87 

Extremely Randomized Trees 0.86 

Deep learning 0.82 

Generalized Linear Model 0.68 

  161 

Based on the results in Table 2, we used the Gradient Boosting Machine algorithm 162 

throughout the rest of this manuscript.  In the next step, we sought to classify the 4669 women in 163 

the dataset.  We used a k-fold cross validation procedure, with k=5.  The dataset was randomly 164 

partitioned into five equal groups.  The first group was held out (to be the test set), while the 165 

other four groups were used to train a model to distinguish the two classes (women with ovarian 166 

cancer and women without ovarian cancer).  The trained model assigned a numerical score to 167 
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each of the women in the first group (test set) quantifying how likely that woman was a member 168 

of the ovarian cancer class. The process was repeated 5 times, with a different group held out 169 

each time.  The result is a numerical score for each of the 4669 women.   170 

The predictions were compared to the known ovarian cancer status of each of the 4669 171 

women. First, all 4669 women were ranked by their score, representing  the likelihood that they 172 

were from the ovarian cancer class.  By comparing this ranking with their known ovarian cancer 173 

status, we can evaluate how well the model classified the women. 174 

The comparison is presented in two different forms.  Table 3 provides a tabular form of 175 

relative risk for the population segmented into five different groups. Figure 2 shows similar 176 

information in graphical form, where the population is segmented into 50 groups.   177 

Finally, we took the dataset of 4669 women and split it into a training set (80%) and a 178 

test set (20%).  Using H2O, we trained a Gradient Boosting Machine model to predict whether a 179 

woman was in the group with ovarian cancer, or not. The results are presented in Figure 3, which 180 

shows a classic receiver operating characteristic curve of the model’s predictions. 181 

. 182 

Table 3. Using 5-fold cross validation, each woman in the dataset 183 

received a score from the model built to predict ovarian cancer.  184 

The women were ranked by score from lowest to highest and then 185 

partitioned into five quintiles. This table presents the number of 186 

women with and without ovarian cancer in each quintile along with 187 

the odds ratio (relative to the entire group) and the 95% confidence 188 

interval for the odds ratio. 189 
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 190 

Figure 2. This figure shows that women ranked higher by the 191 

predictive model are significantly more likely to have ovarian 192 

cancer.  The predictive model ranked all 4669 women in the 193 

dataset based on their likelihood of having ovarian cancer, based 194 

solely on germ line DNA data.  This ranking was then split into 50 195 

equal partitions, each with about 93 women.  This plot shows the 196 

odds ratio (relative to 414 ovarian cases out of 4669 total) of each 197 

of the 50 equal partitions along with the 95% confidence intervals. 198 

 199 

Figure 3. This figure presents a receiver operating characteristic 200 

curve of the model’s predictions.  The area under the curve for this 201 

model was 0.88. 202 

Discussion: 203 

The results presented here compare favorably to other genetic risk scores for ovarian 204 

cancer.  For instance, a previous study found that a polygenic risk score in the top 20% conferred 205 

a 3.4-fold risk increase compared to women in the bottom 20% [16].  As seen in Table 3, the top 206 

20% in our results had an increase of over 100-fold risk over women who scored in the bottom 207 

20%. 208 

Table 2 quantifies different algorithms applied to this problem.  These results are 209 

illustrative, but not conclusive.  Tuning machine learning models is an art, and it might be 210 

possible, for instance, to tune a deep learning network to obtain superior results.  In similar work 211 

on TCGA colon cancer data, we found that a pairwise neuron network algorithm performs equal 212 

to a gradient boosting machine[28].  The gradient boosting machine generally runs faster and is 213 

Quintile Number of 
women without 
ovarian cancer 

Number of 
women with 

ovarian cancer 

Total 
number of 

women 

Odds ratio 95% confidence 
interval 

1 925 3 928 0.03 0.01--0.09 

2 925 3 928 0.03 0.01--0.09 

3 901 27 928 0.30 0.21--0.45 

4 842 86 928 1.04 0.82--1.33 

5 632 295 927 4.76 4.01--5.65 
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easier to tune.  Others have evaluated different machine learning algorithms for different 214 

bioinformatic problems and found that no one algorithm is superior[29].  They also found that a 215 

gradient boosting machine algorithm does perform well on many different types of datasets, 216 

consistent with out findings.  217 

A disadvantage of this approach, compared to more conventional SNP-based genetic risk 218 

scores, is that the results are difficult to understand and extract biological meaning.  The 219 

Gradient Boosting Machine computational model is complex, consisting of dozens of decisions 220 

trees.  Furthermore, the data that is used to traverse the decision tree is also complex.  The data 221 

consists of chromosome scale length variation, which is the result of many different insertions, 222 

deletions, translocations, and other structural changes.  Polygenic risk scores based on SNPs are 223 

easy to interpret.  One can identify how much each SNP contributes to the score and one can 224 

locate this SNP in the genome and understand the function of nearby genes that might change. 225 

Although this approach is lacking in explanatory power, its ultimate goal is predictive power. 226 

We considered whether the results were due to two common problems faced by GWAS 227 

studies: batch effects or population stratification.  We found it unlikely that our model is 228 

identifying batch effects rather than real effects. First, all samples were collected from the same 229 

tissue, blood.  This eliminates one common source of batch effects, since the DNA extraction 230 

process is the same for each sample.  Second, all samples were processed by the same laboratory, 231 

the Nationwide Children’s Hospital Biospecimen Core Resource, with the same type of 232 

instrument.  This laboratory followed the same protocol throughout their processing phase.  233 

Finally, we looked up the batch history of each sample.  The 424 ovarian cancer samples were 234 

processed in 15 separate batches.  The non-ovarian samples were processed in several hundred 235 

different batches.  For these reasons, we do not believe the results are due to batch effects. 236 
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Population stratification occurs in case/control studies when the cases and controls 237 

contain substantially different proportions of genetically discernable subclasses.  Most TCGA 238 

samples were collected in the United States from a racially diverse group.  For instance, over half 239 

the ovarian cancer samples were collected at five locations in the United States:  Memorial Sloan 240 

Kettering, Washington University, University of Pittsburgh, Duke, and Mayo Clinic- Rochester. 241 

Table 1 lists demographic information about the two populations.  Although the table does 242 

indicate slightly different proportions, by race, in the case and control groups, it does not seem to 243 

be different enough to account for the AUC observed. 244 

This study has several weaknesses.  First, the control population in this analysis is not 245 

randomly drawn from the general population, but instead consists of women who were part of 246 

the study because they were diagnosed with another form of cancer. Second, the results rely on a 247 

single dataset.  The general applicability of this method would be better established if we were 248 

able to show that a model trained on one dataset would perform well on a second dataset that was 249 

collected independently. Demonstrating that a model is transferrable is a longer-term goal of 250 

ours. 251 

Future work could refine this method to improve the predictive ability of this method.  252 

The AUC might be improved through several strategies, including feature engineering, for 253 

instance using sub-chromosomes rather than complete chromosomes, data augmentation 254 

strategies, and the inclusion of SNP data.  Further work can also establish how robust the model 255 

is: can a model trained with the TCGA data be successfully applied to a person not in the TCGA 256 

dataset. 257 

Conclusion: 258 
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A genetic risk score based on chromosomal-scale length variation of germ line DNA 259 

provides an effective means of predicting whether or not a woman will develop ovarian cancer. 260 

Several avenues are open to further improve the AUC of this genetic risk score test. 261 
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343 
Figure 1. This shows a histogram of chromosome scale length 344 

variation for most of chromosome 17. For most patients in the 345 

TCGA dataset, a normal blood sample was taken, genomic DNA 346 

was extracted from that sample and analyzed with an Affymetrix 347 

SNP 6.0 array.  The data from this array was processed by the 348 

TCGA project through a bioinformatic pipeline that resulted in a 349 

segment mean value, which is a number equal to the log base two 350 

of one half the copy number value.  This histogram indicates that 351 

most people have a nominal value of 0, indicating exactly two 352 

copies of the diploid chromosome.  A value of 0.02 indicates the 353 

person has on average 2.028 copies of the chromosome, or about 354 

1.4% longer than the average length of the chromosome. 355 
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357 
Figure 2. This figure shows that women ranked higher by the 358 

predictive model have significantly more likely to have ovarian 359 

cancer.  The predictive model ranked all 4669 women in the 360 

dataset based on their likelihood of having ovarian cancer, based 361 

solely on germ line DNA data.  This ranking was then split into 50 362 

equal partitions, each with about 93 women.  This plot shows the 363 

odds ratio (relative to 414 ovarian cases out of 4669 total) of each 364 

of the 50 equal partitions along with the 95% confidence intervals. 365 
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 367 

Figure 3. This figure presents a receiver operating characteristic 368 

curve of the model’s predictions.  The area under the curve for this 369 

model was 0.89. 370 

 371 
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