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ABSTRACT 

Most Bluetooth-based exposure notification apps use three binary classifications to recommend 

quarantine following SARS-CoV-2 exposure: a window of infectiousness in the transmitter, ≥15 

minutes duration, and Bluetooth attenuation below a threshold. However, Bluetooth attenuation 

is not a reliable measure of distance, and infection risk is not a binary function of distance, nor 

duration, nor timing. We model uncertainty in the shape and orientation of an exhaled virus-

containing plume and in inhalation parameters, and measure uncertainty in distance as a 

function of Bluetooth attenuation. We calculate expected dose by combining this with estimated 

infectiousness based on timing relative to symptom onset. We calibrate an exponential dose-

response curve based on infection probabilities of household contacts. The probability of current 

or future infectiousness, conditioned on how long post-exposure an exposed individual has 

been symptom-free, decreases during quarantine, with shape determined by incubation periods, 

proportion of asymptomatic cases, and asymptomatic shedding durations. It can be adjusted for 

negative test results using Bayes Theorem. We capture a 10-fold range of risk using 6 

infectiousness values, 11-fold range using 3 Bluetooth attenuation bins, ~6-fold range from 

exposure duration given the 30 minute duration cap imposed by the Google/Apple v1.1, and 

~11-fold between the beginning and end of 14 day quarantine. Public health authorities can 

either set a threshold on initial infection risk to determine 14-day quarantine onset, or on the 

conditional probability of current and future infectiousness conditions to determine both 

quarantine and duration.  

 

Key words: COVID-19, digital contact tracing, Bluetooth technology, proximity sensing 
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1. INTRODUCTION 

Manual contact tracing followed by quarantine of known contacts is a critical method for 

containing or mitigating the spread of communicable diseases (Armbruster & Brandeau, 2007). 

It is, however, extremely resource and time-intensive and relies on case recall of contacts. New 

technologies can supplement this approach. Manual contact tracing can be effective for COVID-

19 (Aleta et al., 2020; Bi et al., 2020; Fetzer & Graeber, 2020; Kendall et al., 2020; Kucharski et 

al., 2020), however, a significant challenge is the extremely short window of time between an 

infected individual presenting for testing and the contacts that they infected beginning to shed 

infectious virus (Ferretti, Wymant, et al., 2020; Kretzschmar et al., 2020). Automatic exposure 

notification approaches based on Bluetooth proximity have the potential to achieve many of the 

benefits of contact tracing, while also providing more rapid notification, greater privacy (Fraser 

et al., 2020; Von Arx et al., 2020), more objective recall of contacts including those whose 

identity is unknown to the case, and greater scalability (Ferretti, Wymant, et al., 2020; Salathé et 

al., 2020). The two approaches of contact tracing and exposure notifications are complementary 

and may directly interact e.g. when those receiving digital exposure notifications are referred to 

human contact tracers for the information and support needed for quarantine adherence and 

further investigation (Webster et al., 2020).  

Apps have access to data on timing, duration, and Bluetooth attenuation. Determining the 

threshold for entering quarantine based on probability of infection should yield better results 

than from combining three binary thresholds for duration, distance, and the infectious period of 

the transmitter. A threshold for exiting quarantine based on the conditional probability of current 

or future infectiousness could also be used. Both would help optimize the reduction in disease 

transmission per day of quarantine recommended. 

Here we lay out a framework for doing so using the decentralized protocol of the 

Google/Apple Exposure Notification (GAEN) Application Programming Interface (API). When a 
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user reports positive infection status, the GAEN framework (Fig. 1) allows apps to assign a 

“Transmission Risk Level” (version 1) or “infectiousness” (version 2) to each day that they might 

have been shedding, and to communicate this level to the receiver’s phone via a Temporary 

Exposure Key (TEK). On the receiver’s device, the GAEN framework records Bluetooth 

attenuation as a rough estimate of distance, and the duration of exposure. 

The risk of infection depends on viral dose (Haas, Rose, & Gerba, 1999), which in turn 

depends on the shedding rate of the infected individual, and on the duration and distance of the 

interaction. As days go by without onset of symptoms, the probability of future infectiousness 

decreases, because the probability is conditioned on lack of symptoms for an increasing stretch 

of time. We parameterize calculations of both probabilities using both past literature and new 

experiments and illustrate what different risk thresholds imply for quarantine recommendations. 

We are piloting and evaluating the Covid Watch app using portions of this scheme on the 

campus of the University of Arizona. 

2. METHODS 

The overall approach to calculating infection risk is summarized in Fig. 1. Parameter values 

and their descriptions and sources are summarized in Supplementary Table I for calculations 

performed by the app and in Supplementary Table II for parameters we used during calibration. 

2.1. GAEN Overview 

Our experiments were performed in GAEN version 1. However, the method we used is a 

good simulation of what became standard in the subsequently released version 2. We calculate 

a weighted sum of durations at different Bluetooth attenuations, using the weights to capture the 

differences in expected dose (number of inhaled particles over an exposure time). We then 

multiply by the expected infectiousness of the transmitter, as estimated from the literature in 

Supplementary Methods Section 2. While this calculation is supported in version 1, access to 

the necessary data triggers operating system notifications of exposure even when that exposure 
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is minimal, and so is impractical in the field. This calculation became standard in GAEN version 

2, in which the dose is referred to in units of “Meaningful Exposure Minutes”. When distance 

changes over time, accuracy is constrained by the frequency with which GAEN records 

BlueTooth. 

2.2. Experiments on Distance-Attenuation Relationship 

We measured Bluetooth attenuation for a range of distances, phones, and scenarios of 

possible signal interference with the potential to affect the attenuation – distance relationship 

(Supplementary Materials Section 1) (Farrell & Leith, 2020). Using a developer version of the 

Covid Watch app, we called the API multiple times with different attenuation thresholds in order 

to achieve resolution of 3dB in the 30dB-99dB range. The API appears to round up durations to 

5-minute increments, each with its own attenuation value; we consider each of these to be a 

datapoint.  

Our tests were all short, e.g. a 12-minute test would yield 3 datapoints. This is because the 

GAEN version 1 framework, under which the experiments were performed, records exposure 

durations only up to 30 minutes, in order to protect anonymity of COVID-positive patients by 

limiting the risk that users will be able guess the source of their exposure, while still meeting 

contact definitions that invoke minimum exposure duration of 15 minutes. This cap has been 

lifted in GAEN version 2. 

There were 7 testers and 14 phones, representing a variety of models, all of iPhones – 

handset type and orientation can affect signal (Farrell & Leith, 2020). 49 measurements were 

taken with specific phone orientations, while for the remaining 986 measurements the devices 

were side-by-side and facing upwards if not otherwise specified by the barrier type (e.g. pocket). 

203, 222, 199, 374, 17, 20 measurements were at 0.5m., 1m., 1.5m., 2m., 3m., and 5m., 

respectively. We also used the 28, 28, 29, 27, and 16 zero-risk barrier measurements at 0.5m., 

1m., 1.5m., 2m., and “N/A”, respectively. The phones were stationary during all measurements.  
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1163 out of the total 1558 datapoints were used for attenuation weight and attenuation 

threshold setting, with exclusions of data described in Fig. S1. The 1163 non-excluded 

datapoints are supplied in Supplementary Dataset 1. Of the included 1035 attenuation 

measures that involved infection risk, 747 did not include a deliberate barrier, while 288 includes 

barriers such as pockets, backpacks, nearby laptop, and human body. 925 measures were 

taken inside homes, 49 were taken inside an elevator, and 61 outside. 

2.3. Setting Attenuation Bin Thresholds and Corresponding Weights 

To rebalance the distance measurements to form a pseudo dataset that is more 

representative of the distribution of barriers and scenarios in the real world, we created a 

pseudo-dataset with different multiples of the data collected at each of the distances. To inform 

the desired distribution of distances, we analyzed the time-weighted pairwise distance in traffic 

flow simulations of a classroom (Jain, Islam, Chowdhury, Chen, & Son, 2021). These indicate a 

roughly uniform distribution over possible distances, with a reduction in close contact due to 

attempts to adhere to social distancing rules. Since close contact might be more common in 

other settings, and distances beyond 5m. can also register Bluetooth signal, we made 5, 5, 6, 3, 

132, and 168 copies of the non-zero-risk data at distances of 0.5m., 1m., 1.5m., 2m., 3m., and 

5m, respectively, yielding a data ratio of 1015 : 1100 : 1194 : 1122 : 2244 : 3360 (as a rough 

approximation of a target ratio of 1:1:1:1:2:3) prior to the sampling described below. To this, we 

added 4 copies of the zero-risk barrier measurements, so that they made up 4.85% of the total 

pseudo-dataset. Our calibration code holds shedding rate and exposure duration constant at 50 

arbitrary units/m3 and 30 minutes, in order to isolate the effect of distance on differences in dose 

between attenuation buckets. 

From this pseudo dataset, we first sample a datapoint that falls within the attenuation bin in 

question. If this is a zero-risk barrier scenario, we assign an infection risk of 0. Otherwise, we 

record the distance 𝜌 in meters. Note that our method is not based on mapping thresholds in 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2020.07.17.20156539doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156539
http://creativecommons.org/licenses/by/4.0/


 

   
 

7 
 

distance to thresholds in Bluetooth attenuation, but instead on resampling from the probability 

distribution of distance as a function of attenuation. 

We feed this distance into a microbial exposure model that estimates the airborne spread of 

viral particles from an emitter’s mouth following a Gaussian plume formation, and their 

subsequent inhalation by contacts.  

2.3.1. Estimation of Exposure Concentrations 

It is well-acknowledged that both distance from an infected individual and duration of “close 

proximity interactions” (Guo et al., 2019) are important parameters in estimating the probability 

of infection of those exposed (Chu et al., 2020; Rea et al., 2007; Salathé et al., 2010; Setti et al., 

2020). However, there is little quantitative information about the relationship between distance 

and risk of infection. Chu et al. (2020) quantified risk in terms of answers to binary survey 

questions about whether the respondent came within distance X of an infected person (Chu et 

al., 2020). They found that the value of the threshold distance X in the survey question predicts 

the degree to which the answer predicts risk, but this relationship cannot easily be converted 

into one between actual distance and risk.  

For this reason, we instead model the dose inhaled at different distances. Exhaled breath is 

a likely source of infection (W. Chen, Zhang, Wei, Yen, & Li, 2020; Ma et al., 2020). Accordingly, 

we model a Gaussian plume (Brusca et al., 2016) of virus-containing aerosols originating from 

the emitter’s face at (0,0,0). The x axis represents the direction that the transmitter is facing and 

breathing toward with breath velocity U (m/s). Diffusion causes spread away from y=0 or z=0. 

The viral concentration is then 

𝐶ሺ𝑥,𝑦, 𝑧ሻ ൌ
ொ

௎

ଵ

ଶగఙ೤ఙ೥
𝑒
ష೤మ

మ഑೤మ𝑒
ష೥మ

మ഑೥మ    (1) 

𝑄 ൌ 𝑆𝑋                 (1.1) 

𝑈 ൌ 𝑋/𝐴    (1.2) 
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where Q is virus emitted per second and is equal to the product of shedding rate, S, (in arbitrary 

units proportional to copies/m3) and an exhalation rate, X, (taken from measured inhalation rates 

in m3/s), yielding arbitrary units proportional to copies per second being generated (eq 1.1). We 

sample our exhalation rates from a normal distribution of inhalation rates with a mean and 

standard deviation of 16.3 and 4.15 m3/day, respectively. These were informed by the 16-21 

year old range from Table 6-1 in the Exposure Factors Handbook (2011) (U.S. Environmental 

Protection Agency, 2011). To avoid negative exhalation rates, this distribution was left-truncated 

at 9 m3/day, the smallest fifth percentile of inhalation rates for males and females in age ranges 

overlapping with the 16-21 year old range (U.S. Environmental Protection Agency, 2011). The 

velocity of breath U (m/s) was determined by dividing the exhalation rate (m3/s) by the cross-

sectional area of an open mouth 𝐴 (m2), which is the area over which air is assumed to be 

exhaled at the plume source. The cross-sectional area was informed by a uniform distribution 

with minimum and maximum cross-sectional areas measured for an open mouth with a “large 

bite” configuration, ranging from 23 to 59 cm2 (Leckie et al., 2000). Note that for a steady-state 

plume assuming a continuous output of virus, the effects of the exhalation rate (volume of air 

per second) on amount of virus emitted, and on the velocity with which they disperse, cancel 

out. For an abrupt exhalation such as a cough, rather than steady state, a higher exhalation rate 

would affect viral airborne concentration. 

For interactions ≤ 1m, we assumed two people interacting are directly in front of each other 

along the x-axis (φ = π /2, θ=0). For interactions beyond the close range (>1m), we sample θ 

from a uniform 360 degrees (min=0, max=2π), and the angle between the z axis and the xy-

plane, φ, was randomly sampled from a triangular distribution (min=π/4, mode=π/2, max=3π/4). 

We then convert from spherical units to (x,y,z) to apply Eq. 1. We assumed that scenarios 

where the person exposed was behind the emitter (x<0) resulted in a zero dose. 

To capture the shape of the plume, we use:  
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𝜎௬ ൌ 𝐼௬𝑥    (2) 
 
𝜎௭ ൌ 𝐼௭𝑥     (3) 

 

Assuming moderately stable conditions, 𝐼௬ and 𝐼௭ were randomly sampled from uniform 

distributions with minimums and maximums of 0.08-0.25 and 0.03-0.07, respectively (Western 

Engineering, n.d.). 

We note that inhalation and exhalation rates are both likely important to risk. For example, 

one infected dance instructor spread COVID-19 to 7/26 other instructors at a four hour 

workshop (Jang, Han, & Rhee, 2020), representing a similar risk as for household contacts, 

despite the presumption that most were at >2 m. distance for most of this time. Limited air 

circulation or increased respiratory rates are important factors that cannot be captured in the 

current GAEN approach, but the four-hour duration of the workshop is captured in GAEN 

version 2, and when combined with considerable uncertainty in the relationship between 

Bluetooth attenuation and infection risk per minute, this can appropriately capture the high risk 

of such a scenario. 

While wind velocity and relative humidity are important factors for determining droplet and 

fine aerosol dispersion and deposition (Feng, Marchal, Sperry, & Yi, 2020; W. Yang, 

Elankumaran, & Marr, 2011), as is mask usage, these are uncertain factors that are not 

recorded by the app, especially considering that interactions may occur indoors or outdoors. By 

not accounting for deposition, and by assuming that masks are either not worn or not worn 

effectively, we will tend to overestimate dose at greater distances, and in the presence of 

masks. This will implicitly lower the app-imposed risk tolerance of individuals who comply with 

public health guidelines that recommend masks and physical distancing, and who might 

therefore also be more inclined to comply with quarantine recommendations. The 2-meter rule 

was based on the assumption that most transmission is via droplets (large aerosols) for which 

deposition occurs over this distance. However, there is increasing evidence for transmission via 
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smaller aerosols (Fennelly, 2020; Jones et al., 2020; Lednicky et al., 2020; Prather, Wang, & 

Schooley, 2020; Qureshi et al., 2020), supporting our assignment of some risk to greater 

distances, reflecting short- to medium-distance airborne transmission. 

2.3.2. Inhaled Dose per Interaction 

An inhaled dose of viral particles due to person-to-person interactions was estimated based 

on the duration of the interaction (minutes) (T), the concentration of virus in the air at this {x,y,z} 

coordinate during the interaction (arbitrary units of viral particles/m3) C(x,y,z), and inhalation 

rates (m3/minute) (𝐼),  

𝐷 ൌ 𝑇 ∙ 𝐼 ∙ 𝐶ሺ𝑥,𝑦, 𝑧ሻ                    (4) 

Inhalation rates were randomly sampled from the same distribution as exhalation rates but 

allowing for a different value per iteration. As with exhalation rates, we left-truncated the 

distribution to avoid negative inhalation rates and therefore negative doses. Fig. 2 shows the 

expected dose as a function of distance, with a discontinuity at 1m. arising from our assumption 

that this distance or below indicates face-to-face interaction. 

We use a Monte Carlo approach to sample angle, exhalation rate of the transmitter, cross-

section of the transmitter’s open mouth, and inhalation rate of the exposed individual, to obtain a 

mean dose/time for that attenuation bin. For distances ≤ 1 meter, we assume face to face 

interactions, consistent with distances measured for “interpersonal” interactions (Zhang et al., 

2020). We choose thresholds between attenuation bins, and relative risks for time spent in each 

bin.  

To select the threshold values (a, b) demarcating 3 attenuation bins, we optimized the 

differences in mean dose between two randomly sampled attenuation measurements. 

Specifically, we maximized the value of  

𝑑ሺ𝑎, 𝑏ሻ ൌ ඥ2𝑝஺𝑝஻ሺ𝐴 െ 𝐵ሻଶ ൅ 2𝑝஻𝑝஼ሺ𝐵 െ 𝐶ሻଶ ൅ 2𝑝஺𝑝஼ሺ𝐶 െ 𝐴ሻଶ 
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where 𝐴,𝐵 and 𝐶 are the average doses 𝐷 from Eq. 4, averaged across Monte Carlo sampling 

described above, corresponding to bins [0, a], (a, b], and (b, +), and 𝑝஺, 𝑝஻, and 𝑝஼ are the 

probabilities that an attenuation will fall within that bin in our pseudo dataset. 

We examined multiple local maxima of this distance measure before choosing a partition 

pair. We also investigated alternative versions of a distance metric and alternative rebalancing 

schemes, to confirm that this is a relatively robust partition pair.  

To relate estimated dose to infection risk, we use an exponential dose-response curve, 

which is derived from the assumption that each host is susceptible and that each virus has an 

independent probability of survival and subsequent initialization of infection (Haas et al., 1999). 

In our case, this probability 𝑘, multiplied by a constant 𝐶 to convert from arbitrary units to 

number of virions, sets the parameter 𝜆 ൌ 𝑘𝐶 in the equation 

𝑃ሺinfectionሻ ൌ 1 െ 𝑒ିఒ஽,                               

where expected dose 𝐷 comes from a shedding rate multiplied by a weighted sum of time spent 

within 3 attenuation ranges. An exponential dose-response curve is superior to the approximate 

beta-Poisson for some other viruses (http://qmrawiki.org/content/recommended-best-fit-

parameters, accessed 09/07/2020). These viruses include adenovirus, enterovirus, poliovirus, 

and SARS-CoV-1. 

2.4. Calibrating the Dose-Response Curve 

Our weighted sum of durations and our estimates of shedding rates 𝑆 in the Results are 

both in arbitrary units. We therefore fit 𝜆 to obtain infection probabilities that are compatible with 

household spread. Asymptomatic infection and low test sensitivity can both deflate estimated 

household infection risks, while indirect chains of infection via a third household member can 

inflate them. A meta-analysis by Curmei et al. attempted to correct for these complications and 

estimated a secondary attack rate of household contacts of 30% (Curmei, Ilyas, Evans, & 

Steinhardt, 2020). We assumed exposure is equivalent to 8 hours with the maximum shedding 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2020.07.17.20156539doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156539
http://creativecommons.org/licenses/by/4.0/


 

   
 

12 
 

rate in the lowest attenuation and calculated 𝜆 for this dose that would result in a 30% infection 

risk. 

2.5. Probability of Current or Future Infectiousness 

Our scheme can be used either to 1) set a threshold on the initial probability of infection 

to trigger 14-day quarantine, or 2) set a threshold for the probability of current or future 

infectiousness to determine both who should quarantine and for how long. To calculate residual 

risk of infection as a function of initial risk plus time since exposure, we use the probability 

distribution of incubation periods from Lauer et al., available at 

https://iddynamics.jhsph.edu/apps/shiny/activemonitr/ (Lauer et al., 2020). Note that it is 

possible that incubation periods are even more dispersed than reported here (Wei et al., 2020); 

this would lengthen quarantine recommendations.  

To calculate risk of current or future infectiousness, we assume a fraction of 

symptomatic vs. asymptomatic cases and take an average of the discount factors applying in 

each case. Across a population, 20% of infections are estimated to be asymptomatic (Buitrago-

Garcia et al., 2020). Younger users are more likely to be asymptomatic (Davies et al., 2020), so 

the fraction of asymptomatic cases could be personalized on the basis of user age if that 

information is collected on a voluntary basis. For the symptomatic cases, we discount according 

to the probability of subsequently developing symptoms, given that symptoms have not 

appeared yet.  

For the asymptomatic cases, we combine the incubation periods from (Lauer et al., 

2020) with a distribution of shedding durations from (Long et al., 2020). Long et al. report slightly 

longer shedding durations for asymptomatic than symptomatic shedding (Long et al., 2020), but 

other studies  for which we were unable to obtain the data, report the opposite, or no difference 

(Chau et al., 2020; X. Chen et al., 2020; Hu et al., 2020; Xiao et al., 2020; R. Yang, Gui, & 

Xiong, 2020). Shedding declines in magnitude post symptom onset and is considered by the 
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CDC to have reached negligible levels by 10 days post symptom onset. We assume that 

asymptomatic shedding begins 3 days before what would have been the day of symptom onset 

if symptomatic, or else immediately upon infection, whichever occurs later.  

Using this assumption, we calculated the probability distribution of the day that shedding 

ends, given both the distribution of incubation periods and a distribution of shedding durations. 

For the latter, we combine the asymptomatic and symptomatic shedding durations of (Long et 

al., 2020) but on the basis of CDC advice for isolation, we truncate the distribution so that all 

shedding periods longer than 12 days are recorded as exactly 12 days.  

Note that low dose exposures, e.g. to asymptomatic individuals, may result in longer 

incubation periods (Wei et al., 2020), suggesting that low initial risk scores should have longer 

rather than the shorter quarantines we calculate using this method. We currently ignore this by 

assuming that risk scores primarily capture uncertainty in the likelihood of infection with a 

minimal dose, and not variation in the infecting dose once above the minimal. This is supported 

by genetic evidence in support of an extreme population bottleneck of only 1-8 virions upon 

transmission, despite using clinical samples data that included presumed high-dose 

transmission (Lythgoe et al., 2020). We note that lognormal distributions of incubation periods 

with substantial variance occur even in the absence of variation in dose, due both to variance in 

within-host replication rate and to the stochastics of establishing infection in the first cells 

(Ottino-Loffler, Scott, & Strogatz, 2017). 

To see how the assumption of negligible variance in infecting dose arises from our 

model, note that the exponential dose-response curve we use assumes that each virion has an 

independent probability of initiating infection. Under the resulting Poisson distribution for the 

number of virions responsible for the initial infection, then even for the 30% infection rate of 

household contacts, the probability that infection is initiated with two or more virions is only 5%, 

and with three or more virions is only 0.6%.  
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However, the higher variance in dose explored in Fig. S2 could make initiation with 

multiple virions common enough to matter for high infection probabilities. In this case, our 

simplifying assumption might require overly long quarantines following very high risk exposures. 

Unless the variance is extreme, it will not significantly distort estimated probabilities among the 

range of lower risk exposures.  

 

2.6. Negative Test Results to Shorten Quarantine 

This method can be extended to include the effect of a negative test result on a 

recommended duration of quarantine. Incorporation of negative test results can help exclude 

asymptomatic infection and hence allow for earlier release. From Bayes Theorem, and taking 

the false positive rate as negligible, a negative test result changes the probability of infection 

from 𝑝 to 
ா௣

ሺଵିሺଵିாሻ௣ሻ
, where 𝐸 is the false negative rate. This could be taken as 0.3 (Ai et al., 

2020; Y. Yang et al., 2020) or made dependent on the timing of the test relative to exposure 

(Hellewell et al., 2020; Kucirka, Lauer, Laeyendecker, Boon, & Lessler, 2020). 

Kucirka et al. report a false negative rate as a function of the timing of a PCR test 

relative to symptom onset (Kucirka et al., 2020), but most of the data is post-symptom onset, 

with only a single patient’s data informing false positive rates prior to symptom onset. The data 

of (Hellewell et al., 2020) is more suitable for combining with the distribution of incubation 

periods to calculate the false negative rate as a function of time since exposure, conditional on 

lack of symptoms to date (Petrie, Nurtay, Ferretti, Fraser, & Masel, 2021). Careful treatment of 

shared conditionality on symptom onset day enables such calculations even when there are 

exposures on multiple days (Petrie & Masel, 2021). 

2.7. Multiple Exposures and Total Risk 

Note that strictly speaking when using this latter threshold, our “quarantine” 

recommendations are, through their treatment of the possibility of undiagnosed asymptomatic 
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infection, a combination of quarantine and isolation. Our scheme, by expressing exposures in 

terms of probabilities of infection and infectiousness, naturally lends itself to combining risks 

over multiple exposures. GAEN version 2 sums exposures over 24 periods beginning and 

ending at midnight UTC). To calculate total risk, we combine the probabilities 𝑝௜ of each 

exposure 𝑖, each discounted as described in the section above, as 1 െ∏ ሺ1 െ 𝑝௜ሻ௜ .  

Figs. 3 and 4 illustrate scenarios of a single exposure. When there are multiple exposures, 

quarantine durations are determined with respect to total risk. The risk threshold for initiation 

and completion of quarantine are the same. In other words, risk is treated in an internally 

consistent fashion to maximize the benefit from a given number of recommended quarantine 

days across a population. When fixed quarantine durations are used, exposure must be 

significant on a single day, from which the 14 days are then calculated, and risks are not 

integrated across multiple days.  

3. RESULTS 

Our Gaussian plume model of microbial exposure produces the relationship between 

distance and infection risk shown in Fig. 2. Training on both this and our distance-attenuation 

measurements (as summarized in Methods section 2.2), we chose attenuation bins of ≤ 50dB, 

50-60dB, and 60-70 dB, with weights 2, 1, and 0.5, respectively. GAEN version 2 refers to these 

attenuation bins as Immediate, Near, and Medium. We assign a weight of 0 for >70 dB not 

because there is no residual infection risk, but because the maximum distance for which 

BlueTooth signals are still recorded can be highly device-dependent. 

Using these weights, we calibrate 𝜆 = 3.70 x 10-6 (see Methods section 2.4) to obtain an 

infection probability of 0.30 for household contacts. Note that the best way to calibrate both 

weights and λ would be after the app is rolled out, with manual contact tracers or other opt-in 

data export compiling exposure characteristics and relating them to the rate of subsequent 

infection. While Eq. 5 calculates the function of an expectation rather than an expectation of a 
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function, treating variance in dose amounts to using an “effective” value of 𝜆 (Supplementary 

Materials Section 1). 

Bluetooth attenuation thus only distinguishes a 2-fold difference in dose and hence risk 

between Immediate and Near range, and only 4-fold between Immediate and Medium range. In 

contrast, informed both by TCID50 data (Bullard et al., 2020) and by epidemiological evidence 

(Ferretti, Ledda, et al., 2020), we assign a 10-fold higher risk to exposures to individuals during 

peak shedding than during the margins of the infectious period (Supplementary Materials 

Section 2, illustrated in Fig. 3A). The magnitude of shedding (infectiousness) has received less 

attention than attenuation and exposure duration. It was not widely used by other GAEN apps 

until version 2 pushed the use of two rather than one levels of infectiousness, determined 

relative to symptom onset day, and a working group was convened to recommend settings, 

including input from the current work (Wanger, 2020). 

The relatively low predictive power of Bluetooth attenuation gives rise to diagonal patterns in 

the quarantine recommendations in Fig. 3B. These diagonal patterns mean that quarantine will 

sometimes be recommended following prolonged exposure to a high shedder, even if the 

interaction took place at well beyond the estimated 2 m. distance. However, these exposures 

are not risk-free either, in particular if taking place in an indoor environment, especially in cases 

with heavy breathing, such as exercise environments (Jang et al., 2020) or choir rehearsals 

(Hamner et al., 2020), where aerosols may mix throughout the room and also deposit on 

surfaces. The diagonal pattern reflects the compelling evidence that exposure timing and 

duration also significantly contribute to infection risk. We therefore sometimes recommend 

quarantine recommendation even when Bluetooth attenuation, which is a poor proxy for 

distance, is not low. However, Bluetooth attenuation is nevertheless critical to concluding that an 

interaction occurred at all. 
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So far, we have estimated the probability of infection from an exposure. Each day that 

passes without symptoms provides more information to make infection less likely, and 

eventually also to increase the probability that shedding from an asymptomatic infection has 

ended. To calculate the probability of current or future infectiousness on a subsequent day, 

conditional on no symptoms until that day, we apply a discount factor based both on time 

elapsed without symptoms and also any negative test results. We multiply the probability of 

infection from an exposure by this discount factor to determine the remaining risk of 

infectiousness from a given exposure.  

Traditional quarantine guidelines are binary (either 14 days from date of last exposure, or no 

quarantine required). However, a consistent approach to risk, combined with a desire to impose 

quarantine days in the most efficient manner possible to combat disease spread, suggests that 

individuals should quarantine for longer following a higher-risk exposure (Fig. 4A) (although see 

Methods section 2.5. for a caveat with very high doses). This approach calculates the number of 

days post-interaction that would be needed to drop below a given threshold of probability of 

current or future infectiousness. Exposure scenarios of 30 minutes are illustrated in Fig. 3C.  

We used a 0.13% threshold in Fig. 3C, because it recommends a 14-day quarantine for 

15 minutes in close range with a high shedder. Such an interaction has a 1.10% infection risk, 

which falls below a 0.13% probability of current or future infectiousness after 14 days of 

quarantine during which no symptoms appear. Note that this initial infection risk is broadly 

compatible with the attack rate reported in Taiwan (1.0%, 95% CI: 0.6-1.6%) for those 

interacting with infected individuals in the first 5 days of symptom onset (Cheng et al., 2020), 

which is similar to the 1.9% attack rate (95% CI 1.8%–2.0%) reported in South Korea (Park et 

al., 2020).  

Current advice treats the larger risk of longer exposure the same, making a 0.13% 

threshold more conservative because it is calculated to generate a 14-day quarantine for a 
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minimal duration of exposure. However, this is offset by our assuming maximal shedding in 

calculating this benchmark example. In other words, while this threshold approximates the risk 

tolerance of current advice, the details of who is recommended for quarantine and for how long 

will be different in our quantification of total risk than it would be if we were to combine 

independent binary thresholds for infectious period of transmitters, duration of exposure, and 

distance to produce a quarantine duration of uniform length. This leads to more consistent 

treatment of risk to yield a larger benefit in terms of transmission prevented per day of 

quarantine recommended. Shorter quarantines might significantly reduce the harms imposed by 

quarantine (Brooks et al., 2020), and increase compliance (Soud et al., 2009, although see 

McVernon et al., 2011). Quarantining for 14 days post-exposure may be exceptionally 

challenging for essential workers, individuals without sick leave, or those who would endure 

significant financial hardship due to lost income. 

 The assumed fraction of asymptomatic infections affects the discounting of risk. The 

symptomatic fraction is discounted according to the distribution of incubation periods from 

exposure to symptom onset, while releasing the asymptomatic fraction from quarantine is not 

safe until not only onset, but also significant shedding is over (Methods section 2.5.). Our  

calculations so far assume that 20% of infections are asymptomatic. If we instead assume that 

50% infections are asymptomatic, e.g. in a young age group, even a 15-minute contact 

registered as low attenuation and with peak shedding in the transmitter would require a 16-day 

quarantine to meet a 0.13% threshold (Fig. 4B). However, if an individual were to test negative 

during their quarantine, their conditional probability of current or future infectiousness would 

drop, shortening their quarantine to 13 days for a test with 70% sensitivity (Fig. 4C). 

4. DISCUSSION 

Here we quantify relative risk of infection using experiments to inform the noisy distance-

attenuation relationship, and Monte Carlo simulations to inform both this and other sources of 
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variability and uncertainty that affect risk. We roughly calibrate relative infection risk to absolute 

probability of infection based on limited information from the infection probability of household 

contacts.  

Errors in calibration are likely, but will generally not affect the rank order of risks. For 

example, adjusting the risk threshold of 0.13% for quarantine will have similar effects to 

adjusting the value of λ. Knowledge of absolute vs. relative risk does have some effect once 

some saturation in risk begins to occur, little of which will occur unless much longer durations 

are recorded. 

With 20% cases being asymptomatic and no testing, the risk of current or future 

infectiousness falls ~11-fold over the first 14 days of quarantine. Under GAEN v1.5, risk will 

sometimes differ more between two individuals entering quarantine than when comparing the 

same individual before vs. after a 14-day quarantine. For this reason, our scheme could 

recommend quarantines longer than 14 days. Variation in quarantine length is to be expected – 

if total risk is scored consistently, some quarantines will be longer and others shorter, in order 

for residual infection probability, conditional on time elapsed without symptoms, to fall below a 

threshold.  

The Covid Watch app is currently programmed either to use a threshold on infection risk 

to determine 14-day quarantine onset, or on risk of current and future infectiousness to 

determine both quarantine and duration. Either threshold can be set by public health authorities 

flexibly in the light of external factors such as level of community transmission, jurisdictional 

comfort with uncertainty related to digital exposure notifications, and current public health 

science and recommendations. Communities that have achieved containment might choose to 

set a stricter threshold, testing individuals once or twice to lower their risk following each 

negative test. Communities with high prevalence might raise the threshold if it seems likely that 
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the number of quarantine recommendations being issued by the app will cause it to fall out of 

use, although this issue has not as yet been reported.  

 When a threshold is set well below the probability that a randomly chosen member of 

the population is currently infected, it should be recognized that individuals agreeing to 

download and comply with the recommendations of the app are implicitly agreeing to adhere to 

higher standards than those implied by the current absence of a general stay-at-home order 

(Petrie & Masel, 2020). At the time of writing (January 16, 2021), the rate of current infection is 

~5% in Arizona (Gu, 2020). Note that the maximum possible initial infection risk under GAEN 

version 1 comes to 3.81%. GAEN version 2, by relaxing the 30-minute cap on durations, has 

made possible resolution among higher risks, although it has complicated approaches to 

resolve levels of infectiousness. 

When the infection risk of the average person in the population is high, we believe that 

the best solutions are population-level restrictions and closures (Petrie & Masel, 2020). Even 

when such restrictions are in place, a GAEN app might still have some utility, especially for 

essential workers. A GAEN app could also be an inferior but still useful option should the 

political will for population-level restrictions not exist.  

As the conditional probability of current or future infectiousness (conditioned on the 

exposed individual being asymptomatic) falls throughout their quarantine period, messaging can 

also change. E.g., during the initial high risk days, users might be offered concrete resources 

such as grocery delivery, or the option to quarantine in a specialized facility in order to protect 

other household members, before transitioning to self-quarantine once risks falls. Even with 

self-quarantine, an app might identify the days on which staying home is the highest priority (I.e. 

days where the potential infectivity may be highest). Messaging considerations are discussed in 

Supplementary Material Section 3. 
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We caution that our derived relationship between Bluetooth attenuation and infection risk 

is extremely approximate and model-dependent. For example, our model calibration assumes 

that individuals are stationary and that the distance between phones represents the distance 

between individuals. Additionally, we do not address risk reduction benefits of masks, since 

mask usage is not captured by the app. Mask filtration efficacies vary by material type, 

adequacy of fit, and particle size (Pan, Harb, Leng, & Marr, 2020).  

Because conservatism vs. permissiveness ultimately depends on the risk threshold, 

exclusion of mask wearing constitutes overestimation of the relative risk of masked contact, with 

underestimation of the relative risk of unmasked contact as a corollary. The way to make risk 

assessment more conservative is to decrease in the risk threshold, while keeping upstream 

assumptions as accurate as possible. The inability to accurately assess risk with respect to 

mask use is mitigated by the fact that mask-wearing individuals are likely to have lower risk 

tolerance, making it more acceptable that a lower implicit risk threshold is applied to them. 

Regarding uncertainties in model parameters captured by the app, we have more 

confidence in our settings of infectiousness levels for symptomatic cases, but very little for 

asymptomatic cases. These parameters need to be calibrated with real world data on app users 

who report their app-recorded exposures to manual contact tracing efforts, who then track which 

users go on to test positive, and who are therefore able to mine the data to quantify the 

quantitative relationship between exposure details (duration, attenuation, infectiousness) and 

probability of infection. Transfer of this data to central databases, ideally contact management 

databases, is critical to improve the targeting of quarantine recommendations to those at 

highest risk of being infected. Improved risk calibration will make most efficient use of each day 

of quarantine recommended to reduce transmission. 

Short of this, more quantitative data on infectivity would be extremely valuable. Our 

determination of infectiousness partly relies on the prospective sampling of all individuals in a 
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skilled nursing facility (Arons et al., 2020), where many patients subsequently got sick. Daily 

samples during similar outbreaks could be used to quantify how shedding varies both among 

individuals and as a function of time relative to symptom onset. TCID50 data would be ideal, but 

even Ct values can be valuable for this purpose. However, the fact that the settings we originally 

chose based  infectivity data agreed with later and improved epidemiological approaches is 

encouraging (Ashcroft et al., 2020; Ferretti, Ledda, et al., 2020).  

Without the extended durations provided in version 2 of GAEN, our default calibrations 

will not recommend quarantine (Fig. 3B) or extended quarantine (Fig. 3C) for contact with less 

infectious individuals. However, with the duration cap lifted in GAEN version 2, 43 minutes in the 

≤50 dB range, 1.43 hours in the 50-60 dB range, or 2.85 hours in the 60-70 dB range with an 

individual of transmission risk level 2 would be sufficient to trigger quarantine (Figure 3). 

However, GAEN version 2 provides only two levels of infectiousness, and implementing more 

as Germany has done (Klingbeil, 2020b, 2020a), requires managing the considerable 

complexities of separate calculations for shared key servers that need to be interoperable 

(Justus Benzler, personal communication). 

. Limited durations and infectiousness information have been driven by privacy 

concerns, but this must be weighed against the significant ethical considerations in favor of 

efficient allocation of quarantine (Singer & Masel, 2020). In Supplementary Section 3, we 

suggest an alternative method to preserve anonymity, which is to conceal all exposure details 

from the user’s view. When using variable quarantine duration, this also effectively conceals the 

date of exposure. 

Our framework can be used not only to guide recommendations for who should 

quarantine and for how long, but also to allocate associated resources including quarantine 

facilities, grocery delivery and other social support, and priority for access to scarce tests. Both 

manual contact tracing and digital exposure notification require rapid testing to be effective. 
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Given limited tests, targeting those at highest risk of infection will do the most good in finding 

new positive cases who are early enough in the course of infection for these approaches to 

stem transmission the most.  

 

DATA AVAILABILITY: Supplementary Data Table I provides the alpha test data used to 

calibrate our weights. 

 

CODE AVAILABILITY: Code and necessary data are accessible under a Creative Commons 

license at https://github.com/awilson12/risk_scoring 
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Fig 1. Assessment of the probability of infection following a single exposure. The calibration 

work is reported in this manuscript, and the procedures on the Transmitter’s and Receiver’s 

phones are part of the Covid Watch app. The terms “Transmission risk level” and “Transmission 

risk value” are as used in GAEN v1. In GAEN v2, it is necessary to repurpose “report type” 

metadata associated with Temporary Exposure Keys and combine it with the two provided 

levels of “infectiousness” in order to obtain up to 8 levels of infectiousness (Klingbeil, 2020b, 

2020a). 
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Fig 2. Expected dose and corresponding probability of infection for a 30-minute exposure, 

estimated using our Monte Carlo procedure as a function of distance from an infected individual. 

The discontinuity at 1 meter indicates our assumption that this distance threshold indicates face-

to-face interaction. Faded points show doses and infection risks that would be estimated if a 

face-to-face or non-face-to-face interaction assumption were consistent across distances. The 

bolded points indicate what we assumed in our framework. Note that Bluetooth information likely 

contains more risk information regarding whether an interaction was face-to-face than it does 

about risk as a function of the distance at which either a face-to-face or a non-face-to-face 

interaction takes place. The WHO close contact definition invoking 1 meter also invokes face-to-

face interaction (World Health Organization, 2020). The same is true, only with 2 meters, for 

European guidance (European Centre for Disease Prevention and Control, 2020) The Centers 

for Disease Control and Prevention (CDC)’s definition departs from this in omitting reference to 

face-to-face when referring to interactions occurring within 6 feet  (Centers for Disease Control 

and Prevention, 2020).  
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Fig 3. Examples of quarantine recommendations using a threshold for infection risk (B) vs. for 

current or future infectiousness (C). A) Transmission risk levels 1-6 are used to capture the 10-
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fold range of relative infectiousness on different days as a function of timing relative to symptom 

onset. Evidence from both transmission pairs and TCID50 measurements is reviewed in the 

Supplementary Materials Section 2. B) The minimum length interaction needed to trigger 14-day 

quarantine is a function both of Bluetooth signal attenuation and of infectiousness. Approaches 

that neglect the latter correspond to a single row of 15 minutes, and potentially a second row of 

30 minutes. Shaded cells indicate that a 30-minute interaction would be insufficient to trigger 

quarantine, creating issues for GAEN version 1. C) Number of quarantine days recommended 

following a 30-minute interaction.  
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Fig 4. Applying a consistent risk tolerance for current or future infectiousness causes quarantine 

duration to be a function of initial risk, of the tolerated degree of risk, of the fraction of infections 

that are assumed to be asymptomatic, and of any negative test results. A) Initial infection risk is 

1.10% following 15 minutes of close contact with an individual around the time of symptom 

onset. With a 20% asymptomatic fraction, a 14-day quarantine is recommended under a 0.13% 

risk threshold, but only a 7-day quarantine under a 0.5% threshold. Following a lower risk 

exposure with 0.2% infection risk, quarantine would be 5 days with the stricter threshold, and 

there would be no quarantine with the less strict. B) Quarantine must be longer to mitigate a 

high likelihood of asymptomatic infection in the exposed individual. C) A negative test result, 

shown here as taking place on Day 5, can shorten quarantine, in particular mitigating the risk of 

asymptomatic infection. We apply Bayes theorem with 70% sensitivity and 100% specificity. 

Note that widespread availability of testing would allow much stricter risk thresholds to be used. 

Day 0 is included in the total quarantine times. 
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Quantifying SARS-CoV-2 infection risk within the Google/Apple exposure notification 
framework to inform quarantine recommendations 
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Supplementary Table 1. Parameter values used by app to calculate risk 

Parameter Description Distribution or Point Value References 
𝑆 Viral shedding rate in 

arbitrary units that are 
proportional to viral 
copies/m3 

101 5 days pre- or 8-9 days post-symptom 
onset 

10-fold range 
informed by 

TCID50 
measures1, 

timing 
informed by1–4 
 

101.2 6-7 days post-symptom onset, or 
asymptomatic within 2-3 days of test 

101.4 4 days pre- or 5 days post-symptom 
onset, or asymptomatic within 1 day of 

test 
101.6 3 days pre- or 4 days post-symptom 

onset, or asymptomatic on test day 
101.8 2 days pre- or 3 days post-symptom 

onset 
102 1 day pre- to 2 days post-symptom onset 

𝑇low, 𝑇med, 
𝑇high 

Duration of exposure Durations for Bluetooth attenuations ≤50dB, 50-
60dB, 60-70dB, and >70dB are multiplied by 

weights 2, 1, 0.5, 0 respectively. 

This study 

λ Probability that one 
viral particle establishes 
infection × conversion 
from arbitrary units 

3.70 x 10-6 Calibrated 
from 

secondary 
attack rate of 

household 
contacts = 

30%.5 
Fraction of 
asymptomati
c infections 

Higher values lead to 
longer quarantine 

20% for a population, but depends on age 6 

Incubation 
period 

Days until symptom 
onset  

Probabilities for {0,1,2…} days = {0,4E-05, 
0.011842, 0.088541, 0.181965, 0.207344, 
0.174797, 0.123761, 0.081488, 0.051057, 
0.031469, 0.018734, 0.011235, 0.006786, 
0.00422, 0.002518, 0.001626, 0.000978, 
0.000592, 0.000364, 0.000231, 0.00014, 
0.000093, 0.000062, 0.00004, 0.000025, 
0.000017, 0.000011, 0.000008} 

7 

Asymptomati
c shedding 
duration  

We assume that 
asymptomatic shedding 
begins 3 days before 
what would have been 
the day of symptom 
onset if symptomatic, or 
else immediately upon 
infection, whichever 
occurs later, and that 
shed viral particles are 
nonviable beyond 12 
days  

Cumulative probabilities for days 
{5,6,7…}={0.054054054,0.094594595,0.1216216

2,0.148648649, 
0.189189189,0.21621621,0.256756757,1} 

8,9 

Risk 
threshold 

Set by public health 
agency, cognizant of 
limitations in current 
calibration of λ 

Benchmark of 0.5% for probability or infection or 
0.13% for probability of current or future 

infectiousness 

This study 
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Supplementary Table 2. Parameter values used by us to calibrate parameter values in Table 1 

Parameter Description Distribution or Point Value References 
𝑋 Exhalation rate 

(m3/day) 
Normal(16.3, 4.15), left-truncated at 9 10 

𝐴 Cross-sectional area of 
the mouth. Used to 
calculate the breath 
velocity, 𝑈 from 𝑋  

Uniform(23, 59) (cm2) 11 

𝐼௬ “Lateral intensity” of 
plume deviation  

Uniform(0.08, 0.25) 12 

𝐼௭ “Vertical intensity” of 
plume deviation 

Uniform(0.03, 0.07) 

𝐼 Inhalation rate (m3/day) Normal(16.3, 4.15), left-truncated at 9 10 
𝜌 Distance Sampled from attenuation-distance 

dataset to inform weights.  
This study 

φ Angle between the z-
axis and the xy-plane 

Used while informing weights. If 𝜌≤ 1m, 
φ= π/2,If 𝜌 > 1m,φ randomly sampled 
from Triangular(min= π/4, mode= π/2, 

max= 3π/4) 

1 m. cutoff for 
face-to-face 
interaction 

informed by 13 
θ Angle between x and y 

axes  
Used while informing weights. If 𝜌≤ 1m, θ 
= 0,If 𝜌 > 1m, θ randomly sampled from 

Uniform(0, 2π) 

1 m. cutoff for 
face-to-face 
interaction 

informed by 13 
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Figure S1. Attenuation data cleaning 

*A few attenuation values were implausibly low, always representing one such increment per 
device per series of attenuation values corresponding to a single test. We believe this is 
because these testers used the dropdown menu to turn off Bluetooth rather than going to 
Settings, and this only disables existing Bluetooth connections, causing an anomalously strong 
signal to be recorded during the period in which the test was being set up. We manually 
annotated these, totaling 144 datapoints, and excluded them from further analysis, yielding 
1414 datapoints.  

**Distance is not needed for the 128 datapoints taken in the presence of a risk-blocking barrier 
(e.g. closed car doors or walls), so points marking “N/A” for distance were not excluded for any 
of these. 

1.0 Variance in Dose 

Our dose response curve is actually the probability of infection as a function of the expectation 
of dose, rather than dose. To consider the effect of variance in dose, we note that while 
𝐸ൣ1 െ 𝑒ିఒ஽൧ is analytically intractable with respect to a lognormally distributed dose, there is a 
viable saddle point approximation described by Rojas-Nandayapa (2008).14 While Eq. 5.6 in 
Rojas-Nandayapa (2008) contains a typo, we use the method given to derive 
 

1 െ 𝐸ൣ𝑒ିఒ஽൧ ൌ 1 െ ൤ ଵ

ඥଵା௅ௐሺఏఙమ௘µሻ
𝑒𝑥𝑝 ቀ

௅ௐమ൫ఏఙమ௘µ൯ାଶ௅ௐ൫ఏఙమ௘µ൯

ଶఙమ
ቁ൨,    (6) 

 
where 𝐿𝑊ሺ𝑥ሻ is the Lambert-W function.  
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Using this approximation, or the associated importance sampling method15 which yields similar 
results, we can compare the shape for the dose-response curves and consider whether an 
“effective” 𝜆 will perform acceptably. Ct counts in Long et al. (2020)8 have a standard deviation 
~4, representing an upper bound of a 16-fold difference in viral load, because a difference of 1 
Ct in PCR measures represents at most a 2-fold difference in underlying viral load, and because 
individuals are not sampled at exactly comparable times with respect to the timecourse of 
shedding. However, variance in dose from causes other than infectiousness, e.g. the intimacy of 
contact, is not included. With a standard deviation representing a 16-fold difference, we find that 
by using a value 3/10th of 𝜆 ൌ  3.70 𝐸 െ 06, we can super-impose the two curves up to 20% 
infection probability (Figure S2). 
 
 

 
Figure S2. Although our dose-response curve takes the function of an expectation, for low 
infection probabilities the effect of this is to change the interpretation of the value of 𝝀, which is 
3.70 x 10-6 when using Eq. 5 but 0.3 times this value when using Eq.6 with a distribution of log-
dose with standard deviation corresponding to a 16-fold difference in dose. 

2.0 Infectiousness  

 
Infectiousness in the GAEN API is a proxy for the magnitude of viral shedding. In both version 1 
and version 2 of the Covid Watch app, it is set on the basis of a simple questionnaire 
administered to users reporting a positive diagnosis. We use this to inform expected shedding 𝑆. 
Infectiousness can be encoded by the 8 “Transmission risk levels” in GAEN version 1, and by 
the two non-zero “infectiousness” levels in GAEN version 2. By repurposing “report type” 
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metadata associated with Temporary Exposure Keys, 8 levels of infectiousness have also been 
implemented in Germany’s version 2 Corona-Warn-App,16,17 requiring separate calculations for 
shared key servers that need to be interoperable (Justus Benzler, personal communication). 
 
The first question asked by the Covid Watch app to inform infectiousness is, "What day did your 
symptoms start"? This question has since been made integral to the function of GAEN version 
2. A curve fit to known transmission events suggests peak transmission around the day of 
symptom onset.18,19  Estimates of transmission rates as a function of time relative to symptom 
onset have been used to estimate infectiousness.20 However, infectiousness risk as estimated 
post-symptom onset from transmission rates might be confounded with behavioral changes with 
symptom onset, leading to the underestimation of post-symptomatic infectiousness.  
 
A second proxy for infectiousness comes from quantitative polymerase chain reaction (PCR). 
However, this may reflect non-infectious viral remnants, especially late in the course of disease, 
where the proportion of culture-positive PCR results tends to decrease.1,2 We note that this 
decline is also expected from a simple dose-response curve, where the probability of culture-
positivity decreases as the amount of shedding decreases late in infection, i.e. the decline in 
infectivity might be quantitative rather than qualitative. 
 
Data in which virus was successfully cultured from patient samples is the clearest metric of 
post-symptom onset infectivity. Arons et al. 2 took prospective samples throughout a nursing 
home, and were able to culture virus from six days before symptom onset until nine days after 
symptom onset, with little quantitative trend in shedding rate conditional on a positive test. In 
hospitalized patients, Wölfel et al. 3 were unable to isolate live virus from cultures more than 8 
days post symptom onset, despite PCR evidence of high shedding. In one case report, live virus 
has been isolated 18 days after symptom onset, but this seems to be an outlier.21 Bullard et al. 1 
quantified both TCID50 and PCR for 7 days post symptom onset, and saw an approximately 10-
fold decline in infectious dose. We note that culture methods may not be sensitive enough to 
capture low concentrations.2 More studies measuring infectivity in a quantitative manner are 
needed, particularly in populations that represent a broader base of cases of varying ages and 
health status. Encouragingly, while our infectiousness settings based on culture data did not 
agree with initial epidemiological estimates of transmission,22 they agreed after corrections to 
the latter were made.18  
 
A final source of information comes from detailed Taiwanese contact tracing23, who found a 
1.0% symptomatic attack rate (95% CI 0.6-1.6%) for those exposed within five days of symptom 
onset, and 0% (95% CI 0–0.4%) for those exposed after. Risk from exclusively pre-symptomatic 
exposure was 0.7% (95% CI 0.2%-2.4%). German contact tracing also points to highest 
transmission risk around the time of symptom onset.24  
 
Here we propose the use of 6 infectiousness levels in the GAEN API, evenly spaced on a log 
scale between 10 and 100 in arbitrary units, reserving the use of 2 levels for future functionality 
e.g. regarding superspreaders. Infectiousness levels could also be manipulated for testing 
purposes, e.g. to help learn, if individuals voluntarily share exposure details centrally, how 
infectiousness varies in the real world as a function of symptomatic status and timing. We note 
that most GAEN version apps launched with only one level of infectiousness, and that GAEN 
version 2 is designed in anticipation of the use of only two the use of only two. While Germany 
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has succeeded in repurposing metadata to provide more, this increases the complexity of 
interoperability. Given that a systematic 10-fold difference in TCID50 has been observed, 
supported by epidemiological data, more than 2 levels seem warranted, and making them an 
intrinsic part of the GAEN system would increase the likelihood of their being used. 
 
Based on a holistic reading of the four sources of evidence described above, we assign the 
maximum level of 6 from one day pre-symptom onset to two days post-symptom onset. Five 
days before symptom onset we assign level 1, four days before we assign level 3, three days 
before level 4, and two days before level 5. Three days after symptom onset we assign level 5, 
four days after level 4, five days after level 3, 6-7 days after level 2, and 8-9 days after level 1. 
Our termination at 9 days is based on current CDC guidance.9 Pre-symptomatic infectiousness 
assignments can be further refined in cases when the date of exposure is known, given that the 
infectious period is longer for longer incubation periods.19 
 
For users who report a positive test but no symptoms, there is likely a reason they were tested, 
and so we ask for the most likely day of exposure, if known. If provided, we assume that 
shedding did not begin until two days after exposure, at the earliest. We also ask for the date of 
sampling for the positive test (which can be reported by the healthcare provider rather than the 
app user) and assume peak shedding at around this time. Subject to the constraint from day of 
exposure, we assign infectiousness 4 to the day of the test, 3 to the day before and after, and 
level 2 to dates between 2 and 3 days of the test. There is some evidence that viral shedding is 
lower in asymptomatic vs. symptomatic cases,25 while another study indicates the shedding 
magnitudes may be similar.26 Note that we assume that those with no symptoms at the time 
they receive a positive test result are asymptomatic rather than pre-symptomatic. We 
recommend allowing app users to report symptom onset after the fact and trigger a change to 
previously reported infectiousness. GAEN version 2 TEK revocation functionality makes this 
possible. 

3.0 Considerations in recommending and messaging variable quarantine durations 

 
The need for consistent guidance to the public is an important consideration for implementing 
tailored risk scoring and modified quarantine recommendations. If for the sake of a consistency, 
a public health authority is not willing to authorize variable quarantine recommendations, as was 
the case in Arizona when this work was conducted, but only 0 or 14 day quarantines from time 
of the last individually significant exposure, then the threshold for going into quarantine at all 
would need to become more strict in order to maintain the same overall risk among the 
population under quarantine. In other words, retaining the same average probability of current or 
future infectiousness among the quarantined population would require some exposed 
individuals to no longer go into quarantine at all, in addition to others lengthening their 
quarantine out to 14 days. With a binary 0 or 14 day quarantine, the amount by which disease 
transmission is prevented per day of quarantine will be lower. Considerations are similar for 
alternative CDC guidelines27 for 10 day quarantine or 7 day given a negative test in the last 48 
hours. 
 
Alternatively, to avoid mixed messaging regarding quarantine even while the app recommends 
quarantine of variable duration, one option is to suppress all details about individual exposures 
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from the user’s view, including their date. This has the additional advantage of decreasing the 
risk that users will be able to guess who exposed them, further preserving privacy.  
 
The app can communicate the risk of infectiousness either as a simple recommendation for 
which days to quarantine, or also as a quantitative score in order to “game-ify” the process of 
quarantine and give users positive feedback for each day they succeed in remaining at home 
until risk falls to a lower level. Further research is needed to assess the most effective 
messaging strategies. E.g., the app could display both current and projected risk of 
infectiousness on a simple scale of 1 to 10, so users can see how that risk will fall with each day 
of quarantine. This visualization might change perceptions. E.g., an individual who wants to 
comply with a 14-day quarantine, but does not feel able to, might rush out to get groceries 
before starting their quarantine in earnest, while shedding virus pre-symptomatically. Visualizing 
projected risk into the future would then give the message that if the exposed individual can only 
make do for one more day before leaving the home for essentials, that will help, because if they 
do not develop symptoms, their risk will be lower even after a single day longer. Risk 
communication in an app could focus on day to day coaxing of this form. Basing quarantine 
recommendation on a threshold for the expected number of onward transmissions per day is 
more socially optimal than a threshold on the conditional probability of infectiousness as 
described here.28 
 
Conflicting messages can still arise if manual contact tracers trace an individual who also 
received an exposure notification. In this case, it is likely that the two recommend different end 
dates for quarantine. While this is to be expected from our procedure for recommending variable 
quarantine durations, we note that even if the app were to issue 14 day quarantine 
recommendations only, it could still arise because the individual has been exposed more than 
once, on different days, and the manual contact tracer is following up an infected individual who 
may not have used the app. Until there is reliable data on app performance, we recommend that 
the manual contact tracer’s protocol should override whatever the app says. Should the app turn 
out to perform well, an alternative procedure might eventually be to go with whichever protocol 
recommends the longer quarantine. An intermediate possibility is for the manual contact tracer 
to ask for exposure notification details, to determine whether it may be a different exposure to 
the one being manually traced. There may also be conflicts in protocols for the timing of testing. 
 
Note that with symptom onset sometimes as early as two days after exposure, and given the 
possibility of pre-symptomatic shedding, and the possibility of confusion regarding who infected 
whom, we currently ignore the possibility that shedding might not yet have begun. Current 
testing turnaround times are mostly long, making this reasonable. However, if same-day tests 
become more widely available, our approach could be extended to directly communicate the 
risk of current infectiousness, whose calculation is described in Petrie & Masel (manuscript in 
prep.)29, rather than as is currently the case, the risk of current or future infectiousness. A 
significantly lower risk of infectiousness will be present on the day of exposure and perhaps also 
the day after. Delays in going into public to prepare for a long quarantine could inadvertently 
lead to pushing individuals past the latent period before they go into public; displaying a full 
projected timeline of the projected risk of infectiousness could avert this, at the risk of 
significantly more complex messaging than “stay home until Friday”. The use of current 
infectiousness would prevent the app from occasionally recommending quarantines of less than 
5 days when initial risk is already very near the threshold.  
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2020.07.17.20156539doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156539
http://creativecommons.org/licenses/by/4.0/


 

   
 

47 
 

References 

 
1 Bullard J, Dust K, Funk D, et al. Predicting infectious SARS-CoV-2 from diagnostic 

samples. Clin Infect Dis 2020; 71:2663-2666. DOI:10.1093/cid/ciaa638. 
2 Arons MM, Hatfield KM, Reddy SC, et al. Presymptomatic SARS-CoV-2 infections and 

transmission in a skilled nursing facility. N Engl J Med 2020; 382: 2081–90. 
3 Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized 

patients with COVID-2019. Nature 2020; 581: 465–9. 
4 Ashcroft P, Huisman JS, Lehtinen S, et al. COVID-19 infectivity profile correction. Swiss 

Med Wkly 2020; 150: w20336. 
5 Curmei M, Ilyas A, Evans O, Steinhardt J. Estimating household transmission of SARS-

CoV-2. medRxiv 2020. DOI:10.1101/2020.05.23.20111559. 
6 Buitrago-Garcia DC, Egli-Gany D, Counotte MJ, et al. Asymptomatic SARS-CoV-2 

infections: a living systematic review and meta-analysis, version 3. medRxiv 2020. 
DOI:10.1101/2020.04.25.20079103. 

7 Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 
(CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann 
Intern Med 2020; 172: 577–82. 

8 Long Q, Tang X, Shi Q, et al. Clinical and immunological assessment of asymptomatic 
SARS-CoV-2 infections. Nat Med 2020; 26: 1200–4. 

9 Centers for Disease Control and Prevention. Duration of Isolation & Precautions for 
Adults. 2020. https://www.cdc.gov/coronavirus/2019-ncov/hcp/duration-
isolation.html#cecommendations (accessed July 27, 2020). 

10 U.S. Environmental Protection Agency. Exposure Factors Handbook 2011 Edition 
(EPA/600/R-09/052F). Washington, DC, 2011 
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252. 

11 Leckie JO, Naylor KA, Canales RA, et al. Quantifying Children’s Microlevel Activity Data 
from Existing Videotapes” by Exposure Research Group at Stanford University for the 
U.S. Environmental Protection Agency. 2000 
https://cfpub.epa.gov/ols/catalog/advanced_full_record.cfm?&FIELD1=AUTHOR&INPUT
1=FERGUSON AND C. AND 
R.&TYPE1=ALL&LOGIC1=AND&COLL=&SORT_TYPE=MTIC&item_count=5. 

12 Western Engineering. Self-study notes - GAUSSIAN PLUMES. 
https://www.eng.uwo.ca/people/esavory/Gaussian plumes.pdf (accessed June 7, 2020). 

13 Zhang N, Su B, Chan PT, Miao T, Wang P, Li Y. Infection spread and high-resolution 
detection of close contact behaviors. Int J Environ Res Public Health 2020; 17: 1445. 

14 Rojas-Nandayapa L. Risk Probabilities: Asymptotics and Simulation. 2008. Aarhus 
University. Retrieved from https://pure.au.dk/portal/en/publications/risk-
probabilities(8d90e9a0-db1a-11dd-9710-000ea68e967b)/export.html. 

15 Asmussen S, Jensen JL, Rojas-Nandayapa L. On the Laplace Transform of the 
Lognormal Distribution. Methodol Comput Appl Probab 2016; 18: 441–58. 

16 Klingbeil T. corona-warn-app / cwa-documentation / images / risk_calculation / 
server_encoding.pdf. GitHub. 2020. https://github.com/corona-warn-app/cwa-
documentation/blob/master/images/risk_calculation/server_encoding.pdf (accessed Jan 
6, 2021). 

17 Klingbeil T. corona-warn-app / cwa-documentation / images / risk_calculation / 
client_interpretation.pdf. GitHub. 2020. https://github.com/corona-warn-app/cwa-
documentation/blob/master/images/risk_calculation/client_interpretation.pdf (accessed 
Jan 6, 2021). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2020.07.17.20156539doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156539
http://creativecommons.org/licenses/by/4.0/


 

   
 

48 
 

18 He X, Lau EHY, Wu P, et al. Author Correction: Temporal dynamics in viral shedding and 
transmissibility of COVID-19. Nat Med 2020; In print. 

19 Ferretti L, Ledda A, Wymant C, et al. The timing of COVID-19 transmission. medRxiv 
2020. DOI:10.1101/2020.09.04.20188516. 

20 CWA Team. corona-warn-app / cwa-documentation / transmission_risk.pdf. GitHub. 
2020. https://github.com/corona-warn-app/cwa-
documentation/blob/master/transmission_risk.pdf (accessed Jan 6, 2021). 

21 Liu W Da, Chang SY, Wang JT, et al. Prolonged virus shedding even after 
seroconversion in a patient with COVID-19. J Infect 2020. 81: 318-356. 
DOI:10.1016/j.jinf.2020.03.063. 

22 He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of 
COVID-19. Nat Med 2020; 26: 672–5. 

23 Cheng HY, Jian SW, Liu DP, Ng TC, Huang WT, Lin HH. Contact tracing assessment of 
COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before 
and after symptom onset. JAMA Intern Med 2020; 180: 1156–63. 

24 Böhmer MM, Buchholz U, Corman VM, et al. Investigation of a COVID-19 outbreak in 
Germany resulting from a single travel-associated primary case: a case series. Lancet 
Infect Dis 2020; 20: 920-928. DOI:10.1016/S1473-3099(20)30314-5. 

25 McDonald J. Unpacking WHO’s Asymptomatic COVID-19 Transmission Comments. 
FactCheck.org. 2020. https://www.factcheck.org/2020/06/unpacking-whos-asymptomatic-
covid-19-transmission-comments/ (accessed June 16, 2020). 

26 Lavezzo E, Franchin E, Ciavarella C, et al. Suppression of a SARS-CoV-2 outbreak in the 
Italian municipality of Vo’. Nature 2020; 584: 425-429. DOI:10.1038/s41586-020-2488-1. 

27 Centers for Disease Control and Prevention. Options to Reduce Quarantine for Contacts 
of Persons with SARS-CoV-2 Infection Using Symptom Monitoring and Diagnostic 
Testing. 2020. https://www.cdc.gov/coronavirus/2019-ncov/more/scientific-brief-options-
to-reduce-quarantine.html (accessed Jan 10, 2020). 

28 Petrie J, Masel J. The economic value of quarantine is higher at lower case prevalence, 
with quarantine justified at lower risk of infection. medRxiv 2020. 
DOI:10.1101/2020.11.24.20238204. 

29 Petrie J, Masel J. Quarantine Optimization. 2021; In preparation. 
  
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2021. ; https://doi.org/10.1101/2020.07.17.20156539doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156539
http://creativecommons.org/licenses/by/4.0/

