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Abstract

As we begin to recover from the COVID-19 pandemic, a key question is if we can avert such disasters
in future. Current surveillance protocols generally focus on qualitative impact assessments of viral
diversity1. These efforts are primarliy aimed at ecosystem and human impact monitoring, and do
not help to precisely quantify emergence. Currently, the similarity of biological strains is measured
by the edit distance or the number of mutations that separate their genomic sequences2–6, e:g: the
number of mutations that make an avian flu strain human-adapted. However, ignoring the odds of
those mutations in the wild keeps us blind to the true jump risk, and gives us little indication of which
strains are more risky. In this study, we develop a more meaningful metric for comparison of genomic
sequences. Our metric, the q-distance, precisely quantifies the probability of spontaneous jump by
random chance. Learning from patterns of mutations from large sequence databases, the q-distance
adapts to the specific organism, the background population, and realistic selection pressures; demon-
strably improving inference of ancestral relationships and future trajectories. As important application,
we show that the q-distance predicts future strains for seasonal Influenza, outperforming World Health
Organization (WHO) recommended flu-shot composition almost consistently over two decades. Such
performance is demonstrated separately for Northern and Southern hemisphere for different subtypes,
and key capsidic proteins. Additionally, we investigate the SARS-CoV-2 origin problem, and precisely
quantify the likelihood of different animal species that hosted an immediate progenitor, producing a
list of related species of bats that have a quantifiably high likelihood of being the source. Additionally,
we identify specific rodents with a credible likelihood of hosting a SARS-CoV-2 ancestor. Combining
machine learning and large deviation theory, the analysis reported here may open the door to actionable
predictions of future pandemics.

INTRODUCTION

With estimated mortality rates significantly higher compared to that of the seasonal flu, the current COVID-
19 pandemic is one of the most devastating disasters of the last 100 years. As researchers strive to develop
effective therapeutics and vaccine(s) to combat the SARS-CoV-2 virus, a looming question is if we can be better
prepared for the next pandemic. Can we preempt emergence of novel pathogens with an actionable timeline to
avert such global devastation the next time around? Current surveillance paradigms, while crucial for mapping
disease ecosystems, are limited in their ability to address this challenge. Habitat encroachment, climate change,
and other ecological factors7–9 unquestionably drive up the odds of zoonotic spill-over. Nevertheless, efforts at
tracking and modeling these effects till date have not improved our ability to quantify future risk of emergence of
a specific strain from a specific host1. Existence of viral diversity in hosts such as bats or swines or wild ducks,
while important, might not transparently map to emergence risk, and does not address the problem at hand.

Here we argue that a key hurdle to making progress in this direction has been the missing ability to quantitatively
assess the risk of emergence from strains that circulate in the wild. The state of the art urgently needs the tools
necessary to numerically compute the likelihood of a biological sequence replicating in the wild to spontanously
give rise to another by random chance. Indeed, currently the similarity between two genomic sequences is
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Fig. 1. Key insights: Ability to Quantify Risk and Rank-order Strains. Panel a. Using sequence variations observed in
large databases, we distill evolutionary constraints on a genomic sequence to induce a biology-aware metric for comparing
subtle differences in mutating sequences. This metric (q-distance) adjusts to specific organisms, background populations
and selection pressures, and reflects the true likelihood of a spontaneous jump from one sequence to the other. We can
use this sequence level metric to compute distances between a sequence and a population, and two populations. Panels
b and c illustrates that we can calculate bounds on the exact likelihood of a spontaneous jump between strains (panel b)
and rank-order strains observed in a diverse set of hosts to accurately model future emergence risk (panel c).

measured by how many mutations it takes to change one to the other. Such a measure does not tell us anything
about the true jump-risk. In reality, the odds of one sequence mutating to another is a function of not just how
many mutations they are apart to begin with, but also how specific mutations incrementally affect fitness. Without
taking into account the constraints arising from the need to conserve function, assessing the jump-likelihood is
open to subjective guesswork. Here, we show that a precise calculation is possible: provided the similarity of
the sequences is evaluated via a new biology-aware metric, which we call the q-distance.

As applications of the q-distance, we show that 1) learning from the mutational patterns of key surface proteins
Hemaglutinnin (HA) and Neuraminidase (NA) for Influenza A (selected for their known roles in cellular entry and
exit10), we can improve forecasts for the future dominant circulating strain under seasonal antigenic drift. We
outperform WHO’s recommendations for the flu-shot composition almost consistently over past two decades,
measured as the number of mutations that separate the predicted from the dominant circulating strain in the
target season. Our recommendations repeatedly end up being closer, illustrating the potential of our approach
to correctly predict evolutionary trajectories. And, 2) using coding sequences for the surface spike (S) protein,
again selected for its known role in cellular entry11, we investigate the SARS-CoV-2 origin problem. We quantify
the likelihood of viral strains collected across disparate host species to give rise to the observed SARS-CoV-2
strains, and offer new insights backed by precise numerical assessments not possible with existing tools.
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Fig. 2. Qnet Computation Scheme. Panel a. As an example, beginning with aligned sequences, we calculate a conditional
inference tree for index 1274, which involves indices 1064, 1445, 197 as predictive features. These features are automatically
selected by the algorithm, as being maximally predictive of the base at 1274. Then, we compute predictors for each of these
predictive indices, e:g: we show the inference tree computed for index 1064, which involves index 1314 and 339 as features.
Continuing, we find that the predictor for 1314 involves indices 1263, 636 and 21, and that for 1263 involves 1314, 667
and 313. Note that recursive dependencies arise automatically: the predictor for 1263 depends on 1314, and that for 1314
depends on 1263. Panels b-c show Qnet dependency graphs for SARS-CoV-2 spike protein and Influenza A HA respectively,
illustrating the distinct patterns of mutational constraints inferred. Both HA in Influenza A and the spike protein in SARS-CoV-2
are implicated in viral entry into host cells, and crucial for host specificity of infections. Additionally, the inferred structures
underscore the significantly more complex dependencies in SARS-CoV-2 compared to Influenza A.

MATERIAL & METHODS

Aiming to validate our metric in the context of viral evolution, we begin by collecting relevant coding sequences
pertaining to key genes implicated in cellular entry from two public databases (NCBI and GISAID, See Tab. III for
tally of total number of distinct sequences used). In this study we use in excess of 30; 000 distinct sequences for
betacoronaviruses and Influenza A, focusing on three genes/proteins. For each organism, we uncover a network
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Fig. 3. Seasonal Predictions for Influenza A. Relative out-performance of Qnet predictions against WHO recommendations
for H1N1 and H3N2 subtypes for the HA and NA coding sequences and over the northern and southern hemispheres.
The negative bars (red) indicate the reduced edit distance between the predicted sequence and the actual dominant
strain that emerged that year. We see that for the overwhelming majority of seasons, we outperform WHO. Note that the
recommendations for the northern hemisphere are given in Februrary, while that for the southern hemisphere are given at
teh end of December the previous year, keeping in mind that the flu season in the south begins a few months early. Panels
e,f,k,l show further possible improvement in NA predictions if we return 3 recommendations instead of one each year.

of dependencies between individual mutations revealed through subtle variations of the aligned sequences.
These dependecies define our organism-specific model referred to as the quasi-species network or the Qnet
(see Fig. 1 and 2). And the q-distance, informed by the dependencies modeled by the inferred Qnets, adapts
to the specific organism, allelic frequencies, and nucleotide variations in the background population. The role of
epistatic effects in phenotypic change is well-recognized12; here we factor in such effects in a numerically precise
manner to compute bounds on the likelihood of specific strains giving rise to target variants (See Fig. 1b-c).
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TABLE I
OUT-PERFORMANCE OF QNET RECOMMENDATIONS OVER WHO FOR INFLUENZA A VACCINE COMPOSITION

subtype gene hemisphere Two decades (%
Improvement)

One decade (%
Improvement)

H1N1 HA North 31.75 81.32
H1N1 HA South 33.71 72.04
H1N1 HA avg 32.73 76.68
H3N2 HA North 39.39 41.38
H3N2 HA South 31.00 28.81
H3N2 HA avg 35.20 35.10
H1N1 NA North 22.09 60.00
H1N1 NA South 10.81 50.79
H1N1 NA avg 16.45 55.40
H3N2 NA North 28.38 45.95
H3N2 NA South 24.69 47.73
H3N2 NA avg 26.53 46.84

Clearly in any surveillance effort, we may only observe sequences of high fitness, and only a small subset of
viable sequences are ever isolated. A single 10KB observed equence represents a single observation in a 10,000
dimensional space; thus we might never collect enough data points to exhaustively model the set of epistatic
dependencies for any realistic genome length. Nevertheless, our results indicate that the scientific community
has now accumulated enough sequences for us get meaningful results, at least for some RNA viruses with high
mutational rates that reveal enough of the hidden constraints. Admittedly this is but one piece of the puzzle:
putting numbers in place of qualitative judgments does not automatically resolve the complex modeling problem
of emergence13–20. Notwithstanding the limitations, the ability to quantitatively contrast sequence similarity
addresses key aspects of this problem, allowing us to carry out precise comparisons not possible before.

To design our metric, we employ a suite of customized machine learning algorithms to infer the Qnet from aligned
genomic sequences sampled from the similar populations, e:g: HA from Human Influenza A in year 2008, or the
spike protein from all bat betacoronaviruses. The Qnet predicts the nucleotide distribution over the base alphabet
(the four nucleic acid bases ATGC) at any specific index, conditioned on the nucleotides making up the rest of
the sequence of the gene or genome fragment under consideration. We define the q-distance (See Eq. (3) in
Methods) as the square-root of the Jensen-Shannon (JS) divergence21 of these conditional distributions from
one sequence to another, averaged over the entire sequence. Invoking Sanov’s theorem on large deviations21

(See Methods), we show that the likelihood of spontaneous jump is bounded above and below by a simple
exponential function of the q-distance.

The mathematical intuition behind relating the new distance to jump-probability is the same as in the prediction
of a biased outcome when we sequentially toss a fair coin. With an overwhelming probability, such an experiment
with a fair coin should result in roughly equal number of heads and tails. However, “large deviations” can happen,
and the probability of such rare events is quantifiable22 with existing theory. We show here that the likelihood
of a spontaneous transition of a genomic sequence to a substantially different variant by random chance may
also be similarly bounded, given we have the Qnet as an estimated model of the evolutionary constraints.

How are Qnets constructed? The key idea is surprisingly simple: we learn models for predicting the mutational
variations at each index of the genomic sequence using other indices as features. For example, in Fig. 2a,
the predictor for index 1274 uses variation at index 1064 as a feature, and the predictor for index 1064 uses
index 1314 as a feature, and so on – ultimately uncovering a recursive dependency structure. Collectively, these
inter-dependent predictors represent the constraints that shape evolutionary trajectories driven by selection. The
inferred dependencies are illustrated in Fig. 2b-c for SARS-CoV-2 S protein and Influenza A HA respectively,
showing that these viruses have markedly different dependency networks for proteins that carry out similar
functions (Class I fusion protiens23 mediating cellular entry).

Importantly, the q-distance between two sequences may change if we simply change the background popula-
tions, and not the sequences themselves (See Table I for examples, where the distance between two specific
Influenza A H1N1 Hemaglutinnin sequences vary when we assume they were collected in different years), and
sequences might have a large q-distance and a small edit distance, and vice versa (although on average the two
distances tend to be positively correlated, see Tab. II). Hence we construct a new Qnet whenever the background
populations are expected to be substantially different, e:g:, we construct separate Qnets for betacoronavirus S
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Fig. 5. Prediction of animal host for likely progenitors. Panel a (i): average lower bounds on the log-likelihood of jump
from different animal hosts to the set of SARS-CoV-2 sequences collected in the early days of the pandemic. Panel a (ii):
lower bounds on the log-likelihood of jump from specific species to their respective nearest SARS-CoV-2 neighbors (among
sequences collected in the early days of the pandemic). Panel b shows the geographic extent of the habitats of the top four
most frequently occurring species among the list shown in a(ii). Also, the location of Wuhan, China, ground zero for COVID-
19 is shown. Panel c plots the lower bound on log-likelihood of various sequences to their nearest neighbors over the time
of collection, suggesting a trend of increasing risk over time, and across hosts, as evidenced by a nearly constant gradient
LOWESS fit (black line) with 99% confidence bounds. Finally, panel d shows the normalized footprint of risk-mediating hosts
from overlapping the geographic extents of the habitats of all species from the list in a (ii).

protein sequences isolated from bats, rodents, cattle, non-SARS-CoV-2 human betacoronaviruses, and SARS-
CoV-2 strains. For tracking drift in Influenza A, we construct a seasonal Qnet for each subtype and protein that
we consider. As an important limitation, the q-distance assumes aligned sequences of identical length (although
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is automatically preserved, and we see the intriguing clade-hierarchy between bat, rodent and SARS-CoV-2 strains. Some
branches of the phylogenetic tree is collapsed, and the numbers in bracket list the magnitude of q-distance within which
leaves have been collapsed.
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gaps arising from alignment are acceptable and are modeled as missing data). Thus, the Qnet framework is
applicable to closely related sequences, and is well-suited to track subtle changes in evolving viral populations.

Before we enumerate our results, we note that the phylogeny based on the q-distance (q-phylogeny) is potentially
distinct from the one constructed using the classical distance. And the jump-probability between two strains
connected by a path in a q-phylogenetic tree is bounded above and below by simple exponential functions of the
path length (See SI Methods). Thus, smaller phylogenetic distances indicate a higher probability of spontaneous
transition and vice versa, making the trees much more useful for interpretation of ancestral relationships and
charting possible futures. For example, comparing the phylogenies constructed using the q-distance and the
classical metric for all betacoronavirus spike protein sequences from the NCBI and GISAID databases (including
those for the novel SARS-CoV-2 strains) in Fig 2a-b, we find that the q-distance leads to cleaner phenotypic
separation with clues to SARS-CoV-2 origin.

RESULTS

Our first application aims to predict dominant strains for the seasonal flu epidemic. Periodic adjustment of the
Influenza vaccine components is necessary to account for antigenic drift24. The flu shot is annually prepared at
least six months in advance, and comprises a cocktail of historical strains determined by the WHO via global
surveillance25, hoping to match the circulating strain(s) in the upcomimg flu season. A variety of hard-to-model
effects hinders this prediction, and has limited vaccine effectiveness in recent years26.

We hypothesized that since the probability of a jump or deviation exponentially decreases with an increasing
q-distance, the centroid of the strain distribution in our metric will drift slowly. If true, the strain selected closest to
the “q”-centroid will be a good approximation of next season’s dominant strain. We tested this hypothesis on past
two decades of sequence data for Influenza A (H1N1 and H3N2), with promising results: the q-distance based
prediction demonstrably outperforms WHO recommendations by reducing the distance between the predicted
and the dominant strain (Fig. 3). Here, we identify the dominant strain to be the one that occurs most frequently,
computed as the centroid of the strain distribution observed in a given season in the classical sense (no. of
mutations). For H1N1 HA the Qnet induced recommendation outperforms the WHO suggestion by > 31% on
average over the last 19 years, and > 81% in the last decade in the northern hemisphere. The gains for NA over
the same time periods for H1N1 for the north are > 60% and > 22% respectively. For the southern hemisphere,
the gains for H1N1 over the last decade are > 72% for HA, and > 50%. The full table of results is given in
Tab. I in the Supplementary text. Fig. 3 illustrates the relative gains computed for both subtypes and the two
hemispheres (since the flu season occupy distinct time periods and may have different dominant strains in the
northern and southern hemispheres24). Additional improvement is possible if we recommend multiple strains
every season for the vaccine cocktail (Fig. 3e,f,k,l). The details of the specific strain recommendations made the
Qnet approach for two subtypes (H1N1, H3N2), for two genes (HA, NA) and for the northern and the southerm
hemispheres over the previous 19 years are enumerated in the Supplementary Tab. V-XIV.

As our second application of the q-distance approach, we investigate the origin problem of SARS-CoV-2, via
quantifying the likelihood of different animal species hosting the immediate progenitor. For any novel pathogen,
a plausible history of emergence is generally constructed by estimating similarity of the consensus strain with
candidates in suspected animal hosts27,28. However, interpreting a small edit distance as being indicative of a
higher chance of a species-jump is problematic, particularly if multiple potential progenitor candidates arise. In
contrast, a smaller average q-distance of a novel strain from animal reservoir A vs that from B implies that there
is indeed a quantifiably higher probability of a jump from A.

To demonstrate the applicability of this idea, we estimate numerical bounds on the likelihood of the SARS-CoV-2
progenitor arising from specific hosts. Using betacoronavirus sequences from NCBI database corresponding to
different animal hosts, we estimate the mean q-distance of SARS-CoV-2 sequences to bats, mouse/rodents,
cattle (including camels) and pre-existing human strains including SARS-CoV1, OC43 and HKU1 strains (See
Fig. 5a, showing the average log-likelihood of jump from different animal species). We do not a priori restrict
our investigation to hosts geographically bound to South East Asia, and demonstrate that this localization arises
naturally from our analysis. Our results corroborate the high probability of the progenitor originating from bats
as suggested in recent studies29,30 (See Fig. 5a (i), which shows the average lower bound of the log-likelihood
of a spontaneous jump from broad host categories to SARS-CoV-2 strains collected upto early March in 2020).
In addition, we are also able to identify a ranked list of related bat species with the highest potential of hosting a
SARS-CoV-2 progenitor (See Fig 5a (ii), which shows the minimum likelihood of jump to the nearest SARS-CoV-2
strain for the respective host species). Additionally, we find a high likelihood of a close ancestor of SARS-CoV-2
existing in rodents (Fig. 5a).
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DISCUSSION

In this study we formulate a new biology-aware distance between genomic sequences. As a function of this
distance, we compute bounds on the explicit probability of a spontaneous jump between nearby variants. We
show that quantification of historically qualitative characterizations of ancestral relationaships and future variant
calculation improves strain predictions for Influenza A vaccines, and offers new insights into SARS-CoV-2 origin.

High season-to-season genomic variation in the key Influenza capsidic proteins is driven by two opposing
influences: 1) the need to conserve function limiting random mutations, and 2) hyper-variability to escape
recognition by neutralizing antibodies. Even a single residue change in the surface proteins might dramatically
alter recognition characteristics, brought about by unpredictable31,32 changes in local or regional properties such
as charge, hydropathy, side chain solvent accessibility33–36. Comparing the Qnet inferred strain (QNT) against
the one recommended by the WHO, three important observations come forward: 1) the high likelihood of QNT
being closer to the dominant strain (DOM) over the part two decades, and almost consistently over the last
decade (See Tab. I and Fig. 3), 2) the residues that only the QNT matches correctly with DOM (while the
WHO fails) are largely localized within the receptor binding domain (RBD), with > 57% occurring within the RBD
on average (see Fig. 4a for a specific example), and 3) when the WHO strain deviates from the QNT/DOM
matched residue, the “correct” residue is often replaced in the WHO recommendation with one that has very
different side chain, hydropathy and/or chemical properties (See Fig. 4b-f), suggesting deviations in recognition
characteristics. Combined with the fact that we find circulating strains are almost always within a few edits of
the DOM (See SI-Fig. 1), these observations suggest that hosts vaccinated with the QNT recommendation is
more likely to have season-specific antibodies that are more likely to recognize a larger cross-section of the
circulating strains.

Focusing on the average localization of the QNT to WHO deviations in the HA molecular structure, the changes
are observed to primarily occur in the HA1 subunit (See Fig. 4g-i, HA0 numbering used, other numbering
conversions are given in Supplementary Tab. XVI), with the most frequent deviations occuring around the � 200

loop, the � 220 loop, the � 180 helix, and the � 100 helix, in addition to some residues in the HA2 subunit (� 49

& � 124). Unsurprisingly, the residues we find to be most impacted in the HA1 subunit (the globular top of the
fusion protein) have been repeatedly implicated in receptor binding interactions37–39. Thus, we are able to fine
tune the future recommendation over the state of the art, largely by modifying residue recommendations around
the RBD and structures affecting recognition dynamics.

In the context of the origin problem of the 2020 pandemic, we note that literature on SARS-CoV-2 ancestry
is still developing, with emerging consensus on horseshoe bats of Chinese origin30 as the potential host of
the progenitor sequence. This narrative is primarily driven by observed edit-distance and motif similarities to
bat coronavirus (RaTG13, accession MN996532.1) detected in R. affinis from the Yunnan province. However,
intriguing questions remain, e:g:, the existence of a polybasic furin cleavage site on the spike protein which is
absent in RaTG13 and related betacoronaviruses, but do occur in other human coronaviruses including HKU130.
Our q-distance analysis (See Fig. 5a) corroborates the progenitor host potential of R. affinis, but we find that a
related species R. sinicus is a slightly more probable source. Also, we find several other closely related horseshoe
bats including R. ferrumequinum and R. monoceros, and other bats such as T. pachypus, V. superans, and P.
abramus are also potential progenitor hosts. In addition, rodents such as R. argentiventer, N. confucianus, and
A. agrarius have credible potential as hosting a SARS-CoV-2 ancestor. The top-ranking contenders (excluding
humans) ranked by the lower bound of log-likelihood of spontaneous jump to the nearest SARS-CoV-2 strain
collected in the relatively early days of the COVID19 pandemic (by early March 2020) is shown in Fig 5a (ii).
The role of rodents is further strengthened by noting that SARS-CoV-2 strains and betacoronaviruses from
rodents appear in the same clade nested within the clade comprising betacoronaviruses from bats, rodents and
SARS-CoV-2 strains (while the rodent strains not being actually closer than those isolated in bats, see Fig. 6)).

In Fig. 5c, we plot the collection times of animal samples against the average lower log-likelihood bound on
spontaneous jump to SARS-CoV-2 sequences. We only show sequences that we find to be the top contenders
based on their minimum distance from some SARS-CoV-2 sequence collected early in the pandemic (See
Table XV). The dependence of the jump probability with collection date suggests risk-progression over time,
from at least around 2011. We find that the early risky sequences are exclusively from rodents, and the risk
elevates through late 2018, with the majority of the hosts switching from rodents to bats to human coronaviruses
(OC43 and HKU1). This progression is further highlighted by a LOWESS regression40 (local polynomial fit to
the data points), which shows an almost constant gradient of risk elevation over the past decade. Additionally,
overlapping habitats of the top species that pose this risk, we find a normalized habitat distribution (See Fig. 5d)
consistent with the presumed ground zero of the outbreak (Wuhan, China).
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The quantitative assessments shown in Fig. 5 are impossible in the classical approach, and might suggest that
the evolution of SARS-CoV-2 began in rodents, went through bats, and with final maturation in humans. Although
we do not provide definitive proof of such a course of events (which realistically might never be found), and these
assessments might be impacted by the sparsity of sequences available, the gradual elevation of risk through
multiple host species, the overlapping habitats of those species, and the ability to quantify the minimum bounds
on jump probability deserve serious consideration.

LIMITATIONS & CONCLUSION

Calculation of q-distance is currently limited to similar and aligned sequences, e:g: coronoviruses across different
hosts, or time frames, or Influenza strains from different subtypes, hosts or seasons. Furthermore, we need a
sufficient diversity of observed strains before we can successfully construct the Qnet model; simply having a large
number of sequences is not enough, those observations must have sufficient diversity so that the underlying
constraints are actually revealed. A multi-variate regression analysis (See SI Methods) indicates that the most
important factor for our approach to succeed is indeed the diversity of the sequence dataset, i:e:, how many
sufficiently distinct sequences have we collected (See Tab. IV). Finally, in the context of strain forecasting, we
note that simply reducing the edit distance from the dominant strain is not guaranteed to translate to a better
immunological protection. Nevertheless consistent improvement in this metric achieved purely via computational
means suggests the possibility of improvement over current practice.

In conclusion, we introduce a data-driven distance metric to track subtle deviations in sequences, and quantify
jump risk of risky pathogens. Demonstrated ability of perdicting future flu strains via subtle variations in a limited
set of immunologically important residues suggest that the tools developed here could be essential in preempting
and actionably mitigating the next pandemic.
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SI METHODS

Data Source

In this study, we use sequences for the spike (S) protein on betacoronaviruses1, which plays a crucial role in
host cellular entry, and the Hemaglutinnin (HA) and Neuraminidase (NA) for Influenza A (for subtypes H1N1
and H3N2), which are key enablers of cellular entry and exit mechanisms respectively2. We use two sequences
databases: 1)National Center for Biotechnology Information (NCBI) virus3 and 2) GISAID4 databases. The former
is a community portal for viral sequence data, aiming to increase the usability of data archived in various NCBI
repositories. GISAID has a somewhat more restricted user agreement, and use of GISAID data in an analysis
requires acknowledgment of the contributions of both the Submitting and the Originating laboratories (Corre-
sponding acknowledgment tables are included as Supplementary files). We use a total of 30,204 sequences in
our analysis (See Tab. III).

Next, we briefly describe the details of the computational framework.

Qnet Framework

In defining the q-distance, we do not assume that the mutational variations at the individual indices of a
genomic sequence are independent (See Fig 1a in the main text). Irrespective of whether mutations are truly
random5, since only certain combinations of individual mutations are viable, individual mutations across a
genomic sequence replicating in the wild appear constrained, which is what is explicitly modeled in our approach.
The mathematical form of our metric is not arbitrary; JS divergence is a symmetricised version of the more
common KL divergence6 between distributions, and among different possibilities, the q-distance is the simplest
metric such that the likelihood of a spontaneous jump (See Eq. (9) in Methods) is provably bounded above and
below by simple exponential functions of the q-distance.

Consider a set of random variables X = fXig, with i 2 f1; � � � ; Ng, each taking value from the respective sets
�i. A sample x 2 QN

1 �i is an ordered N -tuple, consisting of a realization of each of the variables Xi with the
ith entry xi being the realization of random variable Xi. We use the notation x�i and xi;� to denote:

x�i , x1; � � � ; xi�1; xi+1; � � � ; xN (1a)

xi;� , x1; � � � ; xi�1; �; xi+1; � � � ; xN ; � 2 �i (1b)
Also, D(S) denotes the set of probability measures on a set S, e:g:, D (�i) is the set of distributions on �i.

We note that X defines a random field over the index set f1; � � � ; Ng. Also, to clarify the biological picture, we
refer to the sample x as an amino acid or nucleotide sequence, identifying the entry at each index with the
corresponding protein residue or the nucleotide base pair.

Definition 1 (Qnet). For a random field X = fXig indexed by i 2 f1; � � � ; Ng, the Qnet is defined to be the set
of predictors � = f�ig, i:e:, we have:

�i :
Y
j,i

�j ! D (�i) ; (2)

where for a sequence x, �i(x�i) estimates the distribution of Xi on the set �i.

We use conditional inference trees as models for predictors7, although more general models are possible.
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Qnet Induced Biology-Aware Distance Between Strains

Definition 2 (Pseudo-metric Between Sequences). Given two sequences x; y 2QN
1 �i, such that x; y are drawn

from the populations P;Q inducing the Qnet �P ;�Q, respectively, we define a pseudo-metric �(x; y), as follows:

�(x; y) , Ei

�
J

1

2

�
�P
i (x�i);�

Q
i (y�i)

��
(3)

where J(�; �) is the Jensen-Shannon divergence8 and Ei indicates expectation over the indices.

The square-root in the definition arises naturally from the bounds we are able to prove, and is dictated by the
form of Pinsker’s inequality6, making sure that we satisfy the requirement that distances along a path in a
constructed phylogeny sum linearly. This allows standard algorithms to be used for phylogeny construction.

Importantly, the q-distance defined above is technically a pseudo-metric since distinct sequences can induce the
same distributions over each index, and thus evaluate to have a zero distance. This is actually desirable, since
we do not want our distance to be sensitive to changes that are not biologically relevant. The intuition is that
not all sequence variations brought about by substitutions are equally important or likely. Even with no selection
pressure, we might still see random variations at an index if such variations do not affect the replicative fitness.
Under that scenario, the corresponding �i will predict a flat distribution no matter what the input sequence is,
thus contributing nothing to the overall distance. And even if two strains x; y have the same entry at some index
i, the remaining residues might induce different distributions �i based on the remote dependencies, i:e:, the
entries in x�i; y�i. Also, it matters if the sequences come from two different background populations P;Q, i:e:,
if the induced Qnets �P ;�Q are different. Thus, if we construct Qnets for H1N1 Influenza A separately for the
collection years 2008 and 2009, then the same exact sequence collected in the respective years might have a
non-zero distance between them, reflecting the fact that the background population the sequences arose from
are different, inducing possibly different expected mutational tendencies.

Next, we induce a q-distance between a sequence and a population and between two populations.

Definition 3 (Pseudo-metric Between Populations). Using the notion of Hausdorff metric between sets:
8x 2 P; y 2 Q;

�(x;Q) = min
y2Q

�(x; y) (4)

�(P;Q) = max

�
max
x2P

�(x;Q);max
y2Q

�(y; P )

�
(5)

In-silico Corroboration of Qnet Constraints

We carry out in-silico experiments to corroborate that the constraints represented within an inferred Qnet are
indeed reflective of the biology in play. To that effect, we compare the results of simulated mutational perturbations
to sequences from our databases (for which we have already constructed Qnets), and then use NCBI BLAST
(https://blast.ncbi.nlm.nih.gov/Blast.cgi) to identify if our perturbed sequences match with existing sequences in
the databases (and if so, then where and how many matches they produce). The objective here is to compare
such Qnet constrained perturbations against random variations. The results are shown in Fig. 3, where we find
that in contrast to random variations, which rapidly diverge the trajectories, the Qnet constraints tend to produce
smaller variance in the trajectories, maintain a high degree of match as we extend our trajectories, and produces
matches closer in time to the collection time of the initial sequence — suggesting that the Qnet does indeed
capture realistic constraints.

Significance Test for Population Membership & Progressive Drift in Population Characteristics

For our modeling to be reliable, we need a quantitative test of how well the Qnet represents the data and whether
we need to re-calculate the predictors or we have sufficiently many sequences. Here, we formulate an explicit
membership test to address this.

Definition 4 (Membership Probability of a seuqnce). Given a population P inducing the Qnet �P and a sequence
x, we can compute the membership probability of x:

!Px , Pr(x 2 P ) =

NY
j=1

�
�P
j (x�j)jxj

�
(6)

Note that xj is the jth entry in x, and is thus an element in the set �j . Since we are mostly concerned with
the case where �j is a finite set, �P

j (x�j)jxj is the entry in the probability mass function corresponding to the
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element of �j which appears at the jth index in sequence x.

We can carry out this calculation for a sequence x known to be in the population P as well, which allows us to
define the membership degree !Px .

Definition 5 (Membership Degree). Let X be a random field representing a population P , ie:. X = x is a
randomly drawn sequence from P . Then the membership degree !P is a function of the random variable X:

!P (X) ,
NY
j=1

�
�P
j (X�j)jXj

�
(7)

Note that !P takes values in the unit interval [0; 1], and the probability x is a member of the population P is
!P (X = x), denoted briefly as !Px or !x if P is clear from context.

Since !P (X) is a random variable, we can now compute sets of sequences that better represent the population
P , and ones that are on the fringe. We can also evaluate using a pre-specified significance-level if a particular
sequence is not from the population P , thus identifying if we need to recompute the predictors �, or split the
base population. We can set up a hypothesis testing scenario to determine if sequences are indeed from a test
population, as follows:

Significance Test for the Validity of Inferred Model: Given a population P, inducing a Qnet �P , and a sequence
x, we assume the null hypothesis is x < P . We reject the null hypothesis at a pre-specified significance �, if

Pr(!P (X) = !P (X = x)) 5 � (8)
The fraction of newly observed sequences that do not reject the null hypothesis can then be used as an estimate
of the species-specific divergence in population characteristics.

The membership degrees for the SARS-CoV-2 sequences in the early days of the pandemic, with respect to
our constructed Qnet, is shown in Fig. 4. We find that the distribution of membership degrees is very stable,
and almost has no change when we add more sequences (Fig. 4b). In addition, as we collect more sequences,
the p-value improves (Fig. 4c), and stabilizes to about 0:02 giving us confidence in the validity of our model.

Theoretical Probability Bounds

The Qnet framework allows us to rigorously compute bounds on several quantities of interest, and these bounds
are rigorously established in Theorem 1. The fundamental bound is on the probability of a spontaneous change
of one strain to another, brought about by chance mutations. While any sequence of mutations is equally likely,
the “fitness” of the resultant strain, or the probability that it will even result in a viable strain, is not. Thus
the necessity of preserving function dictates that not all random changes are viable, and the probability of
observing some trajectories through the sequence space are far greater than others. The Qnet framework
allows us to explore this constrained dynamics, as revealed by a sufficiently large set of genomic sequences.
With the exponentially exploding number of possibilities in the sequence space, it is computationally intractable
to exhaustively model this dynamics. Nevertheless, we can constrain the possibilities using the patterns distilled
by the Qnet construction.

We show in Theorem 1 that at a significance level �, with a sequence length N , the probability of spontaneous
jump of sequence x from population P to sequence y in population Q, Pr(x! y), is bounded by:

!Qy e
p
8N2

1�� �(x;y) = Pr(x! y) = !Qy e
�

p
8N2

1�� �(x;y) (9)

where !
Q
y is the membership probability of strain y in the target population.

The ability to estimate the probability of spontaneous jump between sequences in terms of � has crucial
implications. It allows us to 1) construct a new phylogeny that directly relates the probability of jumps rather than
the number of mutations between descendants. 2) simulate realistic trajectories in the sequence space from
any given initial strain, and 3) estimate drift in the sequence space by analyzing the statistical characteristics of
the diffusion occurring in the strain space.

More Fit in the Target Population Makes Jump More Probable

As an immediate consequence of Eq. (9), we can argue that the lower bound of the likelihood of a jump to a
target sequence is higher if the final sequence is more fit in the target population. Note that the membership
degree by definition quantifies the probability of generating a sequence from our inferred qnet, and since we are
far more likely to collect dominant strains when we survey a population, it follows that the membership degree
is related to the qualitative notion of fitness.
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Conversely, as the fitness of the initial strain (in the neighborhood of !Px = 1) measured by its membership
degree falls, the minimum probability of going through a spontaneous jump is higher. We can see this by first
noting that for x , y:

!Px = 1) Pr(xjy) = 0 (10)
which follows since each term in the product on the right hand side in Eq. (22) is either zero or one if !Px = 1,
and there is at least one zero since x , y. To see that the suppression of probability of jump is not simply true
if !Px = 1 but also in the neighborhood, note that:

�i =
1

8

����P
i (x�i)yi � �

Q
i (y�i)yi

���2 ) ��i =
1

4

�
�P
i (x�i)yi � �

Q
i (y�i)yi

�
��P

i (x�i)yi (11)

which implies that in the neighborhood of !Px = 1, we have:
��i

��P
i (x�i)yi

=
1

4

�
1� �

Q
i (y�i)yi

�
> 0 (12)

implying that the distance decreases as the membership degree of x falls, thus lowering the lower bound on
the probability of a spontaneous jump. The argument is not necessarily true if x is not in the neighborhood of
!Px = 1 in the first place, and so is of lesser practical interest.

Next, we briefly describe the key applications of the Qnet framework explored in this study, highlighting the
predictions made and validations obtained.

A Biology Aware Phylogeny

There are more than one computational approach to construct phylogenies, but a majority of these algorithms
require a notion of distance between biological sequences, and the edit distance is the one that is most commonly
used to construct phylogenies. Using the Qnet induced distance described earlier we can construct phylogenetic
trees distinct from those obtained using the classical metric. More importantly, the qnet induced phylogeny is
reflective of evolutionary change in a manner that conventional trees are not. As we follow a path in an Q-
phylogeny, we can explicitly compute the probability of the changes represented by that path. This probability
is bounded above and below by a function of the total path length, i:e:, the sum of the q-distances along the
path. We can show that for the path x = x0 ! � � �xk ! � � �xm = z, we have:p

8N2

1� �
� = logPr(x! z)�

mX
i=1

log!xi = �
p
8N2

1� �
�; where � =

mX
i=1

�(xk�1; xk) (13)

Considering only the lower bound,

log
Pr(x! z)Qm

i=1 !xi
= �

p
8N2

1� �
� (14)

where !xi is the membership probability in the base population of the strain xi. Thus, we relate closer phyloge-
netic distance to explicit probability of spontaneous jump. Note that the definition of the distance function in the
Qnet framework allows the summation in Eq. (13), allowing standard tools to construct the phylogenetic tree.

Application 1: Predicting Seasonal Strains

Analyzing the distribution of sequences using the q-distance allows us to estimate seasonal drift, which is par-
ticularly applicable to Influenza and Influenza-like viruses for which periodic adjustments of vaccine components
are necessary to account for antigenic variations.

Our prediction is based on the following intuition: since the probability of spontaneous jump to a strain further
away in the q-distance is exponentially lower, the q-centroid of the strain distribution (the centroid computed in
the q-distance metric) observed over a season is expected to move slowly, and will be close to the dominant
strain in the next season. Thus, we estimate the predicted dominant strain bxt+1 at time t + 1, as a function of
the observed population at time t as follows:bxt+1 = argmin

x2P t

X
y2P t

�(x; y) (15)

where P t is the sequence population at time t. Here the unit of time is chosen to reflect the appropriate frequency
over which vaccine components are re-assessed. In the case of Influenza, this is typically one year. Using this
formulation, we test if the predicted strains actually turn out to be closer to the dominant strain in the classical
edit distance, when compared against the WHO vaccine recommendation for that season. Our results in Fig. 3
in the main text show that our hypothesis turns out to be correct with few exceptions.
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Application 2: Identifying Animal Host of Progenitor Sequence

The Qnet based phylogenetic analysis provides a significantly more reliable history of the progenitor strain. In
fact, using Eq. (9) we have for the pandemic strain y 2 H, and animal strain x 2 P :

log
1

!y
Pr(x! y) = �

p
8N2

1� �
�(x; y)) log

1

!y
E
x2P

Pr(x! y) = �
p
8N2

1� �
E
x2P

�(x; y) (16)

we have constants C;C 0 such that
� log E

x2P
Pr(x! y) 5 C + C 0 E

x2P
�(x; y) (17)

Note that since we always know N , we can calculate C 0 without the knowledge of the pandemic strain y. In the
case of the SARS-CoV-2 spike protein, at 95% significance, we have:

C 0 = 31872 � 1=(1� 0:95)�
p
8 = 5:75� 108 (18)

Note that if we have the pandemic strain and are aiming to compare and contrast the likelihood of jump from
potential hosts after we already have the emergence event, then we can explicitly calculate C. For SARS-CoV-2,
this estimate is 4; 805:4 (See Fig. 4), which leads to the following linear relationship between log-likelihood of
emergence and the average distance calculated in the Qnet framework:

� log E
x2P

Pr(x! y) 5 4:8054� 103 + 5:75� 108 E
x2P

�(x; y) (19)

thus providing a quantitative ranking of potential progenitor hosts. It follows from Eq. (19) that for rank-ordering
potential hosts, we need to only consider the average distance Ex2P �(x; y). It also follows from the relative
magnitudes of the constants in the case of SARS-CoV-2, that we can ignore C and have approximately:

log E
x2P

Pr(x! y) = �5:75� 108 E
x2P

�(x; y) (20)

Note that at least in the case of SARS-CoV-2, the fitness term is approximately five orders of magnitude smaller,
which implies the jumps probabilities are roughly symmetric. But this is not required to be true in general. At the
same time, it is important to note that the probability of jump from strain x to strain y vs the reverse is actually
asymmetric due to the contribution from the population-specific membership degree.

Proof of Probability Bounds

Theorem 1 (Probability Bound). Given a sequence x of length N that transitions to a strain y 2 Q, we have the
following bounds at significance level �.

!Qy e
p
8N2

1�� �(x;y) = Pr(x! y) = !Qy e
�

p
8N2

1�� �(x;y) (21)

where !
Q
y is the membership probability of strain y in the target population Q (See Def. 4), and �(x; y) is the

q-distance between x; y (See Def. 2).

Proof. Using Sanov’s theorem6 on large deviations, we conclude that the probability of spontaneous jump from
strain x 2 P to strain y 2 Q, with the possibility P , Q, is given by:

Pr(x! y) =

NY
i=1

�
�P
i (x�i)jyi

�
(22)

Writing the factors on the right hand side as:

�P
i (x�i)jyi = �

Q
i (y�i)jyi

 
�P
i (x�i)jyi

�
Q
i (y�i)jyi

!
(23)

we note that �P
i (x�i), �

Q
i (y�i) are distributions on the same index i, and hence:

j�P
i (x�i)yi � �

Q
i (y�i)yi j 5

X
yi2�i

j�P
i (x�i)yi � �

Q
i (y�i)yi j (24)

Using a standard refinement of Pinsker’s inequality9, and the relationship of Jensen-Shannon divergence with
total variation, we get:

�i =
1

8
j�P

i (x�i)yi � �
Q
i (y�i)yi j2 )

�����1� �
Q
i (y�i)yi

�P
i (x�i)yi

����� 5 1

a0

p
8�i (25)

where a0 is the smallest non-zero probability value of generating the entry at any index. We will see that this
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parameter is related to statistical significance of our bounds. First, we can formulate a lower bound as follows:

log

 
NY
i=1

�P
i (x�i)jyi

�
Q
i (y�i)jyi

!
=
X
i

log

 
�P
i (x�i)jyi

�
Q
i (y�i)jyi

!
=
X
i

 
1� �

Q
i (y�i)yi

�P
i (x�i)yi

!
=

p
8

a0

X
i

�
1=2
i = �

p
8N

a0
� (26)

Similarly, the upper bound may be derived as:

log

 
NY
i=1

�P
i (x�i)jyi

�
Q
i (y�i)jyi

!
=
X
i

log

 
�P
i (x�i)jyi

�
Q
i (y�i)jyi

!
5
X
i

 
�
Q
i (y�i)yi

�P
i (x�i)yi

� 1

!
5

p
8N

a0
� (27)

Combining Eqs. 26 and 27, we conclude:

!Qy e
p
8N
a0

� = Pr(x! y) = !Qy e
�

p
8N
a0

� (28)
Now, interpreting a0 as the probability of generating an unlikely event below our desired threshold (i:e: a “failure”),
we note that the probability of generating at least one such event is given by 1 � (1 � a0)

N . Hence if � is the
pre-specified significance level, we have for N >> 1:

a0 � (1� �)=N (29)
Hence, we conclude, that at significance level = �, we have the bounds:

!Qy e
p
8N2

1�� � = Pr(x! y) = !Qy e
�

p
8N2

1�� � (30)
�

Remark 1. This bound can be rewritten in terms of the log-likelihood of the spontaneous jump and constants
independent of the initial sequence x as:

jlogPr(x! y)� C0j 5 C1� (31)
where the constants are given by:

C0 = log!Qy (32)

C1 =

p
8N2

1� �
(33)

Multivariate Regression to Identify Factors in Strain Prediction

We investigate the key factors that contribute to our successful prediction of the dominant strain in the next
season. We carry out a multivariate regression with data diversity, the complexity of inferred Qnet and the edit
distance of the WHO recommendation from the dominant strain as independent variables. Here we define data
diversity as the number of clusters we have in the input set of sequences, such that any two sequences five or
less mutations apart are in the same cluster. Qnet complexity is measured by the number of decision nodes in
the component decision trees of the recursive forest.

We select several plausible structures of the regression equation, and in each case conclude that data diversity
has the most important and statistically significant contribution (See Tab. IV).
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Fig. 1. No. of mutations from the seasonal dominant strain over the years The quasispecies that circulates each season
for each subtype is tightly distributed around the dominant strain on average.

TABLE I
EAXMPLES: QNET INDUCED DISTANCE VARYING FOR FIXED SEQUENCE PAIR WHEN BACKGROUND POPULATION CHANGES

(ROWS 1 -5), SEQUENCES WITH SMALL EDIT DISTANCE AND LARGE Q-DISTANCE, AND THE CONVERSE (ROWS 6-9)

edit
dist. sequence A sequence B q-

distance
year
A?

year
B?

1 18 A/Singapore/23J/2007 A/Tennessee/UR06-0294/2007 0.0111 2007 2007
2 18 A/Singapore/23J/2007 A/Tennessee/UR06-0294/2007 0.0094 2008 2008
3 18 A/Singapore/23J/2007 A/Tennessee/UR06-0294/2007 0.0027 2009 2009
4 18 A/Singapore/23J/2007 A/Tennessee/UR06-0294/2007 0.0025 2010 2010
5 18 A/Singapore/23J/2007 A/Tennessee/UR06-0294/2007 0.6163 2007 2010
6 11 A/Naypyitaw/M783/2008 A/Singapore/201/2008 0.8852 2008 2008
7 15 A/Cambodia/W0908339/2012 A/Singapore/DMS1233/2012 0.2737 2012 2012
8 126 A/South Dakota/03/2008 A/Singapore/10/2008 0.3034 2008 2008
9 141 A/Jodhpur/3248/2012 A/Cambodia/W0908339/2012 0.2405 2012 2012

?year A and year B correspond to the assumed collection years for sequences A and B respectively for the
purpose of this example. Sequence A in row 1 is collected in 2007, but is assumed to be from different years
in rows 2-4 to demonstrate the change in q-distance from sequence B, arising only from a change in the
background population.

TABLE II
CORRELATION BETWEEN Q-DISTANCE AND EDIT

DISTANCE BETWEEN SEQUENCE PAIRS

phenotypes correlation
Influenza H1N1 HA 0.76
Influenza H1N1 NA 0.74
Influenza H3N2 HA 0.85
Influenza H3N2 NA 0.79
SARS-CoV-2 0.52

TABLE III
NUMBER OF SEQUENCES COLLECTED FROM PUBLIC DATABASES

Database Strain No. of
Sequences

NCBI Influenza H1N1 HA 7,761
NCBI Influenza H1N1 NA 5,640
NCBI Influenza H3N2 HA 6,568
GISAID Influenza H3N2 HA 2,000
NCBI Influenza H3N2 NA 4,919
GISAID Influenza H3N2 NA 2,000
NCBI SARS-CoV-2 24
GISAID SARS-CoV-2 371
NCBI betacoronavirus (non-SARS-CoV-2) 921
Total 30,204
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Fig. 2. Phylogeny comparison between q-distance (panel a) and classical edit distance (panel b). The numbers within
brackets is the distance within which the specific branch is collapsed for visualization. The classical distance produces a
phylogeny which clearly violates chronological ordering, arising the novel coronavirus appears before strains that have been
collected years before, including the SARs-1 strains. The new distance using Qnet is shown to automatically respect this
known ordering.
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Fig. 3. Q-distance validation in silico using Influenza A sequences from NCBI database. Panel a illustrates that the Qnet
induced modeling of evolutionary trajectories initiated from known haemagglutinnin (HA) sequences are distinct from random
paths in the strain space. In particular, random trajectories have more variance, and more importantly, diverge to different
regions of the landscape compared to Qnet predictions. Panel b-e show that unconstrained Q-sampling produces sequences
maintain a higher degree of similarity to known sequences, as verified by blasting against known HA sequences, have a
smaller rate of growth of variance, and produce matches in closer time frames to the initial sequence. Panel c shows that this
is not due to simply restricting the mutational variations, which increases rapidly in both the Qnet and the classical metric.
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Fig. 4. Membership degrees for SARS-CoV-2 sequences collected in the early days of the pandemic. The membership
degree quantifies the likelihood that a test sequence actually is generated by the inferred model, i:e:, the Qnet (See Methods
for definition of membership degree).
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TABLE IV
GENERAL LINEAR MODEL FOR EVALUATING EFFECT OF DATA DIVERSITY ON QNET PERFORMANCE

variable name description

qnet complexity
Cumulative number of nodes in
all predictors in the
corresponding Qnet

data diversity

Number of clusters in set of
input sequence where each
sequence in a specific cluster is
separated by at least 5
mutations from sequences not
in the cluster

ldistance WHO Deviation of WHO predicted
strain from the dominant strain

model:dev ˜ qnet_complexity + data_diversity + qnet_complexity * data_diversity + ldistance_WHO
Generalized Linear Model Regression Results

==============================================================================
Dep. Variable: dev No. Observations: 235
Model: GLM Df Residuals: 230
Model Family: Gaussian Df Model: 4
Link Function: identity Scale: 23.214
Method: IRLS Log-Likelihood: -700.43
Date: Thu, 11 Jun 2020 Deviance: 5339.2
Time: 16:45:46 Pearson chi2: 5.34e+03
No. Iterations: 3 Covariance Type: nonrobust
==================================================================================================

coef std err z P>|z| [0.025 0.975]
--------------------------------------------------------------------------------------------------
Intercept -0.1116 1.090 -0.102 0.918 -2.248 2.025
qnet_complexity 0.0005 0.000 1.075 0.282 -0.000 0.001
data_diversity 0.3197 0.126 2.531 0.011 0.072 0.567
qnet_complexity:data_diversity -6.932e-05 5.01e-05 -1.383 0.167 -0.000 2.89e-05
ldistance_WHO -0.0348 0.035 -1.007 0.314 -0.102 0.033
==================================================================================================

model:dev ˜ qnet_complexity + data_diversity + ldistance_WHO
Generalized Linear Model Regression Results

==============================================================================
Dep. Variable: dev No. Observations: 235
Model: GLM Df Residuals: 231
Model Family: Gaussian Df Model: 3
Link Function: identity Scale: 23.306
Method: IRLS Log-Likelihood: -701.41
Date: Thu, 11 Jun 2020 Deviance: 5383.6
Time: 16:45:47 Pearson chi2: 5.38e+03
No. Iterations: 3 Covariance Type: nonrobust
===================================================================================

coef std err z P>|z| [0.025 0.975]
-----------------------------------------------------------------------------------
Intercept 1.0841 0.665 1.630 0.103 -0.219 2.387
qnet_complexity -4.12e-05 0.000 -0.156 0.876 -0.001 0.000
data_diversity 0.1788 0.075 2.392 0.017 0.032 0.325
ldistance_WHO -0.0695 0.024 -2.930 0.003 -0.116 -0.023
===================================================================================
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TABLE V
H1N1 HA NORTHERN HEMISPHERE

year WHO recommendation dominant strain Qnet recommendation WHO
error

Qnet
error

2001-2002 A/New Caledonia/20/99 A/Canterbury/41/2001 A/Dunedin/2/2000 4 6
2002-2003 A/New Caledonia/20/99 A/Taiwan/567/2002 A/Canterbury/41/2001 3 1
2003-2004 A/New Caledonia/20/99 A/Memphis/5/2003 A/New York/291/2002 5 2
2004-2005 A/New Caledonia/20/99 A/Thailand/Siriraj-Rama-TT/2004 A/Memphis/5/2003 7 4
2005-2006 A/New Caledonia/20/99 A/Niedersachsen/217/2005 A/Canterbury/106/2004 8 10
2006-2007 A/New Caledonia/20/99 A/India/34980/2006 A/Auckland/619/2005 6 1
2007-2008 A/Solomon Islands/3/2006 A/Norway/1701/2007 A/Auckland/619/2005 8 11
2008-2009 A/Brisbane/59/2007 A/Pennsylvania/02/2008 A/Kentucky/UR06-0476/2007 2 2
2009-2010 A/Brisbane/59/2007 A/Singapore/ON1060/2009 A/Belem/241/2008 119 119
2010-2011 A/California/7/2009 A/England/01220740/2010 A/Singapore/ON1060/2009 5 1
2011-2012 A/California/7/2009 A/Punjab/041/2011 A/England/01220740/2010 7 2
2012-2013 A/California/7/2009 A/British Columbia/001/2012 A/Punjab/041/2011 11 4
2013-2014 A/California/7/2009 A/Moscow/CRIE-32/2013 A/Helsinki/1199/2012 10 2
2014-2015 A/California/7/2009 A/Thailand/CU-C5169/2014 A/Thailand/CU-C5169/2014 12 0
2015-2016 A/California/7/2009 A/Georgia/15/2015 A/Thailand/CU-C5169/2014 14 2
2016-2017 A/California/7/2009 A/Hawaii/21/2016 A/Hawaii/21/2016 16 0
2017-2018 A/Michigan/45/2015 A/Michigan/291/2017 A/Beijing-Huairou/SWL1335/2016 5 4
2018-2019 A/Michigan/45/2015 A/Washington/55/2018 A/Michigan/291/2017 6 1
2019-2020 A/Brisbane/02/2018 A/Kentucky/06/2019 A/Washington/55/2018 5 1
2020-2021 A/Hawaii/70/2019 -1 A/Italy/8451/2019 -1 -1

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

TABLE VI
H1N1 HA SOUTHERN HEMISPHERE

year WHO recommendation dominant strain Qnet recommendation WHO
error

Qnet
error

2001-2002 A/New Caledonia/20/99 A/Canterbury/41/2001 A/South Canterbury/50/2000 4 6
2002-2003 A/New Caledonia/20/99 A/Taiwan/567/2002 A/Canterbury/41/2001 3 1
2003-2004 A/New Caledonia/20/99 A/Memphis/5/2003 A/New York/291/2002 5 2
2004-2005 A/New Caledonia/20/99 A/Thailand/Siriraj-Rama-TT/2004 A/Memphis/5/2003 7 4
2005-2006 A/New Caledonia/20/99 A/Niedersachsen/217/2005 A/Canterbury/106/2004 8 10
2006-2007 A/New Caledonia/20/99 A/India/34980/2006 A/Niedersachsen/217/2005 6 2
2007-2008 A/New Caledonia/20/99 A/Norway/1701/2007 A/Thailand/CU68/2006 14 6
2008-2009 A/Solomon Islands/3/2006 A/Pennsylvania/02/2008 A/Kentucky/UR06-0476/2007 9 2
2009-2010 A/Brisbane/59/2007 A/Singapore/ON1060/2009 A/Belem/241/2008 119 119
2010-2011 A/California/7/2009 A/England/01220740/2010 A/Singapore/ON1060/2009 5 1
2011-2012 A/California/7/2009 A/Punjab/041/2011 A/England/01220740/2010 7 2
2012-2013 A/California/7/2009 A/British Columbia/001/2012 A/Punjab/041/2011 11 4
2013-2014 A/California/7/2009 A/Moscow/CRIE-32/2013 A/India/P122045/2012 10 5
2014-2015 A/California/7/2009 A/Thailand/CU-C5169/2014 A/Jiangsuhailing/SWL1382/2013 12 4
2015-2016 A/California/7/2009 A/Georgia/15/2015 A/Thailand/CU-C5169/2014 14 2
2016-2017 A/California/7/2009 A/Hawaii/21/2016 A/Georgia/15/2015 16 2
2017-2018 A/Michigan/45/2015 A/Michigan/291/2017 A/Beijing-Huairou/SWL1335/2016 5 4
2018-2019 A/Michigan/45/2015 A/Washington/55/2018 A/Michigan/291/2017 6 1
2019-2020 A/Michigan/45/2015 A/Kentucky/06/2019 A/Washington/55/2018 7 1
2020-2021 A/Brisbane/02/2018 -1 A/Italy/8451/2019 -1 -1

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric
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TABLE VII
H1N1 NA NORTHERN HEMISPHERE

year WHO recommendation dominant strain Qnet recommendation WHO
error

Qnet
error

2001-2002 A/New Caledonia/20/99 A/New York/447/2001 A/Memphis/15/2000 4 4
2002-2003 A/New Caledonia/20/99 A/Paris/0833/2002 A/New York/447/2001 1 5
2003-2004 A/New Caledonia/20/99 A/Memphis/5/2003 A/New York/291/2002 3 5
2004-2005 A/New Caledonia/20/99 A/Singapore/14/2004 A/Memphis/5/2003 2 3
2005-2006 A/New Caledonia/20/99 A/Memphis/5/2003 A/Memphis/5/2003 3 0
2006-2007 A/New Caledonia/20/99 A/Massachusetts/08/2006 A/Sofia/361/2005 4 2
2007-2008 A/Solomon Islands/3/2006 A/Massachusetts/08/2006 A/Sofia/361/2005 9 2
2008-2009 A/Brisbane/59/2007 A/Brisbane/59/2007 A/Maryland/04/2007 0 3
2009-2010 A/Brisbane/59/2007 A/Thailand/SR08021/2009 A/Thailand/SP08207/2009 87 87
2010-2011 A/California/7/2009 A/Thailand/SR08021/2009 A/Rome/709/2009 2 9
2011-2012 A/California/7/2009 A/Tula/CRIE-GSYu/2011 A/Thailand/SR08021/2009 4 2
2012-2013 A/California/7/2009 A/Tula/CRIE-GSYu/2011 A/Tula/CRIE-GSYu/2011 4 0
2013-2014 A/California/7/2009 A/Jiangsugusu/SWL1824/2013 A/LongYan/SWL33/2013 5 3
2014-2015 A/California/7/2009 A/LongYan/SWL2457/2014 A/Utah/06/2013 9 3
2015-2016 A/California/7/2009 A/Michigan/45/2015 A/Helsinki/808M/2014 14 4
2016-2017 A/California/7/2009 A/Michigan/45/2015 A/Michigan/45/2015 14 0
2017-2018 A/Michigan/45/2015 A/Illinois/37/2017 A/Michigan/45/2015 3 3
2018-2019 A/Michigan/45/2015 A/Kenya/47/2018 A/Kenya/47/2018 4 0
2019-2020 A/Brisbane/02/2018 A/Kenya/47/2018 A/Kenya/47/2018 1 0
2020-2021 A/Hawaii/70/2019 -1 A/Kenya/47/2018 -1 -1

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

TABLE VIII
H1N1 NA SOUTHERN HEMISPHERE

year WHO recommendation dominant strain Qnet recommendation WHO
error

Qnet
error

2001-2002 A/New Caledonia/20/99 A/New York/447/2001 A/Canterbury/37/2000 4 6
2002-2003 A/New Caledonia/20/99 A/Paris/0833/2002 A/New York/447/2001 1 5
2003-2004 A/New Caledonia/20/99 A/Memphis/5/2003 A/New York/291/2002 3 5
2004-2005 A/New Caledonia/20/99 A/Singapore/14/2004 A/Memphis/5/2003 2 3
2005-2006 A/New Caledonia/20/99 A/Memphis/5/2003 A/Canterbury/106/2004 3 6
2006-2007 A/New Caledonia/20/99 A/Massachusetts/08/2006 A/Sofia/361/2005 4 2
2007-2008 A/New Caledonia/20/99 A/Massachusetts/08/2006 A/Thailand/RMSC-UDN-20/2006 4 8
2008-2009 A/Solomon Islands/3/2006 A/Brisbane/59/2007 A/Tennessee/UR06-0151/2007 15 13
2009-2010 A/Brisbane/59/2007 A/Thailand/SR08021/2009 A/Nebraska/07/2008 87 87
2010-2011 A/California/7/2009 A/Thailand/SR08021/2009 A/Rome/709/2009 2 9
2011-2012 A/California/7/2009 A/Tula/CRIE-GSYu/2011 A/Thailand/SR08021/2009 4 2
2012-2013 A/California/7/2009 A/Tula/CRIE-GSYu/2011 A/Tula/CRIE-GSYu/2011 4 0
2013-2014 A/California/7/2009 A/Jiangsugusu/SWL1824/2013 A/Oman/SQUH-63/2012 5 4
2014-2015 A/California/7/2009 A/LongYan/SWL2457/2014 A/NanPing/SWL1640/2013 9 6
2015-2016 A/California/7/2009 A/Michigan/45/2015 A/LongYan/SWL2457/2014 14 5
2016-2017 A/California/7/2009 A/Michigan/45/2015 A/Michigan/45/2015 14 0
2017-2018 A/Michigan/45/2015 A/Illinois/37/2017 A/Michigan/45/2015 3 3
2018-2019 A/Michigan/45/2015 A/Kenya/47/2018 A/Kentucky/26/2017 4 2
2019-2020 A/Michigan/45/2015 A/Kenya/47/2018 A/Kenya/47/2018 4 0
2020-2021 A/Brisbane/02/2018 -1 A/Kenya/47/2018 -1 -1

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric
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TABLE IX
H3N2 HA NORTHERN HEMISPHERE

year WHO recommendation dominant strain Qnet recommendation WHO
error

Qnet
error

2005-2006 A/California/7/2004 A/Denmark/195/2005 A/Tairawhiti/369/2004 10 2
2006-2007 A/Wisconsin/67/2005 A/New York/5/2006 A/South Australia/22/2005 5 4
2007-2008 A/Wisconsin/67/2005 A/Tennessee/11/2007 A/Colorado/05/2006 8 5
2008-2009 A/Brisbane/10/2007 A/Massachusetts/13/2008 A/Tennessee/11/2007 3 2
2009-2010 A/Brisbane/10/2007 A/Hawaii/14/2009 A/Manhean/03/2008 7 6
2010-2011 A/Perth/16/2009 A/Utah/12/2010 A/Hawaii/14/2009 8 7
2011-2012 A/Perth/16/2009 A/Piaui/14202/2011 A/Utah/12/2010 4 4
2012-2013 A/Victoria/361/2011 A/Alborz/927/2012 A/Tehran/895/2012 4 3
2013-2014 A/Victoria/361/2011 A/Delaware/01/2013 A/Singapore/H2012.934/2012 4 1
2014-2015 A/Texas/50/2012 A/Hong Kong/4801/2014 A/Nebraska/03/2013 10 9
2015-2016 A/Switzerland/9715293/2013 A/Hong Kong/4801/2014 A/Hong Kong/4801/2014 10 0
2016-2017 A/Hong Kong/4801/2014 A/Hong Kong/4801/2014 A/Hong Kong/4801/2014 0 0
2017-2018 A/Hong Kong/4801/2014 A/Maryland/25/2017 A/New York/03/2016 3 1
2018-2019 A/Singapore/INFIMH-16-0019/2016 A/Vermont/04/2018 A/Ontario/038/2017 8 5
2019-2020 A/Kansas/14/2017 A/Kentucky/27/2019 A/California/7330/2018 16 12
2020-2021 A/Hong Kong/2671/2019 -1 A/Kentucky/27/2019 -1 -1

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

TABLE X
H3N2 HA SOUTHERN HEMISPHERE

year WHO recommendation dominant strain Qnet recommendation WHO
error

Qnet
error

2005-2006 A/Wellington/1/2004 A/Denmark/195/2005 A/Waikato/21/2004 3 3
2006-2007 A/California/7/2004 A/New York/5/2006 A/South Australia/22/2005 12 4
2007-2008 A/Wisconsin/67/2005 A/Tennessee/11/2007 A/New York/923/2006 8 5
2008-2009 A/Brisbane/10/2007 A/Massachusetts/13/2008 A/Tennessee/11/2007 3 2
2009-2010 A/Brisbane/10/2007 A/Hawaii/14/2009 A/Manhean/03/2008 7 6
2010-2011 A/Perth/16/2009 A/Utah/12/2010 A/Hawaii/14/2009 8 7
2011-2012 A/Perth/16/2009 A/Piaui/14202/2011 A/Utah/12/2010 4 4
2012-2013 A/Perth/16/2009 A/Alborz/927/2012 A/Piaui/14202/2011 8 4
2013-2014 A/Victoria/361/2011 A/Delaware/01/2013 A/Callao/IPE00830/2012 4 7
2014-2015 A/Texas/50/2012 A/Hong Kong/4801/2014 A/Delaware/01/2013 10 7
2015-2016 A/Switzerland/9715293/2013 A/Hong Kong/4801/2014 A/Hong Kong/4801/2014 10 0
2016-2017 A/Hong Kong/4801/2014 A/Hong Kong/4801/2014 A/Hong Kong/4801/2014 0 0
2017-2018 A/Hong Kong/4801/2014 A/Maryland/25/2017 A/Ontario/196/2016 3 4
2018-2019 A/Singapore/INFIMH-16-0019/2016 A/Vermont/04/2018 A/Ontario/038/2017 8 5
2019-2020 A/Switzerland/8060/2017 A/Kentucky/27/2019 A/California/7330/2018 13 12
2020-2021 A/South Australia/34/2019 -1 A/Kentucky/27/2019 -1 -1

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric
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TABLE XI
H3N2 NA NORTHERN HEMISPHERE

year WHO recommendation dominant strain Qnet recommendation WHO
error

Qnet
error

2003-2004 A/Moscow/10/99 A/Denmark/107/2003 A/New York/101/2002 13 3
2004-2005 A/Fujian/411/2002 A/Hyogo/36/2004 A/New York/20/2003 3 16
2005-2006 A/California/7/2004 A/Denmark/203/2005 A/Denmark/203/2005 4 0
2006-2007 A/Wisconsin/67/2005 A/Berlin/32/2006 A/Mexico/InDRE2227/2005 1 1
2007-2008 A/Wisconsin/67/2005 A/Brazil/80/2007 A/Macau/557/2005 8 7
2008-2009 A/Brisbane/10/2007 A/Perth/16/2009 A/Brazil/80/2007 3 2
2009-2010 A/Brisbane/10/2007 A/Perth/16/2009 A/Wisconsin/24/2008 3 1
2010-2011 A/Perth/16/2009 A/California/17/2010 A/New York/70/2009 2 3
2011-2012 A/Perth/16/2009 A/Texas/14/2011 A/Virginia/05/2010 3 2
2012-2013 A/Victoria/361/2011 A/New York/02/2012 A/Singapore/C2011.493/2011 4 1
2013-2014 A/Victoria/361/2011 A/Michigan/02/2013 A/Idaho/38/2012 3 1
2014-2015 A/Texas/50/2012 A/Tehran/69634/2014 A/Michigan/02/2013 3 1
2015-2016 A/Switzerland/9715293/2013 A/Parma/471/2015 A/Parma/471/2015 3 0
2016-2017 A/Hong Kong/4801/2014 A/North Carolina/62/2016 A/Parma/471/2015 7 2
2017-2018 A/Hong Kong/4801/2014 A/Texas/277/2017 A/Texas/277/2017 8 0
2018-2019 A/Singapore/INFIMH-16-0019/2016 A/Japan/NHRC FDX70352/2018 A/Netherlands/3530/2017 4 3
2019-2020 A/Kansas/14/2017 A/Washington/9757/2019 3 11
2020-2021 A/Hong Kong/2671/2019 -1 A/Washington/9757/2019 -1 -1

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

TABLE XII
H3N2 NA SOUTHERN HEMISPHERE

year WHO recommendation dominant strain Qnet recommendation WHO
error

Qnet
error

2003-2004 A/Moscow/10/99 A/Denmark/107/2003 A/New York/101/2002 13 3
2004-2005 A/Fujian/411/2002 A/Hyogo/36/2004 A/New York/20/2003 3 16
2005-2006 A/Wellington/1/2004 A/Denmark/203/2005 A/Wellington/1/2004 2 2
2006-2007 A/California/7/2004 A/Berlin/32/2006 A/Mexico/InDRE2227/2005 3 1
2007-2008 A/Wisconsin/67/2005 A/Brazil/80/2007 A/Ohio/06/2006 8 10
2008-2009 A/Brisbane/10/2007 A/Perth/16/2009 A/Brazil/80/2007 3 2
2009-2010 A/Brisbane/10/2007 A/Perth/16/2009 A/Wisconsin/24/2008 3 1
2010-2011 A/Perth/16/2009 A/California/17/2010 A/New York/70/2009 2 3
2011-2012 A/Perth/16/2009 A/Texas/14/2011 A/Virginia/05/2010 3 2
2012-2013 A/Perth/16/2009 A/New York/02/2012 A/Texas/14/2011 4 1
2013-2014 A/Victoria/361/2011 A/Michigan/02/2013 A/New York/02/2012 3 3
2014-2015 A/Texas/50/2012 A/Tehran/69634/2014 A/Michigan/02/2013 3 1
2015-2016 A/Switzerland/9715293/2013 A/Parma/471/2015 A/Tehran/69634/2014 3 2
2016-2017 A/Hong Kong/4801/2014 A/North Carolina/62/2016 A/Parma/471/2015 7 2
2017-2018 A/Hong Kong/4801/2014 A/Texas/277/2017 A/Texas/277/2017 8 0
2018-2019 A/Singapore/INFIMH-16-0019/2016 A/Japan/NHRC FDX70352/2018 A/Texas/277/2017 4 3
2019-2020 A/Switzerland/8060/2017 A/Washington/9757/2019 A/Pennsylvania/317/2018 10 10
2020-2021 A/South Australia/34/2019 -1 A/Washington/9757/2019 -1 -1

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric
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TABLE XIII
H1N1 NA SOUTHERN HEMISPHERE (MULTI-CLUSTER)

year WHO recommendation Qnet
error0

Qnet
error1

WHO
error Qnet recommendation 0 Qnet recommendation 1

2001-2002 A/New Caledonia/20/99 1 6 4 A/New South Wales/26/2000 A/Canterbury/37/2000
2002-2003 A/New Caledonia/20/99 0 5 1 A/Paris/0833/2002 A/New York/447/2001
2003-2004 A/New Caledonia/20/99 2 8 3 A/Paris/0833/2002 A/Taiwan/141/2002
2004-2005 A/New Caledonia/20/99 3 4 2 A/Memphis/5/2003 A/Hanoi/1004/2003
2005-2006 A/New Caledonia/20/99 0 1 3 A/Memphis/5/2003 A/Massachusetts/08/2006
2006-2007 A/New Caledonia/20/99 2 8 4 A/Sofia/361/2005 A/Wellington/11/2005
2007-2008 A/New Caledonia/20/99 4 8 4 A/New Caledonia/20/99 A/New York/8/2006
2008-2009 A/Solomon Islands/3/2006 13 19 15 A/Tennessee/UR06-0151/2007 A/Ohio/UR06-0178/2007
2009-2010 A/Brisbane/59/2007 88 90 87 A/Sendai/TU66/2008 A/Japan/618/2008

2010-2011 A/California/7/2009 1 6 2 A/South
Carolina/WRAIR1645P/2009 A/Wisconsin/629-D00809/2009

2011-2012 A/California/7/2009 1 3 4 A/England/21680633/2010 A/Hangzhou/178/2010
2012-2013 A/California/7/2009 1 22 4 A/Joshkar-Ola/CRIE-BLP/2011 A/Rio Grande do Sul/578/2011
2013-2014 A/California/7/2009 4 13 5 A/Thailand/MR10580/2012 A/Mexico/INMEGEN-INER 15/2012
2014-2015 A/California/7/2009 3 7 9 A/Minnesota/02/2013 A/Helsinki/430/2013
2015-2016 A/California/7/2009 4 7 14 A/Helsinki/808M/2014 A/Virginia/NHRC430739/2014
2016-2017 A/California/7/2009 0 3 14 A/Michigan/45/2015 A/Colorado/30/2015
2017-2018 A/Michigan/45/2015 3 8 3 A/Michigan/45/2015 A/Arizona/03/2016
2018-2019 A/Michigan/45/2015 0 4 4 A/Kenya/47/2018 A/Michigan/45/2015
2019-2020 A/Michigan/45/2015 0 2 4 A/Kenya/47/2018 A/Colorado/7682/2018

2020-2021 A/Brisbane/02/2018 -1 -1 -1 A/California/NHRC-OID BOX-ILI-
0012/2019 A/Indiana/30/2019

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric

TABLE XIV
H3N2 NA SOUTHERN HEMISPHERE (MULTI-CLUSTER)

year WHO recommendation Qnet
error0

Qnet
error1

WHO
error Qnet recommendation 0 Qnet recommendation 1

2003-2004 A/Moscow/10/99 4 5 13 A/Auckland/612/2002 A/New York/87/2002
2004-2005 A/Fujian/411/2002 16 18 3 A/New York/20/2003 A/New York/12/2003
2005-2006 A/Wellington/1/2004 1 7 2 A/New York/358/2004 A/Singapore/36/2004
2006-2007 A/California/7/2004 3 8 3 A/Macau/557/2005 A/Hong Kong/HKU53/2005
2007-2008 A/Wisconsin/67/2005 0 10 8 A/Brazil/80/2007 A/Wisconsin/44/2006
2008-2009 A/Brisbane/10/2007 4 10 3 A/Missouri/06/2007 A/Japan/72/2007
2009-2010 A/Brisbane/10/2007 1 7 3 A/Wisconsin/24/2008 A/Mississippi/UR07-0042/2008
2010-2011 A/Perth/16/2009 3 8 2 A/New York/70/2009 A/Japan/883/2009
2011-2012 A/Perth/16/2009 2 2 3 A/California/19/2010 A/Virginia/05/2010
2012-2013 A/Perth/16/2009 1 12 4 A/Texas/14/2011 A/Singapore/GP1684/2011
2013-2014 A/Victoria/361/2011 1 5 3 A/Idaho/38/2012 A/Pavia/135/2012
2014-2015 A/Texas/50/2012 1 1 3 A/Nevada/05/2013 A/Michigan/02/2013
2015-2016 A/Switzerland/9715293/2013 0 4 3 A/Parma/471/2015 A/Iran/91244/2014
2016-2017 A/Hong Kong/4801/2014 1 25 7 A/New Jersey/13/2015 A/California/NHRC BRD41056N/2015
2017-2018 A/Hong Kong/4801/2014 1 4 9 A/Texas/277/2017 A/Victoria/668/2016

2018-2019 A/Singapore/INFIMH-16-
0019/2016 2 4 3 A/Netherlands/3530/2017 A/Washington/17/2017

2019-2020 A/Switzerland/8060/2017 4 10 10 A/England/538/2018 A/California/BRD12490N/2018
2020-2021 A/South Australia/34/2019 -1 -1 -1 A/South Australia/34/2019 A/Washington/9757/2019

? Dominant strain is calculated as the one closest to the centroid in the strain space that year in the edit distance metric
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TABLE XV
NEIGHBORS AT THE EDGE OF EMERGENCE

accession country date qdistance? host log-likelihood boundy

MG197717 China 2015-07-06 0.5994 human(Human coronavirus OC43) -344680279.6919
MG197719 China 2015-06-04 0.5995 human(Human coronavirus OC43) -344700037.5225
MG197710 China 2015-05-06 0.6002 human(Human coronavirus OC43) -345145082.3718
MH940245 Thailand 2017-06-04 0.6017 human(Human coronavirus HKU1) -346005398.0759
MG197711 China 2015-06-09 0.6035 human(Human coronavirus OC43) -347017496.9155
MG197716 China 2015-06-06 0.6053 human(Human coronavirus OC43) -348034981.4953
MG197715 China 2015-05-21 0.6053 human(Human coronavirus OC43) -348055196.8970
KF294457 China 2012-01-01 0.6058 Rhinolophus monoceros -348315726.8189
KJ473822 China 2012-01-01 0.6059 Tylonycteris pachypus -348379385.2394
MK211376 China 2016-09-01 0.6065 Rhinolophus affinis -348745110.7506
MH002342 China 2013-06-03 0.6065 Pipistrellus bat coronavirus HKU5 -348745431.2254
KJ473816 China 2013-01-01 0.6066 Rhinolophus sinicus -348779627.4654
KJ473812 China 2013-01-01 0.6066 Rhinolophus ferrumequinum -348807413.3783
MG772933 China 2017-02-01 0.6066 Rhinolophus sinicus -348814549.9518
MK211379 China 2016-09-01 0.6067 Rhinolophus affinis -348846490.8570
MK211375 China 2016-09-01 0.6067 Rhinolophus affinis -348867989.3104
MK211374 China 2016-08-01 0.6068 Rhinolophus sp. -348893681.6418
KJ473821 China 2014-05-06 0.6071 Vespertilio superans -349070089.5700
KF569996 China 2011-01-01 0.6095 Rhinolophus affinis -350440764.5785
MN611520 China 2018-03-01 0.6095 Pipistrellus abramus -350452309.6142
KP886809 China 2013-05-23 0.6095 Rhinolophus Ferrumequinum -350486988.0164
KP886808 China 2013-05-23 0.6095 Rhinolophus Ferrumequinum -350486988.0164
MN611519 China 2018-03-01 0.6097 Tylonycteris pachypus -350572065.7797
NC 025217 China 2013-04-29 0.6097 Hipposideros pratti -350580907.8832
MK211377 China 2016-09-01 0.6106 Rhinolophus affinis -351127765.1568
KJ473820 China 2013-01-01 0.6118 Pipistrellus abramus -351798100.8827
MN996532z China 2013-07-24 0.6155 Rhinolophus affinis -353944009.5536
MH002341 China 2014-06-28 0.6167 Pipistrellus bat coronavirus HKU5 -354632651.3696
MH687968 Viet Nam 2014-11-14 0.6174 Rattus argentiventer -355004271.8441
MH687978 Viet Nam 2015-02-04 0.6183 Rattus argentiventer -355553631.3715
MH687969 Viet Nam 2014-11-12 0.6184 Rattus argentiventer -355566733.0149
KF294372 China 2011-01-01 0.6185 Niviventer confucianus -355664120.7144
MH687974 Viet Nam 2014-11-12 0.6187 Rattus argentiventer -355732457.2680
MH687973 Viet Nam 2014-11-12 0.6189 Rattus argentiventer -355892765.0568
MH687972 Viet Nam 2014-11-12 0.6190 Rattus argentiventer -355956649.5930
KF294370 China 2013-01-01 0.6192 Rattus tanezumi -356024166.0313
KF294371 China 2013-01-01 0.6192 Rattus losea -356040368.5036
MH687971 Viet Nam 2014-11-12 0.6194 Rattus argentiventer -356161570.0562
MH687977 Viet Nam 2015-02-04 0.6199 Rattus argentiventer -356466591.1490
KF294357 China 2011-01-01 0.6214 Apodemus agrarius -357298941.1683
KM349744 China 2012-05-17 0.6219 Rattus norvegicus (Norway rat) -357570433.8433
NC 026011 China 2012-05-17 0.6219 Rattus norvegicus (Norway rat) -357570433.8433
KM349743 China 2012-05-17 0.6220 Rattus norvegicus (Norway rat) -357646895.7536

? qdistance: Smaller values implies higher risk
y Likelihood lower bound: Larger values implies higher risk
zRaTG13

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2020. ; https://doi.org/10.1101/2020.07.17.20156364doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156364
http://creativecommons.org/licenses/by-nc-nd/4.0/


20

TABLE XVI
NUMBERING CONVERSION TO PDM09 AND H3 SCHEMES

Query H1N1pdm H3
1 - -
2 - -
3 - -
4 - -
5 - -
6 - -
7 - -
8 - -
9 - -
10 - -
11 - -
12 - -
13 - -
14 - -
15 - -
16 - -
17 - -
- - 1
- - 2
- - 3
- - 4
- - 5
- - 6
- - 7
- - 8
- - 9
- - 10
18 1 11
19 2 12
20 3 13
21 4 14
22 5 15
23 6 16
24 7 17
25 8 18
26 9 19
27 10 20
28 11 21
29 12 22
30 13 23
31 14 24
32 15 25
33 16 26
34 17 27
35 18 28
36 19 29
37 20 30
38 21 31
39 22 32
40 23 33
41 24 34
42 25 35
43 26 36
44 27 37
45 28 38
46 29 39
47 30 40
48 31 41
49 32 42
50 33 43
51 34 44
52 35 45
53 36 46
54 37 47
55 38 48
56 39 49
57 40 50
58 41 51
59 42 52
60 43 53
61 44 54
62 45 -
63 46 55
64 47 56
65 48 57
66 49 58
67 50 59
68 51 60
- - -
- - -
- - -
- - -
- - -
69 52 61
70 53 62
71 54 63
72 55 64
73 56 65
74 57 66
75 58 67

Query H1N1pdm H3
77 60 69
78 61 70
79 62 71
80 63 72
81 64 73
82 65 74
83 66 75
84 67 76
85 68 77
86 69 78
87 70 79
88 71 80
89 72 81
90 73 82
91 74 -
92 75 83
93 76 84
94 77 85
95 78 86
96 79 87
97 80 88
98 81 89
99 82 90
100 83 91
101 84 92
102 85 -
103 86 93
104 87 94
105 88 95
106 89 96
107 90 97
108 91 98
109 92 99
110 93 100
111 94 101
112 95 102
- - -
- - -
113 96 103
114 97 104
115 98 105
116 99 106
117 100 107
118 101 108
119 102 109
120 103 110
121 104 111
122 105 112
123 106 113
124 107 114
125 108 115
126 109 116
127 110 117
128 111 118
129 112 119
130 113 120
131 114 121
132 115 122
133 116 123
- - -
- - -
134 117 124
135 118 125
136 119 -
137 120 -
138 121 -
139 122 126
140 123 127
141 124 128
- - -
- - -
- - -
- - -
- - -
142 125 129
143 126 130
144 127 131
145 128 132
146 129 133
147 130 -
148 131 134
149 132 135
150 133 136
151 134 137
152 135 138
153 136 139
154 137 140
155 138 141
- - -
156 139 142

Query H1N1pdm H3
157 140 143
158 141 144
159 142 145
160 143 146
161 144 147
162 145 148
163 146 149
164 147 150
165 148 151
166 149 152
167 150 153
168 151 154
169 152 155
170 153 156
171 154 157
172 155 158
- - -
- - -
- - -
- - -
173 156 159
174 157 160
175 158 161
176 159 162
177 160 163
178 161 164
179 162 165
180 163 166
181 164 167
182 165 168
183 166 169
184 167 170
- - -
185 168 171
186 169 172
187 170 173
- - -
188 171 174
189 172 175
190 173 176
191 174 177
192 175 178
193 176 179
194 177 180
195 178 181
196 179 182
197 180 183
198 181 184
199 182 185
200 183 186
201 184 187
202 185 188
203 186 189
204 187 190
205 188 191
206 189 192
207 190 193
208 191 194
209 192 195
210 193 196
211 194 197
212 195 198
213 196 199
- - -
214 197 200
215 198 201
216 199 202
217 200 203
218 201 204
219 202 205
220 203 206
221 204 207
222 205 208
223 206 209
224 207 210
225 208 211
226 209 212
227 210 213
228 211 214
229 212 215
230 213 216
231 214 217
232 215 218
233 216 219
234 217 220
235 218 221
236 219 222
237 220 223
- - -
- - -

Query H1N1pdm H3
- - -
- - -
- - -
238 221 224
239 222 225
240 223 226
241 224 227
242 225 228
243 226 229
244 227 230
245 228 231
246 229 232
247 230 233
248 231 234
249 232 235
250 233 236
251 234 237
252 235 238
253 236 239
254 237 240
255 238 241
256 239 242
257 240 243
258 241 244
259 242 245
260 243 246
261 244 247
262 245 248
263 246 249
264 247 250
265 248 251
266 249 252
267 250 253
268 251 254
269 252 255
270 253 256
271 254 257
272 255 258
273 256 259
274 257 260
275 258 261
276 259 262
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
- - -
277 260 -
278 261 263
279 262 264
280 263 265
281 264 266
282 265 267
283 266 268
284 267 269
285 268 270
286 269 271
287 270 272
288 271 273
289 272 274
290 273 275
291 274 276
292 275 277
293 276 278
294 277 279
295 278 280
296 279 281
297 280 282
298 281 283
299 282 284
300 283 285
- - -
301 284 286
302 285 287
303 286 288
304 287 289
305 288 290
306 289 291
307 290 292
308 291 293
309 292 294
310 293 295
311 294 296
- - -
312 295 297
313 296 298
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