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Abstract

We present a compartmental, age-stratified, nation-level, extended SEIQRD model to model SARS-
CoV-2 spread in Belgium. We demonstrate the robustness of the calibration procedure by calibrating
the model using incrementally larger datasets and dissect the model results by computing the effec-
tive reproduction number at home, in workplaces, in schools and during leisure activities. We find
that schools are a major contributor to SARS-CoV-2 spread, with the potential to increase the basic
reproduction number from Re = 0.66 ± 0.04 to Re = 1.09 ± 0.05 under lockdown measures. The
model accounts for the main characteristics of SARS-CoV-2 transmission and COVID-19 disease and
features a detailed representation of hospitals with parameters derived from two Ghent (Belgium)
hospitals. Social contact during the pandemic is modelled by scaling pre-pandemic contact matrices
with publically available mobility data from Google and with effectivity parameters inferred from
hospitalization data. The combination of the deterministic epidemiological model, which incorpo-
rates rigid a-priori knowledge on disease dynamics, and the calibrated effectivity parameters in the
social contact model allow us to combine the ease of long-term extrapolation and scenario-analysis
of compartmental models with the flexibility of a data-driven model.

keywords: SARS-CoV-2, compartmental epidemiological model, non-pharmaceutical interventions,
Google mobility data, effective reproduction number, model calibration
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1 INTRODUCTION

1 Introduction

After an initial outbreak in early 2020 in Wuhan, China, Severe acute respiratory syndrome coronavirus 21

(SARS-CoV-2) has spread globally [21]. SARS-CoV-2 is capable of sustained human-to-human trans-2

mission [31], and may cause severe disease and death, especially in older individuals. The SARS-3

CoV-2 pandemic has, in general, shown a remarkedly low incidence among children and young4

adults [8, 27, 36]. Furthermore, presymptomatic transmission is a major contributor to SARS-CoV-25

spread [25, 39]. Both on March 15th, 2020 and on October 19th, 2020, the Belgian governments im-6

posed social restrictions after testing & tracing methods had failed to prevent large-scale spread of7

SARS-CoV-2. Recently, pharmaceutical interventions under the form of vaccinations have become8

available. If natural immunity wanes or if SARS-CoV-2 mutates, it is expected that SARS-CoV-2 will9

become endemic [32]. Hence, there is a need for well-informed models and knowledge build-up to10

assist policymakers in choosing the best non-pharmaceutical and pharmaceutical interventions dur-11

ing future SARS-CoV-2 outbreaks.12

13

Currently, four other models exist to inform policymakers Belgium. The agent-based model (ABM)14

of Willem et al. [42], the data-driven model by Barbe et al. [4] and the nation-level, age-stratified com-15

partmental models of Abrams et al. [3] and Franco [12]. The latter feature similar disease dynamics16

as our own model but rely on different assumptions to model social contact. The different model17

outputs are currently combined into an ensemble to inform policy makers [41]. In the ensemble, each18

model fulfills a niche, for instance, the ABM of Willem et al. [42] is good for studying microscopic19

social behaviour, and was used to inform the optimal household bubble size. The model of Barbé excels20

at short-term forecasts while our own model, together with the compartmental models of Abrams21

et al. [3] and Franco [12], are well-fit to study long-term scenarios.22

23

In this work, we built a compartmental, age-stratified, nation-level model which accounts for the24

main characteristics of SARS-CoV-2 disease. The model features a detailed representation of hospitals25

with parameters derived from two Ghent (Belgium) hospitals. We built a social contact model which26

scales pre-pandemic contact matrices from a study by Willem et al. [43] with publically available27

mobility data from Google and with effectivity parameters derived from hospitalization data using28

an Markov Chain Monte Carlo (MCMC) method [13]. Tardiness in compliance to social restrictions is29

included using a delayed-ramp model. We find that the combination of the deterministic epidemio-30

logical model, which incorporates rigid a-priori knowledge on disease dynamics, and the calibrated31

effectivity parameters in the social contact model allow us to combine the ease of long-term extrap-32

olation and scenario-analysis of compartmental models with the flexibility of a data-driven model.33

Further, the model does not require ad-hoc tweaking and is computationally cheap, making it ideal to34

perform optimizations which require thousands of model evaluations.35

36

Using a hospitalization dataset of 348 coronavirus disease 19 (COVID-19) patients in two Ghent (Bel-37

gium) hospitals, we computed hospitalization parameters and used them in our model as proxies for38

Belgium. Using the obtained parameters, we found the model was able to predict the total number39

of patients in the Belgian hospitals well. We calibrated the model to high-level hospitalization data40

made publically available by the Belgian Scientific Instute of Public Health (Sciensano) and demon-41

strated its robustness. We computed the basic reproduction numbers (R0) and the time to reach com-42
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2 MATERIALS AND METHODS

pliance to lockdown measures during both coronavirus disease 2019 (COVID-19) waves in Belgium.43

Using the calibrated model, we computed the relative share of contacts and the effective reproduc-44

tion numbers and found these to be in line with estimates from other authors at home, at school,45

at work and during leisure activities to asses their effect on SARS-CoV-2 spread during both 202046

COVID-19 waves. We observed a strong correlation between schools re-opening and increases in47

SARS-CoV-2 transmission. More precisely, schools have the potential to increase the basic reproduc-48

tion number from Re = 0.67± 0.04 to Re = 1.09± 0.05 under lockdown measures.49

50

Throughout the work, Belgium is used as a case but the scope of the work is extendable to other51

countries. Since February 2021, the effects of new SARS-CoV-2 strains and pharamaceutical interven-52

tions (vaccines) need to be accounted for. For this purpose, a model extension was developed and is53

currently used in the aforementioned model ensemble. However, due to the longetivity of this work,54

we chose to limit the scope of this study to the effects of non-pharamaceutical interventions.55

2 Materials and methods56

2.1 The extended SEIQRD-model (SEIpIaQRD)57

2.1.1 Disease dynamics58

The SEIR(D) model [19] is a compartmental model that subdivides the human population into four59

groups: 1. susceptible individuals (S), 2. exposed individuals in the latent phase (E), 3. infectious60

individuals capable of transmitting the disease (I) and 4. individuals removed from the popula-61

tion either through immunization or death (R/D). Despite being a simple and idealized reality, the62

SEIR(D) dynamics are used extensively to predict the outbreak of infectious diseases and this was no63

different during the SARS-CoV-2 outbreak earlier this year [8, 21, 45].64

65

In this work, we extended the SEIRD model to incorporate more expert knowledge on SARS-CoV-266

disease dynamics. For that purpose, the infectious compartment was split into four parts. The first is67

a period of presymptomatic infectiousness because several studies have shown that presymptomatic68

transmission is a dominant transmission mechanism of SARS-CoV-2 [25, 39]. After the presymp-69

tomatic period, three possible infectious outcomes are modeled: (1) Asymptomatic outcome, for in-70

dividuals who show no symptoms at all, (2) Mild outcome, for individuals with mild symptoms who71

recover at home, and (3) Hospitalization, when mild symptoms worsen. Children and young adults72

have a high propensity to experience an asymptomatic or mild outcome, while older individuals73

have a higher propensity to be hospitalized [25, 39]. Belgian hospitals generally have two wards for74

COVID-19 patients: 1) cohort, where patients are not monitored continuously and 2) Intensive care75

units (ICUs), for patients with the most severe symptoms. Intensive care includes permanent moni-76

toring, the use of ventilators or the use of extracorporeal membrane oxygenation (ECMO). Patients77

generally spend limited time in the emergency room and/or in a buffer ward before going to cohort.78

After spending limited time in cohort, some patients are transferred to ICU. Patients can perish in79

both wards, but mortalities are generally lower in cohort. After a stay in an ICU, patients return80

to cohort for recovery in the hospital. During the recovery stay, mortality is generally limited. We81

assume that mildly infected individuals and hospitalized patients cannot infect susceptibles (Q). The82
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2.1 The extended SEIQRD-model (SEIpIaQRD) 2 MATERIALS AND METHODS

model dynamics are depicted in Figure 1.83

2.1.2 Model structure and equations84

In this work, we implemented the extended SEIQRD dynamics shown in Figure 1 using ordinary dif-85

ferential equations, without spatial stratification and with age-stratification. This was accomplished86

by defining a system of K.N ordinary differential equations, one for every of the K = 11 model com-87

partments, each of which is further split into N = 9 age-stratified metapopulations. The age-groups88

have different contact rates with other age-groups and the disease progresses differently for each age-89

group, making the model behave in a realistic way. Our model consists of 9 age classes, i.e., [0,10[,90

[10,20[, [20,30[, [30,40[, [40,50[, [50,60[, [60,70[, [70,80[, [80, ∞[. The advantage of this approach are91

the limited computational resources required to explore scenarios and perform optimizations that92

require thousands of function evaluations. The disadvantage is the assumption of homogeneous93

mixing of the entire Belgian population, i.e. every contact between individuals in the Belgian pop-94

ulation is assumed to be completely random. More realistic approaches are spatial patch models,95

network-based models, agent-based models or combinations thereof. However, these come at a sub-96

stantial significant computational cost. Because Belgium is a small and heavily urbanised country,97

a spatially explicit model becomes relevant at very low SARS-CoV-2 prelevances. The macroscopic98

coarse-graining of homogeneous mixing works well to describe major COVID-19 waves, but is less fit99

for monitoring the disease at low prelevances. The model dynamics are translated into the following100

system of coupled ordinary differential equations,101

Ṡi = −βSi
N∑
j=1

Nc,ij

(Ij +Aj
Tj

)
, (1)

Ėi = βSi

N∑
j=1

Nc,ij

(Ij +Aj
Tj

)
− (1/σ) · Ei, (2)

İi = (1/σ)Ei − (1/ω)Ii, (3)

Ȧi = (ai/ω)Ii − (1/da)Ai, (4)

Ṁi = ((1− ai)/ω)Ii − ((1− hi)/dm + hi/dhosp)Mi, (5)
˙ERi = (hi/dhosp)Mi − (1/dER)ERi, (6)

Ċi = ci(1/dER)ERi − (mC,i/dc,D)Ci − ((1−mC,i)/dc,R)Ci, (7)
˙ICUi = (1− ci)(1/dER)ERi − (mICU,i/dICU,D)ICUi (8)

−((1−mICU,i)/dICU,R)ICUi, (9)

ĊICU,rec,i = ((1−mICU,i)/dICU,R)ICUi − (1/dICU,rec)CICU,rec,i, (10)

Ḋi = (mICU,i/dICU,D)ICUi + (mC,i/dc,D)Ci, (11)

Ṙi = (1/da)Ai + ((1− hi)/dm)Mi + ((1−mC,i)/dc,R)Ci (12)

+(1/dICU,rec)CICU,rec,i, (13)

for i = 1, 2, . . . , 9. Here, T stands for total population (Table 1), S stands for susceptible, E for
exposed, I for presymptomatic and infectious, A for asymptomatic and infectious, M for mildly
symptomatic and infectious, ER for emergency room and/or buffer ward, C for cohort, CICU,rec for a
recovery stay in cohort coming from Intensive Care, ICU for Intensive Care Unit, H for hospitalised,
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2 MATERIALS AND METHODS 2.1 The extended SEIQRD-model (SEIpIaQRD)

Si Ei Ii Mi

Ai

ERi

ICUi

Ci

Ri

CICU,rec, i

Di

Infected Infectious Hospitalized

Figure 1: Extended SEIQRD dynamics used in this study. Here, S stands for
susceptible, E for exposed, I for presymptomatic and infectious, A for asymp-
tomatic and infectious, M for mildly symptomatic and infectious, ER for emer-
gency room and/or buffer ward, C for cohort, CICU,rec for a recovery stay in co-
hort coming from IC, ICU for Intensive Care Unit, D for dead and R for recov-
ered. A subscript i is used to denote the ith age strate of the model, the model
has a total of nine age strata. An overview of the model parameters can be found
in table 3.

D for dead and R for recovered. A subscript to these variables is used to refer to one of the nine age
strata in the model. Using the above notation, all model states are 9-dimensional vectors,

S = [S1(t) S2(t) . . . Si(t)],

where Si(t) denotes the number of susceptibles in age-class i at time t after the introduction of SARS-102

CoV-2 in the population. As initial condition, the whole population is assumed susceptible to SARS-103

CoV-2 and one exposed patient in every age class is assumed, so Ei(0) = 1 for all i = 1, 2, ..., 9. The104

time between the start of the simulation and the start of data collection must then be estimated when105

calibrating the model. An overview of all model parameters, their values and their meaning can be106

found in table 3. In what follows, the most important model parameters and their chosen values are107

motivated.108

2.1.3 Model parameters109

Transmission rate and social contact data The transmission rate of the disease depends on the110

product of four contributions (Equation 1). The first contribution, (Ij +Aj)/Tj , is the fraction of con-111

tagious individuals in age group j. We thus assume presymptomatic and asymptomatic individuals112

spread the disease, while mildly infected are assumed to self-quarantine and hospitalized individuals113

cannot infect health care workers. The second contribution, Nc,ij , is the average number of human-114

to-human interactions of an individual in age group i, with an individual in age group j per day.115

The sum of the first two contributions over all age groups j,
∑N
j=1 Nc,ij(Ij + Aj)/Tj , is the number116

of contacts of an individual in age group i that can result in SARS-CoV-2 transmission. This is multi-117

plied with the number of susceptibles in age group i (Si), and with β, the probability of contracting118

COVID-19 when encountering a contagious individual, to compute the number of effective contacts119

5
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2.1 The extended SEIQRD-model (SEIpIaQRD) 2 MATERIALS AND METHODS

at every timestep. We assume that the per contact transmission probability β is independent of age120

and we infer its distribution by calibrating the model to national Belgian hospitalization data. We121

assume individuals of all ages have an equal susceptibility to and transmissability to SARS-CoV-2122

infection. In a model based inference-based study by Davies et al. [8], it was deduced that children123

were less susceptible to SARS-CoV-2 disease. However, this is most likely due to underreporting of124

cases in children. Viner et al. [37] analyzed 32 studies who reported on the susceptiblity of children125

and found that data were insufficient to conclude that transmissability of SARS-CoV-2 by children is126

lower than by adults. The number of (pre-pandemic) human-human interactions, Nc, are both place127

and age-dependent. These matrices assume the form of a 9x9 interaction matrix where an entry i, j128

denotes the number of social contacts age group i has with age group j per day. These matrices are129

available for homes, schools, workplaces, in public transport, and leisure activities, from a study by130

Willem et al. [43]. The total number of prepandemic social interactions must be translated into an131

appropriate weighted sum of the contributions in different places, adequately describing pandemic132

social behaviour (Section 2.3). The basic reproduction number R0, defined as the expected number of133

secondary cases directly generated by one case in a population where all individuals are susceptible134

to infection, is computed using the next generation matrix (NGM) approach introducted by Diek-135

mann et al. [10, 11]. For our model, the basic reproduction number of age group i is,136

R0,i = (aida + ω)β
N∑
j=1

Nc,ij (14)

and the population basic reproduction number is calculated as the weighted average over all age137

groups using the demographic data in Table 1. The detailed algebra underlying the computation138

Equation 14 is presented in the supplementary materials (Section 7.4).139

Latent period, Pre-symptomatic infectiousness Estimates for the incubation period range from140

3.6 days to 6.4 days, with most estimates close to 5 days. For the average serial interval, the period141

between the onset of symptoms in the primary case and onset of symptoms in the secondary case,142

estimates range from 4.0 to 7.5 days [30]. These estimates are roughly the same, which indicates that143

presymptomatic transmission is contributing to SARS-Cov-2 spread. If the transmission takes place144

during the symptomatic period of the primary case, the serial interval is longer than the incubation145

period. However, this relationship can be reversed when presymptomatic transmission takes place.146

The secondary case may even experience illness onset before onset in their infector, resulting in a147

negative serial interval. Liu et al. [25] estimated that 23 % of transmissions in Shenzen may have148

originated from presymptomatic infections, He et al. [17] concluded that 44 % of secondary cases149

were infected during the presymptomatic stage. Wei et al. [39] investigated all 243 cases of COVID-150

19 reported in Singapore from January 23–March 16 and identified seven clusters of cases in which151

presymptomatic transmission is the most likely explanation for the occurrence of secondary cases.152

They determined that presymptomatic transmission exposure occurred 1-3 days before the source153

patient developed symptoms. In Equation 3, σ denotes the length of the latent, non-infectious pe-154

riod and in Equation 4, ω is the length of the presymptomatic infectious period. In this work, we155

assume the incubation period, equal to ω + σ, lasts 5.2 days [25]. We then infer the length of the156

presymptomatic infectious period from hospitalization data using an MCMC method (Section 2.4).157
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2 MATERIALS AND METHODS 2.1 The extended SEIQRD-model (SEIpIaQRD)

Duration of the infectious period The duration of infectiousness is determined by the num-158

ber of days patients are able to spread viral particles. He et al. [17] analyzed both data from 77159

infector–infectee transmission pairs and 414 throat swabs collected from 94 patients from symptom160

onset up to 32 days after onset. The highest viral load was observed in throat swabs at the time of161

symptom onset. Other studies reported similar PCR results, with patients have the highest viral load162

of the coronavirus at the time they are diagnosed, with viral loads declining gradually over time163

[20, 26, 35, 47]. The inferred infectiousness profile of He et al. [17] is an approximate normal distribu-164

tion, with the peak infectivity roughly at the time of symptom onset. Infectiousness was estimated to165

decline quickly within 7 days after symptom onset. Zou et al. [47] found a steep decline in viral load166

between 6 and 12 days after symptom onset. A comparison of viral load between symptomatic and167

one asymptomatic case revealed similar viral loads, an indicator that asymptomatic individuals can168

be as infectious as symptomatic patients. It was further concluded that viral load alone is not a clear169

predictor of disease outcome. Given the evidence presented above, we assume the average dura-170

tion of infectiousness is 7 days for mildly symptomatic cases. The average duration of asymptomatic171

infectiousness will be inferred from hospitalization data using an MCMC method (Section 2.4).172

Disease severity and hospitalizations The model parameter ai (Equation 4) is the probability173

of an individual in age group i having a subclinical infection. Several authors have attempted to174

estimate the fraction of asymptomatic infections. Li et al. [22] estimated that 86 % of coronavirus175

infections in China were “undocumented” in the weeks before their government instituted stringent176

quarantines . However, this Figure includes an unknown number of mildly symptomatic cases and177

is thus an overestimation of the asymptomatic fraction. In Iceland, citizens were invited for testing178

regardless of symptoms. Of all people with positive test results, 43 % were asymptomatic [15]. As179

previously mentioned, there is a strong relationship between the age of the patient and the severity180

of the disease. Wu et al. [44] estimated the relative fraction of asymptomatic cases per age group from181

publically available Wuhan data. In this study, the subclinical fractions per age group estimated by182

Davies et al. [8] are used (table 1). For Belgium, this results in a population average subclinical frac-183

tion of 57 %. In Equation 5, hi is the fraction of mild cases that require hospitalization in age group i184

and in Equation 7, ci is the fraction of the hospitalized which remain in cohort in age group i. In this185

study, we use the age-stratified hospitalization probabilities computed by Verity et al. [36] (table 1).186

The distributions between cohort and ICU are computed using data from 370 patients treated in two187

Ghent (Belgium) hospitals (Section 2.2).188

189

In Equation 5, dhosp is the average time between first symptoms and hospitalization, which was pre-190

viously estimated as 5-9 days by Linton et al. [23] and as 4 days by To et al. [35]. In Equation 6, dER191

is the time a patient spends in the emergency room and/or buffer wards before going to cohort or192

ICU. In Equations 7, 8 and 9, dc,R, dc,D, dICU,R and dICU,D are the average lengths of a hospital stay193

in cohort and in an ICU. The subscript R denotes the duration if the patient recovers, while subscript194

D denotes the duration if the patient perishes. mC andmICU are the mortalities of patients in cohort195

and in ICU. In Equation 10, dICU,rec is the length of a recovery and observation stay in cohort after being196

in ICU. Because detailed hospitalization data has unafortunately not yet been made publicly avail-197

able by the Belgian Scientific Institute of Public Health (Sciensano), all hospitalization parameters are198

inferred from data of 370 patients, treated in two Ghent (Belgium) hospitals. These parameters are199

used as temporary proxies to fit the model to the total number of patients in Belgian hospitals and200

7
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2.2 Analysis of hospital data 2 MATERIALS AND METHODS

ICU until the complete Belgian dataset is made publically available. The methodology of the analysis201

is presented in Section 2.2, the results of the analysis are presented in Section 3.1.202

Testing, tracing and quarantine, re-susceptibility Testing and tracing are not explicitly imple-203

mented for this study. However, the average effect of the testing and tracing bodies setup during the204

pandemic will be included in an indirect way after the parameter inference. Liu et al. [24] found that205

after SARS-CoV-2 infection, it is unlikely that long-lasting protective antibodies are produced. It is206

thus deemed likely that re-susceptibility will play an important role in future modeling work.207

Table 1: Structure of the Belgian population per 10 year intervals [34]. Sub-
clinical fractions per age group as reported by Davies et al. [8]. Hospitalization
probability for symptomatic infections per age group in China [36].

Age group
(years)

number of in-
dividuals

Subclinical
fraction (%)

Hospitalization
(%)

[0, 10[ 1 305 219 71 0.1
[10, 20[ 1 298 970 79 0.3
[20, 30[ 1 395 385 73 1.2
[30, 40[ 1 498 535 67 3.2
[40, 50[ 1 524 152 60 4.9
[50, 60[ 1 601 891 51 10.2
[60, 70[ 1 347 696 37 16.6
[70, 80[ 908 725 31 24.3
[80,∞[ 658 753 31 27.3
Population 11.539.326 57 8.1

208

2.2 Analysis of hospital data209

The raw datasets consisted of 396 patients in two Ghent (Belgium) hospitals, Ghent University hos-210

pital and AZ Maria Middelares. For every patient the following data were provided: 1) age, 2) sex, 3)211

hospital admission date, 4) hospital discharge date, 5) date of ICU transfer, 6) date of ICU discharge,212

7) outcome (recovered or deceased). Since only age and gender of the patient were provided, all data213

were anonymous and could not be traced back to individual patients. The date at which patients first214

reported having symptoms was only recorded by Ghent University hospital, while the time spent in215

the emergency room, buffer ward or triage was only registered by AZ Maria Middelares. Data from216

26 patients had to be excluded from the analysis because one or more entries were missing. Of the217

remaining 370 patients, 22 patients were discharged from the emergency room and could not be used218

in the analysis. Thus, in total, data from the remaining 348 patients were used to compute the follow-219

ing hospitalisation parameters: c, dc,R, dc,D, dICU,R and dICU,D, dICU,rec, mC and mICU. The length of220

stay in the emergency room or a buffer ward (dER) was computed solely using data from AZ Maria221

Middelares and the average time from symptom onset to hospitalisation (dhosp) was computed using222
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2 MATERIALS AND METHODS 2.3 Social contact model

the Ghent University hospital data. To determine if the duration of a cohort or ICU stay differed223

significantly if the patient recovers or dies, a non-parametric Mann-Whitney U-test was used.224

2.3 Social contact model225

Mobility reductions As previously mentioned, the social behaviour of the Belgian population226

must be translated into a linear combination of the aforementioned pre-pandemic interaction ma-227

trices. Mathematically, we must find tangible coefficients so that the linear combination of pre-228

pandemic interaction matrices, i.e.,229

Nc = αNc, home + βNc, schools + γNc, work + δNc, transport + εNc, leisure + φNc, others , (15)

is a good representation of macroscopic social behaviour during the pandemic. Instead of using pre-230

pandemic contact matrices, modellers would ideally use pandemic contact matrices to build disease231

models as these are expected to better represent mixing behaviour under lockdown measures. Al-232

though these new contact studies under social restrictions will be valuable during future pandemics,233

such matrices were not available at the start of the pandemic. Hence, our model builds upon pre-234

pandemic knowledge of social behaviour to make a prediction on pandemic social behaviour.235

236

First, the Google Community Mobility Reports for Workplaces, Transit stations, Retail & recreation and237

Groceries & pharmacy are used as proxies to scale the work, transport, leisure and other social con-238

tact matrices (Figure 2). Two surges in COVID-19 cases were observed in Belgium, resulting in two239

lockdowns. The first lockdown was imposed on March 15th, 2020 and lasted until May 4th, 2020 and240

involved the closure of schools, bars, clubs, restaurants, all non-essential shops and a closure of bor-241

der to non-essential travel (Table 4). From May 4th, 2020 until July 1st, 2020 the lockdown was grad-242

ually lifted. During the first lockdown, schools remained fully closed until May 18th, 2020 and were243

only re-opened to a very limited extent before the end of the school year on July 1st, 2020. The second244

lockdown was imposed on October 19th, 2020 and is still ongoing at the time of writing. Schools were245

closed on November 2nd, 2020 and re-opened on November 16th, 2020. Further, schools have been246

closed during Christmas holidays from December 18th, 2020 until January 4th, 2021. Universities247

have remained fully closed since October 19th, 2020. Briefly summarized, the first 2020 COVID-19248

wave consisted of 1) a rapid surge in cases, 2) a lockdown, and 3) a release of lockdown measures.249

The second 2020 COVID-19 wave consisted of 1) a rapid surge in cases, 2) a lockdown with schools250

closed, 3) a lockdown with varying school policies. A more detailed overview of all key events in251

Belgium during the COVID-19 pandemic is provided in the supplementary materials (Section 7.3).252

253

During both lockdowns, residential mobility increases were observed (Figure 2). Although the mobil-254

ity figures indicate people spent more time at home, this does not mean people have more contacts at255

home (especially under stay-at-home orders). Further, the coefficients of the interaction matrices are256

also influenced by network effects and may thus not scale linearly with the decrease in the observed257

mobility. During a strict lockdown where social bubbles are the norm, an intra-household contact does258

not have the same weight as a random, extra-household contact as long as the virus is outside of the259

social bubble. However, amplifying the fraction of household contacts under lockdown measures will260

increase intergenerational mixing of the population under lockdown, which is unrealistic and will261

lead to overestimations of the hospitalizations. The inability to capture such dynamics is an inherent262
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2.3 Social contact model 2 MATERIALS AND METHODS

downside of compartmental epidemiological models. We thus used a coefficient of 1.0 for the home263

interaction matrixNc,home.264

08-02-2020 07-07-2020 04-12-2020

80

60

40

20

0

%
 c

om
pa

re
d 

to
 b

as
el

in
e

Retail and recreation

08-02-2020 07-07-2020 04-12-2020
80

60

40

20

0

20

40

%
 c

om
pa

re
d 

to
 b

as
el

in
e

Groceries and pharmacy

08-02-2020 07-07-2020 04-12-2020

50

0

50

100

150

200

250

%
 c

om
pa

re
d 

to
 b

as
el

in
e

Parks

08-02-2020 07-07-2020 04-12-2020
80

60

40

20

0

%
 c

om
pa

re
d 

to
 b

as
el

in
e

Transit stations

08-02-2020 07-07-2020 04-12-2020

80

60

40

20

0

20

%
 c

om
pa

re
d 

to
 b

as
el

in
e

Workplaces

08-02-2020 07-07-2020 04-12-2020

0

10

20

30

%
 c

om
pa

re
d 

to
 b

as
el

in
e

Residential

Figure 2: Mobility data extracted from the Google Community Mobility Reports.
Dashed lines indicates the start of the first lockdown on Friday March 13th, 2020
and the start of the second lockdown on Monday October 19th, 2020. The mobil-
ity reduction in workplaces is used to scale the work interactions matrix, the retail
& recreation reduction is used to scale the leisure interaction matrix, the groceries
& pharamacy reduction is used to scale the other interaction matrix, the transit
stations reduction is used to scale the public transport mobility matrix.

Effectivity parameters During the first lockdown, we estimated that the overall effectiveness265

of the contacts (Ω) was approximately one third of what would be expected based on the Google266

Community Mobility reductions and the pre-pandemic contacts. Over the course of the first lockdown,267

work mobility decreased by 56 %, the public transport mobility decreased by 65 %, leisure mobility268

decreased by 72 % and grocery (others) mobility decreased by 26 % (Table 4). Mathematically,269

Nc = Ω︸︷︷︸
≈0.30

[
Nc, home+(1−0.56)Nc, work+(1−0.65)Nc, transport+(1−0.72)Nc, leisure+(1−0.26)Nc, others

]
,

(16)
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2 MATERIALS AND METHODS 2.3 Social contact model

Intuitively, the effectivity of a contacts may not scale linearily with the observed mobility reductions.270

The net effectivity of the contacts under lockdown measures depends on a combination of the pre-271

pandemic physical proximity and duration of the contact, the effectivity of preventive measures and272

on behavioural changes. As an example, the effects of alcohol gel and face masks might be large273

in the workplace and in grocery stores, but not at home or during leisure activities. To account for274

different effectivities of contacts in different places, we could introduce one additional parameter per275

contact matrix, bound between zero and one, and infer its distribution from the available hospital-276

ization data. However, estimating six effectivity parameters was unfeasible because of identifiability277

issues. We determined that the effectivity parameters of public transport and other places could not278

be identified. This is most likely because very little contacts are made in those places [28]. Conse-279

quently, the effectivity parameters of public tranport, other places and leisure contacts were lumped280

to reduce the number of effectivity parameters from six to four. Finally, the linear combination of281

interaction matrices used to represent social contact under lockdown measures is,282

Nc(t) = ΩhomeNc, home + ΩschoolsHschools(t)Nc, schools + ΩworkGwork(t)Nc, work+

Ωrest

[
Gtransit(t)Nc, transport +Gretail & recreation(t)Nc, leisure +Ggrocery & pharmacy(t)Nc, others

]
.

(17)

Here, Nc, home, Nc, schools, Nc, work, Nc, transport, Nc, leisure and Nc, others denote the pre-pandemic contact283

matrices at home, in schools, in workplaces, on public transport, during leisure activities and during284

other activities [43]. Gwork, Gtransit, Gretail & recreation and Ggrocery & pharmacy denote the Google Community285

Mobility Reports mobility reductions in the respective categories. Hschools is a Heaviside step function286

to open or close schools, as school opening cannot be deduced from the Google community mobility287

reports. In spite of their limited re-opening on May 18th, 2020, schools are assumed to be closed dur-288

ing the first lockdown. Ωhome, Ωschools , Ωwork, Ωrest are the effectivity parameters at home, in schools,289

at work and during leisure, public transport and other activities. Note that these parameters are not290

time-varying, there is thus no link between the effectivity parameters and the mobility reduction.291

However, when relaxing measures, an increase in mobility will likely be accompanied by an increase292

of the effectiveness of the contacts. This is due to mentality changes upon relaxation, as measures293

will gradually be ingnored more.294

Obedience to measures In reality, compliance to social restrictions is gradual and cannot be mod-295

eled using a step-wise change of the social interaction matrix Nc (Section 2.1.3). This can be seen296

upon close inspection of the Google community mobility report after lockdown measures were taken297

(Figure 2). Because Google mobility data are updated daily in the model, the effect of gradual mo-298

bility changes are inherently included. However, the added value of a social compliance model is to299

gradually introduce the effects of the effectivity parameters in the model. Further, since the compli-300

ance model parameters will be estimated from hospitalization data, the added degrees of freedom301

aid in obtaining a better model fit to the peak hospitalizations. In our model, we use a delayed ramp302

to model compliance, i.e.,303

Nc(t− t0) = Nc, old + f(t− t0, τ, l)(Nc, new −Nc, old) (18)

where,304

f(t− t0, τ, l) =


0.0, if t− t0 ≤ τ
t−t0
l −

τ
l , if τ < t− t0 ≤ τ + l

1.0, otherwise
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2.4 Parameter identification and model predictions 2 MATERIALS AND METHODS

where τ is the number of days before measures start having an effect and l is the number of additional305

days after the time delay until full compliance is reached. Both parameters are calibrated to the daily306

number of hospitalizations in Belgium (Section 2.4). The difference t− t0 denotes the number of days307

since a change in social policy.308

2.4 Parameter identification and model predictions309

Aim of the calibration procedure To demonstrate the robustness of the social contact model310

and calibration method, for each of the 2020 COVID-19 waves, we calibrate the model to a minimal311

dataset and then increase the amount of data used in the calibration procedure to see if the simula-312

tion results and posterior parameter distributions convergence. For the first COVID-19 epidemic, we313

first calibrate the model using data until April 4th, 2020, and then extend the data range used in the314

calibration in two week increments until July 1st, 2020. During the second wave, we first calibrate315

the model on November 7th, 2020 and then extend the calibration to the date of schools re-opening316

on November 16th, 2020, the date of schools closing for Christmas holidays on December 18th, 2020317

and we finally calibrate on February 1st, 2021. By February 1st, 2021, the full impact of school clo-318

sure and decrease in work mobility during the holiday period is visible in the new hospitalizations.319

Extending the calibration beyond February 1st, 2021 is part of future research, as the emergence of320

more contagious strains and the national vaccination campaign need to be included from this point321

onward (Table 4). As previously mentioned, the effectivity of contacts in schools cannot be studied322

during the first COVID-19 wave because schools were only opened to a very limited extend before323

their final closure on July 1st, 2020.324

Parameters The model parametersR0, l, τ , Ωhome, Ωschools, Ωwork and Ωrest must be calibrated to the325

available hospitalization data. From Equation 14, the basic reproduction number depends on four326

model parameters, β, ω, da and ai. We calibrate β, ω, da to hospitalization data, Since ai is an age-327

stratified parameter, it consists of nine values rendering its calibration computationally unfeasable.328

The calibration of β, ω and da should allow sufficient degrees of freedom to obtain a robust estimate329

of the basic reproduction number without increasing the demand for computational resources too330

much. In total, nine parameters must be calibrated to hospitalization data.331

Data The aim of the calibration procedure is to obtain a parameter set which leads to a good agree-332

ment between the model predictions and the observed data. We calibrate the nine aforementioned333

parameters to the timeseries of daily new hospitalizations (Hin), which are available for download334

at https://epistat.sciensano.be/Data. The model is calibrated seperately to the first and335

second COVID-19 waves in Belgium.336

Statistical model Rather than using the method of least squares (Gaussian model), we aim to337

explicitly take into account the underlying uncertainty in the data. Since daily hospitalizations are338

discrete counts, the simplest statistical model describing the model output is the Poisson distribution.339

An attractive advantage of this distribution is that the variance of a Poisson-distributed random vari-340

able is the same as the expected value. The method of least squares inherently assumes the variance341

of the data are constant. In reality, beause the magnitude of the hospitalizations during a COVID-19342
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wave varies significantly over time, so does the variance. We thus assume the data are indepen-343

dent and identically distributed (i.d.d.) sequences of poisson variables. The resulting log-likelihood344

function is,345

logL(y | x,θ) = −
N∑
i=1

[
yi(θ)− xi log(yi(θ))

]
, (19)

where the vector of parameters, θ, that maximizes the log-likelihood function must be found. In346

Equation 19, y denotes the vector of model predictions, x denotes the timeseries of data and N rep-347

resents the number of datapoints.348

Calibration procedure The fitting procedure is performed in two steps. Maximising the result of349

Equation 19 is computationally demanding and suffers from the presence of local maxima. We thus350

need an efficient way to scan through the nine-dimensional parameter space θ = {β, ω, ...,Ωrest}.351

A good technique to initially broadly identify the region where the global maximum is situated is352

Particle Swarm Optimisation (PSO) [18]. When a region of interest has been identified, we use the353

maximum-likelihood estimates as initial values for the ensemble sampler for Markov Chain Monte354

Carlo (MCMC) proposed by Goodman and Weare [13]. For all parameters, uniform prior distribu-355

tions were used.356

2.5 Effects of non-pharamaceutical interventions357

To better compare the effects of mobility changes on the daily number of new hospitalizations, we358

compute the relative share of contacts and the effective reproduction number (Re) at home, in schools,359

in workplaces and for the combination of leisure, public transport and other contacts. The number of360

effective contacts in the aforementioned places at time t are equal to,361

N∗c, home(t) = ΩhomeNc, home, (20)

N∗c, schools(t) = ΩschoolsHschools(t)Nc, schools, (21)

N∗c, work(t) = ΩworkGwork(t)Nc, work, (22)

N∗c, rest(t) = Ωrest

[
Gtransit(t)Nc, transport +Gr & r(t)Nc, leisure +Gg & p(t)Nc, others

]
, (23)

whereN∗c, home,N∗c, schools,N
∗
c, work,N∗c, rest denote the number of effective contacts at home, in schools,362

at work or for the sum of leisure, public transport and other contacts. The relative share of contacts363

in location x is computed as,364

rx(t) =
N∗c, x(t)

N∗c, home(t) +N∗c, schools(t) +N∗c, work(t) +N∗c, rest(t)
. (24)

The effective reproduction number for age goup i, in place x and at time t is computed as,365

Re,x,i(t) = Si(t)
Si(0)(aida + ω)β

N∑
j=1

N∗c,x,ij(t), (25)

Finally, the population average effective reproduction number in place x is computed as the weighted366

average over all age groups using the demographics listed in Table 1.367
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3 RESULTS

3 Results368

3.1 Hospitalization parameters369

The average time from symptom onset to hospitalisation was 7.5 days (IQR 3.0 - 10.0 days). The370

average stay in the emergency room and/or buffer was 1.1 days (IQR: 0.2 - 1.2 days) and the average371

time between admision in cohort and admission in ICU was 1.3 days (IQR: 0.0 - 2.0 days). Of the372

348 hospitalised patients, 86 patients (24.7 %) required intensive care at some point during their stay373

and 262 (75.3 %) remained in cohort. The overall mortality in the hospital is 19.5 %, the mortality in374

cohort was slightly lower at 16.8 % and the mortality in ICU was higher (27.9 %). The average length375

of the stay in a cohort ward was 7.7 days (IQR: 4.0 - 10.0 days) and the average length of an ICU stay376

was 12.5 days (2.9 - 17.9 days) (p = 0.05). The average cohort stay was 8.0 days (IQR: 4.2 - 10.9 days)377

if the patient had recovered and 6.1 days (IQR: 3.0 - 7.6 days) if the patient had died (p = 0.007). The378

average ICU stay was 9.9 days (IQR: 2.0 - 14.0 days) if the patient had recovered and 19.3 days (IQR:379

7.9 - 23.8 days) if the patient had died (p = 0.001). Out of 62 surviving patients in ICU, 46 stayed in a380

cohort ward after their stay in ICU, with an average length of stay of 11.7 days (IQR: 6.0 - 13.3 days).381

A violin representation of the residence time distributions can be found in Figure 9. The computed382

age-stratified hospitalization parameters c,mC andmICU, are listed in Table 2. From the sample sizes383

it can be deduced that older individuals have a much higher chance of hospitalization than younger384

individuals. In general, both the chance of needing intensive care and the mortalities increase with385

the patient’s age. In the dataset, no indivuals under 30 years old were in need of intensive care and386

no individuals under 40 year old have died in the hospital from a SARS-CoV-2 infection. Hence,387

the mortalities in cohort and ICU, mC and mICU, are equal to 0.0 % for individuals under 40 years388

old. This will not impact the goodness-of-fit to the Belgian hospitalization data, but care is warranted389

when using these data to perform health economic evalutions such as computing quality adjusted life390

years lost to COVID-19. The age-stratified mortalities, age-stratified distributions between cohort and391

ICU and the residence time distributions derived from the hospital dataset were propagated in the392

model, resulting in a good prediction of the total number of patients in Belgian hospitals during both393

2020 COVID-19 waves (Figure 10).394

395

3.2 Model calibration396

The population average basic reproduction number was computed as R0 = 4.16 (IQR: 3.90 - 4.39)397

for the first 2020 COVID-19 wave and as R0 = 3.69 (IQR: 3.64 - 3.75) for the second 2020 COVID-19398

wave. Compliance to social measures were similar for both 2020 COVID-19 waves, with an average399

delay of 0.22 (IQR: 0.07-0.31) and 0.39 (IQR: 0.20 - 0.52) days, and a time to reach full compliance to400

measures of 9.17 (IQR: 8.89 - 9.50) and 6.94 (IQR: 6.71 - 7.18) days respectively.401

402

Figure 4 summarizes the results of six model calibrations using hospitalization datasets starting on403

March 15th, 2020 until April 4th, 2020 and subsequently increasing in two week increments. Here,404

Figure 4 (a) represents the minimal dataset, where the data range used for the calibration was equal405

to March 15th, 2020 until April 4th, 2020. Opposed is Figure 4f, which uses the maximal dataset,406

using hospitalization data from March 15th, 2020 until July 1st, 2020. Using the mimimal dataset407
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Table 2: Computed fraction of hospitalized remaining in cohort and not trans-
ferring to ICU (c), mortality in cohort (mC) and mortality in ICU (mICU) per age
group for two Belgian hospitals (n = 370).

Age group
(years)

sample
size

c (%) mC (%) mICU (%)

[0, 10[ 2 100.0 0.0 0.0
[10, 20[ 7 100.0 0.0 0.0
[20, 30[ 9 80.0 0.0 0.0
[30, 40[ 9 87.5 0.0 0.0
[40, 50[ 33 78.1 8.0 14.3
[50, 60[ 67 74.2 2.2 6.3
[60, 70[ 62 61.3 0.0 16.7
[70, 80[ 74 64.3 17.8 44.0
[80,∞[ 107 88.2 36.7 58.3
Average 370 75.3 16.8 27.9

(Figure 4a), the posterior distributions are uninformative and model prediction uncertainty is large.408

Using additional data from April 15th, 2020 (Figure 4b) onwards, the model captures the observed409

downward trend in the hospitalization data. Before the release of social restrictions on May 4th, 2020410

(Figure 4a-4c), the posterior distributions seem to converge to distributions different from the ones411

found using the maximal dataset (Figure 4f). However, during the gradual lifting of lockdown restric-412

tions (Figure 4d-4f), the posterior distributions monotonically converge to their final distributions.413

414

In a similar fashion, four calibrations on hospitalization datasets of increasing length during the sec-415

ond COVID-19 wave were performed and the results are summarized in Figure 5. Once more, the416

minimal dataset (Figure 5a), which uses data from September 1st, 2020 until November 7th, 2020417

does not result in informative posterior distributions of the effectivity parameters. Uncertainty on418

the model prediction is large, but the mean model prediction is ballpark accurate. As soon as schools419

are opened on November 16th, 2020, the daily hospitalizations evolve to a plateau. In spite of large420

uncertainty on the model prediction, the emergence of the hospitalization plateau is captured in the421

uncertainty band, and the model thus provides a ballpark estimate using the minimal dataset. Al-422

though model accuracy has risen, a similar conclusion can be drawn for the calibration using data423

until schools re-opening on November 16th, 2020. When including data in the hospitalization dataset424

until schools closure for the Christmas holidays on December 18th, 2020 (Figure 5c), the model cor-425

rectly attributes the increased transmission to the opening of schools. In Figure 5c, it can be seen426

that the the effectivity parameter for schools is almost equal to the maximum value of one. Although427

the posteriors of the effectivity parameters still differ significantly from their final distributions, the428

model provides an accurate prediction for the future evolution of the new hospitalizations during429

Christmas holidays and until schools re-opening on January 4th, 2021. From the inference using the430

maximal dataset (Figure 5d), it is clear that the model attributes high effectivities for contacts at home431

and in schools.432
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433

3.3 Effects of non-pharamaceutical interventions434

To better compare the effects of non-pharamceutical interventions between both 2020 COVID-19435

waves, we computed the relative share of contacts and the effective reproduction number at home,436

in schools, in workplaces and for the sum of leisure, public transport and other contacts (Figure 6).437

In this way, we are able to dissect the force of infection in our model, allowing us to asses the relative438

impact of contacts made at different locations on SARS-CoV-2 transmission. In prepandemic times,439

leisure and work contacts account for the bulk of total contacts, while under strict lockdown mea-440

sures (March 15th, 2020 - May 4th, 2020 and October 19th, 2020 - November 16th, 2020), the contacts441

at home are the main driver of SARS-CoV-2 spread. The effective reproduction number under strict442

lockdown measures was equal toRe = 0.67 (IQR: 0.48 - 0.76) for the first COVID-19 epidemic and was443

equal to Re = 0.66 (IQR: 0.61 - 0.69) for the second COVID-19 epidemic. Aside from the interactions444

at home, leisure contacts had the second most impact during the first COVID-19 wave, with roughly445

twice the impact of work contacts. When lifting social restrictions from May 4th, 2020 onwards, the446

relative contribution of home contacts gradually declines, while the contributions of work and leisure447

become more important. The effective reproduction number gradually increases and approaches the448

critical value ofRe = 1 by the beginning of summer (average of June, 2020Re = 0.91, IQR: 0.77 - 1.00).449

450

As soon as schools are re-opened on November 16th, 2020, a plateau in the daily number of hospi-451

talizations emerges (Figure 6). There were no other major policy changes around this time, except452

schools re-opening. Our model deduces this correlation by inferring posterior values of the effec-453

tivity of contacts in schools close to one, meaning school contacts were highly effective for SARS-454

CoV-2 transmission. Schools have an impact similar to the home interactions, with both contributing455

roughly 40 % to the total number of effective contacts during the second COVID-19 wave. It is clear456

that the opening of schools under lockdown can tip the scale, and push the effective reproduction457

number just above the critical value of Re = 1. When shools are opened, the effective reproduction458

number increases from Re = 0.66 ± 0.04 to Re = 1.09 ± 0.05, causing a stagnation in the decline459

of the daily hospitalizations. To further validate this result, we extracted the number of laboratory460

confirmed cases in youths [0, 20[, the working population [20, 60[ and the senior population [60,∞[461

from the Belgian Scientific Institute of Public Health (Sciensano). The timeseries were normalized with462

the number of cases on November 21st, 20201 to allow a better comparison. The number of labora-463

tory confirmed cases amongst youths start increasing as soon as schools are openend on November464

16th, 2020 (Figure 3). A similar pattern is observed during school closure and re-opening for Christ-465

mas holidays, altough it should be noted the relationship is less clear. This is most likely the effect466

of Christmas and New Year celebrations and returning travellers. The use of a time-lagged cross-467

correlation revealed a significant lead-relationship between the number of cases in youths and the468

working population by 9 days, and a leading relationship between the number of cases amongst469

youths and the senior population by 13 days (Section 7.5).470

471

1Date of school reopening 2021-11-16 plus one five day incubation period.
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Figure 3: Relative number of confirmed cases in youths, the working population
and the senior population during the period November 2nd, 2020 until Febru-
ary 1st, 2021, as compared to the number of confirmed cases in each group on
November 16th, 2020. The grey shade is used to indicate schools were open.

4 Discussion472

We computed hospitalization parameters using data from two hospitals in Ghent. The ICU admission473

probabilities and mortalities in cohort and in ICU indicate that COVID-19 has a much higher severity474

in older individuals, which is in line with estimates from authors in the USA and China [5, 36]. The475

average time from symptom onset to hospitalisation was 7.5 days, which is in line with estimates476

from Linton et al. [23]. Of the 348 hospitalized patients, 86 patients (24.7 %) required intensive care at477

some point during their stay and 262 (75.3 %) remained in cohort. The result is in line with the esti-478

mate of Wu and McGoogan [46], who estimated that one quarter of all hospitalized patients requires479

intensive care. The inferred hospitalization parameters are valuable proxies for Belgium and resulted480

in an adequate goodness-of-fit to the total number of patients in Belgian hospitals.481

482

We obtained an average basic reproduction number of R0 = 4.16 (IQR: 3.90 - 4.39) for the first 2020483

COVID-19 wave and of R0 = 3.69 (IQR: 3.64 - 3.75) for the second 2020 COVID-19 wave, which is in484

line with the global consensus range of R0 = [2, 4]. The estimate for the second COVID-19 wave is485

slightly lower, and this is most likely because this estimate implicitly includes the effects of preventive486

measures and mentality changes that were gradually adopted during the first 2020 COVID-19 wave.487

Large differences in the basic reproduction number exist between the different age groups (Figure 7).488

It is clear that the youths and working-aged population drive the pandemic while people of ages 70489

or above can hardly sustain a SARS-CoV-2 pandemic amongst themselves, this is mainly because el-490

derly individuals have limited social interactions (Figure 7). Still, these individuals make up roughly491

35 % of all hospitalizations. The biggest risk group are the individuals aged 50 to 70, which make492

up roughly 50 % of the expected hospitalizations. The high expected fraction of hospitalizations in493

this age group is due to a trade-off between social contact and hospitalization risk. These individ-494

uals have of plenty social contact and at the same time, have a high propensity to hospitalization.495

The compliance to social measures were similar between the both 2020 COVID-19 waves, little lag496

was observed (0.22 vs. 0.39 days) and the time to reach full compliance were of the same magnitude497
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(9.17 vs 6.94 days). Thus, compliance to lockdown restrictions can be modeled using a ramp function498

without lag, eliminating one of the model’s parameters, namely τ (Equation 18).499
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Figure 7: Basic reproduction number per age group (R0,i), for Belgium (blue).
Expected fraction of the total Belgian hospitalizations during the first COVID-19
wave, as predicted by the model, from March 15th, 2020 until July 1st, 2020 in
age group i (orange, striped). Youths and working-aged population drive the
pandemic, while the senior population is mostly in need of hospital care.

We calibrated the model’s effectivity parameters (Ωhome, Ωschools, Ωwork, Ωrest) on incrementally larger501

hospitalization datasets and found that the model provides accurate forecasts under the observed502

mobility changes, even when the posteriors still depend on the extent of the dataset. However, cor-503

rect2 effectivity parameters could only be deduced a posteriori events. This is because information on504

the effectiveness of contacts can only be obtained by observing the hospitalizations under changing505

policies. Examples are the effects of leisure and work relaxations during the first COVID-19 wave and506

the effect of schools re-opening during the second COVID-19 wave. From April 15th, 2020 onwards507

(Figure 4, panel b) the ever decreasing trend in the daily hospitalizations is nicely captured even with508

posteriors seemingly converging to distributions different than those of the maximal dataset (panel f).509

In spite, on May 1st 2020 (panel c), the model could have been used to accurately inform policymak-510

ers on the effects of lifting work and leisure restrictions just four days later. As soon as restrictions511

are lifted, the posteriors quicly converge to their final distributions. A similar observation is made512

with regard to the schools effectivity parameter. From November 7th, 2020 onwards (Figure 5, panel513

a) the effect of schools re-opening is captured in the model uncertainty, in spite of deviant posterior514

distributions. From Decenber 18th, 2020 onwards (panel c) the effect of schools re-opening is cap-515

tured both in the model predictions and the effectivity parameters. Because accurate posteriors can516

only be inferred a posteriori, the modeler must asses if policy changes have been sufficient to deduce517

accurate effectivity posteriors. This is important when performing scenario analysis, as incomplete518

knowledge of the effectivity posterior can significantly alter the results. Our calibration method al-519

lows to extract the most out of pre-pandemic contact studies and publically available mobility data,520

and has proven usefull to inform policy makers during the acute crisis.521

2Assuming the inferred posterior distributions of the maximal dataset are correct.
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522

Finally, we would like to further discuss the importance of schools in the SARS-CoV-2 pandemic.523

As previously mentioned in section 3.3, there seems to be a strong correlation between school re-524

opening, the rise of laboratory confirmed cases amongst youths, the rise of the number of clusters525

in schools, and the emergence of plateaus in the daily hospitalizations (Figures 3 and 6). Our model526

incorporates this correlation as high effectivities of school contacts. An increase in the effective repro-527

duction number, from Re = 0.66± 0.04 to Re = 1.09± 0.05, is observed when schools are re-opened.528

Although the present evicence is circumstantial, and correlation does not imply causation, schools529

seem to play a critical role in SARS-CoV-2 spread. Thus, schools closure is an effective way of coun-530

tering an epidemic SARS-CoV-2 trend. However, given the negative consequences of school closure,531

we recommend policymakers to invest in ways to ensure qualitative online education during future532

SARS-CoV-2 outbreaks, but even more generally, in case of a future pandemic.533

5 Conclusions534

• We obtained an average basic reproduction number of R0 = 4.16 (IQR: 3.90 - 4.39) and R0 =535

3.69 (IQR: 3.64 - 3.75) for both 2020 COVID-19 waves in Belgium. We found that SARS-CoV-536

2 strongly discriminates between inidividuals of different age groups, with youths and the537

working-aged population driving the pandemic, and the senior population needing hospital538

care. These results are in line with the established consensuses and highlight the model’s va-539

lidity.540

• The combination of the deterministic epidemiological model, which incorporates a-priori knowl-541

edge on disease dynamics, and the social contact model whose infectivity parameters were542

inferred allow us to make the most out of the available pre-pandemic data. The method is543

computationally cheap and does not require ad-hoc tweaking to obtain a good fit to the ob-544

served data. A disadvantage is that the effectivity parameter distributions only monotonically545

converge to their correct posterior distributions a posteriori policy changes. Still, the model is546

able to make accurate predictions on the daily number of hospitalizations under the observed547

mobility, but care by the modeller is warranted when performing scenario analysis.548

• As soon as schools were re-opened on November 16th, 2020, the number of confirmed cases549

amongst youths starts increasing. A significant lead relationship between the number of cases550

amongst youths and the working population, and youths and the senior population was found.551

Our model incorporates this correlation as high effectivities of school contacts. When schools552

were re-opened under lockdown policies, the model indicates the effective reproduction num-553

ber increased from Re = 0.66 ± 0.04 to Re = 1.09 ± 0.05. Thus, schools closure is an effective554

measure to counter an epidemic SARS-CoV-2 trend.555

6 Future research556

• The calibration procedure should be repeated using pandemic social contact matrices, which557

are currently being gathered for Belgium by Coletti et al. [6]. Further, the effects of integrat-558

ing the contacts with their duration should be explored. A comparison between the different559

results can then be made.560
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• The effective reproduction number in the different places should be compared to data on SARS-561

CoV-2 clusters to further validate the model.562

• It is expected that lockdown measures in Belgium will be lifted soon. The impact of releasing563

measures on the daily hospitalizations should be studied to find a link between the effectivity564

parameters and the mobility reductions.565

• If schools are a major contributor to SARS-CoV-2 spread, administering a vaccine with high566

transmission-blocking potential to youths is expected to have a similar effect as schools closure.567

Due to their localized nature, vaccination for SARS-CoV-2 in schools is logistically easier than568

vaccinating the general population.569
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7.2 Overview of model assumptions and limitations599

The following assumptions were made with regard to the SEIQRD dynamics:600

1. All individuals experience a brief presymptomatic, infectious period.601

2. All individuals are equally susceptible to SARS-CoV-2 infection.602

3. Asymptomatic and mild cases automatically lead to recovery and in no case to death.603

4. Mildly infected and hospitalized individuals cannot infect susceptibles (= quarantined). Thus,604

the model cannot be used to model the effect of transmission to healthcare workers.605

5. All deaths come from hospitals, meaning no patients died outside a hospital [14].606

6. Both 2020 COVID-19 waves were fitted seperately, assuming a fully susceptible population.607

The following assumptions to the hospital dynamics were made:608

1. All patients spend time in the emergency room and/or buffer ward before going to either a609

cohort ward or an ICU.610

2. After the emergency room and/or buffer ward, patients immediately branch into ICU or co-611

hort. In real life, a patient may first spend some time in a cohort ward before going to an ICU612

and this is not accounted for.613

3. Residence times in cohort and in ICU differ depending on the outcome of the infection (recov-614

ered or deceased).615

4. All recovered ICU patients spend some additional time in cohort (recovery and observation616

stay).617

The following assumptions were made in the social contact model:618

1. Prepandemic contact matrices by Willem et al. [43] are scaled with mobility reductions ex-619

tracted from the Google Community Mobility Reports and an effectivity parameter inferred from620

hospitalization data using a Markov-Chain Monte-Carlo method in order to mimic pandemic621

social behaviour.622

2. The pre-pandemic contact matrices used included all contacts, both physical and non-physical,623

and the duration of contacts is not integrated.624

3. The effectivity of the contacts (Ωx) are bound between zero and one. This implies that if work625

mobility is reduced to 40 % of its pre-pandemic value, the work contacts can account for no626

more than 40 % of their pre-pandemic value.627

4. There is no link between the effectivity parameters and the mobility reduction. However, when628

relaxing measures, an increase in mobility will likely be accompanied by an increase of the629

effectiveness of the contacts. This is due to mentality changes upon relaxation, as measures630

will gradually be ingnored more.631
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7.3 Key events632

The first lockdown, which started on March 15th, 2020 and lasted until May 4th, 2020 involved the633

closure of schools, bars, clubs, restaurants, all non-essential shops and a closure of border to non-634

essential travel (Table 4). The Community Mobility Reports show a 56 % reduction in workplace mo-635

bility (Figure 2 and Table 4). Based on surveys from the Belgian National Bank, 28.6 % of all em-636

ployees was able to work from home, 29.9 % remained in the workplace and 4.4 % worked both637

from home and in the workplace. 32.4 % were temporary unemployed and 4.8 % were absent [40].638

Public transport mobility decreased by 65 %, leisure mobility decreased by 72 % and grocery & phar-639

macy mobility was reduced by 26 %. From March 15th, 2020 until May 4th, 2020, mobility remained640

practically constant at the aforementioned reductions. On May 4th, 2020 the lockdown was gradu-641

ally lifted by re-opening all non-essential shops and lifting telework restrictions. The effect can be642

seen in the Google Community Mobility Reports (Figure 2), by the end of April, workplace and retail &643

recreation mobility gradually start increasing. By July 1st, 2020, almost all social measures had been644

lifted. During the first lockdown, schools remained fully closed until May 18th, 2020 and were only645

re-opened to a very limited extent before the end of the school year on July 1st, 2020. For this reason,646

schools are assumed to remain closed during the first COVID-19 wave. During July, there were little647

social restrictions, and this resulted in new, localized infection clust. During most of August 2020, a648

lockdown with curfew was imposed in Belgium’s Antwerp province. We do not attempt to model649

the hospitalizations during July and August 2020, as modelling localized infection clusters with a650

nation-level epidemiological model can only be accomplished by sever ad-hoc tweaks in the social651

contact model. A spatial model extension was developed to account for such localized phenomena.652

653

During the second lockdown from October 19th 2020 until present day (26/02/2021), workplace mo-654

bility has been reduced by approximately 25 %. During Autumn break and Christmas holidays,655

workplace mobility further declined to approximately 45 %. Public transport mobility decreased by656

30 % and by 50 % during holidays, leisure mobility decreased by 40-50 % and grocery & pharmacy657

mobility have decreased by approximtely 5-10 %. Primary and secundary schools were closed be-658

tween October 19th, 2020 and re-opened on November 16th, 2020. Further, schools have been closed659

during Christmas holidays from December 18th, 2020 until January 4th, 2021 and were closed during660

spring break from February 15th, 2021 until February 21th, 2021. Universities have remained fully661

closed since October 19th, 2020.662

663

A 30 % and 15 % increase in residential mobility were observed during the lockdowns. However,664

the figure indicates people spent on average 15 % -30 % more time at home every day, which does665

not necessarily mean having 15 % - 30 % more contacts at home. Further, the coefficients of the666

interaction matrices are also influenced by network effects and may thus not scale linearly with the667

decrease in the observed mobility. During a strict lockdown where social bubbles are the norm, an668

intra-household contact does not have the same weight as a random, extra-household contact as long669

as the virus is outside of the social bubble. However, amplifying the fraction of household contacts670

under lockdown measures will increase intergenerational mixing of the population under lockdown,671

which is unrealistic and will lead to overestimations of the hospitalizations. We thus used a coefficient672

of 1.0 for the home interaction matrixNc,home.673
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7.4 Basic reproduction number674

Since the system of differential equations (eq. 1- eq. 13), is autonomous, the eigenvalues of the675

Jacobian matrix evaluated at its hyperbolic equilibrium point can be used to determine the nature676

of that equilibrium [16]. The basic reproduction number (R0) is computed as the spectral radius677

of the Jacobian matrix at the disease-free equilibrium [10]. Our model has eight infected states:678

E, I,A,M,ER,C, CICU,rec and ICU (Figure 1). At the disease-free equillibrium, the whole population679

is susceptible to the infectious disease, Si = Ti,680

u∗ = (Ti, 0, 0, 0, 0, 0, 0, 0, 0, 0). (26)

The Jacobian J is defined as,681

J =



∂f1

∂x1

∣∣∣∣∣
u∗

. . .
∂f1

∂xn

∣∣∣∣∣
u∗

...
. . .

...
∂fm
∂x1

∣∣∣∣∣
u∗

. . .
∂fm
∂xn

∣∣∣∣∣
u∗


, (27)

where n and m are equal to the number of infected compartments. Next, the Jacobian is decomposed682

in the following form,683

J∗ = (T + Σ)J . (28)

The matrix T contains all terms that lead to transmissions of SARS-CoV-2, while Σ contains all terms684

that lead to transitions. For our model,685

T =


0 β

N∑
j=1

Nc,ij β
N∑
j=1

Nc,ij 0 0 0 0 0

0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 0 0 0 0

 , (29)

where an entry Ti,j is the rate at which individuals in infected state j gives rise to individuals in686

infected state i. And,687
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where an element Σ-1
i,j is the expected time that an individual who presently has state j will spend in688

state i during its entire epidemiological life. The next generation matrix (NGM) is then calculated as,689

NGM = −TΣ-1 . (31)

The basic reproduction number R0 is defined as the spectral radius3 ρ of this matrix [10],690

R0 = ρ(−TΣ-1) , (32)

which becomes for our model,691

R0,i = (aida + ω)β
N∑
j=1

Nc,ij . (33)

A linear relationship between the reproduction number and the chance of infection upon contact (β),692

the number of contacts (Nc) and the sum of the durations of infectiousness for those compartments693

able to infect susceptibles makes sense.694

7.5 Time-lagged cross correlation695

We extracted the number of laboratory confirmed cases in youths [0, 20[, the working population696

[20, 60[ and the senior population [60,∞[ from the Belgian Scientific Institute of Public Health (https:697

//epistat.sciensano.be/Data) from November 2nd, 2020 to February 1st 2020. We then nor-698

malized the timeseries with the number of cases on November 21st, 2020 and visualized the result699

in Figure 3. Using the Python module pandas, the dataseries were shifted with k days and the cross700

correlation was computed. The procedure was performed for k ∈ [−15, 5] days, the resulting cross701

correlation function is shown in Figure 8 and the results of the analysis are summarized in Table 5.702

Next, we constructed a statiscal test to check if the covariance between two series x and y, shifted703

with the number of days resulting in the maximum covariance, kmax, varied significantly from zero.704

Thus, the null hypothesis is,705

H0 : ρxy(kmax) = 0.0 . (34)

If the cross correlation of lag kmax is zero, then, for a fairly large timeseries consisting of n datapoints,706

the covariance ρxy(kmax) will be approximately normally distributed, with mean zero and standard707

deviation σ = 1√
n−|k|

. Since approximately 95% of a normal population is within 2 standard devia-708

tions of the mean, a test will reject the hypothesis that the cross correlation of lag k equals zero when,709

710

|ρ(k)| ≥ 2√
n− |k|

. (35)

The null hypothesis was rejected for all timeseries.711

712

3Largest absolute eigenvalue.
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Figure 8: Cross correlation between the number of cases in Belgium in the age
groups [0−20[, [20−60[ and [60−∞[, from November 2nd, 2020 until February 1st
2020 in function of the number of days the timeseries are shifted relative to each
other (τ ). The maximum cross correlation is obtained when the series [0−20[ and
[20− 60[ are shifted -9 days, the maximum cross correlation is obtained when the
series [0−20[ and [60−∞[ are shifted -13 days, and the maximum cross correlation
is obtained when the series [20− 60[ and [60−∞[ are not shifted.

Table 5: Results of the time-lagged cross-correlation between the number of
cases in the age groups [0 − 20[, [20 − 60[ and [60 − ∞[. Data from November
2nd, 2020 until February 1st 2020 were used in the analysis, which is equal to the
daterange range shown in Figure 3.

Age group (years) Time-lag
(days)

Covariance
(-)

[0− 20[ vs. [20− 60[ -9 0.72
[0− 20[ vs. [60−∞[ -13 0.70
[20− 60[ vs. [60−∞[ 0 0.98

7.6 Supplementary data and figures713

33

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES REFERENCES

0 10 20 30 40 50
duration of stay (days)

all ICU patients
(N = 86)

all Cohort patients
(N = 262)

recovered ICU
patients (N = 62)

recovered Cohort
patients (N = 218)

deceased ICU
patients (N = 24)

deceased Cohort
patients (N = 44)

recovery stay
after ICU (N = 46)

Figure 9: Observations of the length of a hospital stay for patients in cohort and
ICU wards. Overall, if recovered, if deceased and for a recovery stay in cohort
after ICU. Interquartile range, median observation and suspected outliers (more
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Figure 11: Inferred effectivity parameters at home (Ωhome), in the workplace
(Ωwork), in schools (Ωschools) and for the sum of leisure activities, other activities
and public transport (Ωrest), for the first COVID-19 wave (blue) and for the sec-
ond COVID-19 wave (black). The effectivity of contacts in schools could not be
deduced during the first COVID-19 wave because schools remained practically
closed until July 1st, 2020. However, a high effectivity of contacts in schools
could be deduced during the second COVID-19 wave. The effectivity of work
contacts was roughly the same during both 2020 COVID-19 waves. The effectiv-
ity of leisure contacts was estimated to be lower during the second COVID-19
wave, however, leisure policies were not varied (yet) during the second COVID-
19 wave, so the estimate must be taken with a grain of salt. Home contacts were
deemed more effective by the model during the second COVID-19 wave.

36

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES REFERENCES

[15] Gudbjartsson, D. F., Helgason, A., Jonsson, H., Magnusson, O. T., Melsted, P., Norddahl, G. L.,746

Saemundsdottir, J., Sigurdsson, A., Sulem, P., Agustsdottir, A. B., Eiriksdottir, B., Fridriksdottir, R.,747

Gardarsdottir, E. E., Georgsson, G., Gretarsdottir, O. S., Gudmundsson, K. R., Gunnarsdottir, T. R.,748

Gylfason, A., Holm, H., Jensson, B. O., Jonasdottir, A., Jonsson, F., Josefsdottir, K. S., Kristjansson,749

T., Magnusdottir, D. N., le Roux, L., Sigmundsdottir, G., Sveinbjornsson, G., Sveinsdottir, K. E.,750

Sveinsdottir, M., Thorarensen, E. A., Thorbjornsson, B., Löve, A., Masson, G., Jonsdottir, I., Möller,751

A. D., Gudnason, T., Kristinsson, K. G., Thorsteinsdottir, U., and Stefansson, K. (2020). Spread of752

sars-cov-2 in the icelandic population. New England Journal of Medicine, 0(0):null.753

[16] Hartman, P. (1960). A lemma in the theory of structural stability of differential equations. vol-754

ume 11, pages 610–620.755

[17] He, X., Lau, E. H. Y., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y. C., Wong, J. Y., Guan, Y.,756

Tan, X., Mo, X., Chen, Y., Liao, B., Chen, W., Hu, F., Zhang, Q., Zhong, M., Wu, Y., Zhao, L.,757

Zhang, F., Cowling, B. J., Li, F., and Leung, G. M. (2020). Temporal dynamics in viral shedding and758

transmissibility of COVID-19. Nature Medicine, 26(5):672–675.759

[18] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95 -760

International Conference on Neural Networks, volume 4, pages 1942–1948 vol.4.761

[19] Kermack, W. O., McKendrick, A. G., and Walker, G. T. (1927). A contribution to the mathemat-762

ical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a763

Mathematical and Physical Character, 115(772):700–721.764

[20] Lescure, F.-X., Bouadma, L., Nguyen, D., Parisey, M., Wicky, P.-H., Behillil, S., Gaymard, A.,765

Bouscambert-Duchamp, M., Donati, F., Hingrat, Q. L., Enouf, V., Houhou-Fidouh, N., Valette, M.,766

Mailles, A., Lucet, J.-C., Mentre, F., Duval, X., Descamps, D., Malvy, D., Timsit, J.-F., Lina, B.,767

Van-der Werf, S., and Yazdanpanah, Y. (2020). Clinical and virological data of the first cases of768

COVID-19 in Europe: a case series. The Lancet Infectious Diseases, 0(0).769

[21] Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S., Lau, E. H., Wong,770

J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., Tu, W., Chen,771

C., Jin, L., Yang, R., Wang, Q., Zhou, S., Wang, R., Liu, H., Luo, Y., Liu, Y., Shao, G., Li, H., Tao,772

Z., Yang, Y., Deng, Z., Liu, B., Ma, Z., Zhang, Y., Shi, G., Lam, T. T., Wu, J. T., Gao, G. F., Cowling,773

B. J., Yang, B., Leung, G. M., and Feng, Z. (2020a). Early transmission dynamics in wuhan, china,774

of novel coronavirus–infected pneumonia. New England Journal of Medicine, 0(0):null.775

[22] Li, R., Pei, S., Chen, B., Song, Y., Zhang, T., Yang, W., and Shaman, J. (2020b). Substantial undoc-776

umented infection facilitates the rapid dissemination of novel coronavirus (sars-cov2). Science.777

[23] Linton, N. M., Kobayashi, T., Yang, Y., Hayashi, K., Akhmetzhanov, A. R., Jung, S.-M., Yuan, B.,778

Kinoshita, R., and Nishiura, H. (2020). Incubation Period and Other Epidemiological Characteris-779

tics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly780

Available Case Data. Journal of clinical medicine, 9(2).781

[24] Liu, T., Wu, S., Tao, H., Zeng, G., Zhou, F., Guo, F., and Wang, X. (2020a). Prevalence of igg782

antibodies to sars-cov-2 in wuhan - implications for the ability to produce long-lasting protective783

antibodies against sars-cov-2. medRxiv.784

37

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES REFERENCES

[25] Liu, Y., null, n., Funk, S., and Flasche, S. (2020b). The contribution of pre-symptomatic infection785

to the transmission dynamics of covid-2019 [version 1; peer review: 1 approved]. Wellcome Open786

Research, 5(58).787

[26] Liu, Y., Yan, L.-M., Wan, L., Xiang, T.-X., Le, A., Liu, J.-M., Peiris, M., Poon, L. L. M., and Zhang,788

W. (2020c). Viral dynamics in mild and severe cases of COVID-19. The Lancet Infectious Diseases,789

0(0).790

[27] Molenberghs, G., Faes, C., Aerts, J., Theeten, H., Devleesschauwer, B., Bustos Sierra, N., Braeye,791

T., Renard, F., Herzog, S., Lusyne, P., Van der Heyden, J., Van Oyen, H., Van Damme, P., and Hens,792

N. (2020). Belgian covid-19 mortality, excess deaths, number of deaths per million, and infection793

fatality rates (8 march - 9 may 2020). medRxiv.794

[28] Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso,795

S., Tomba, G. S., Wallinga, J., Heijne, J., Sadkowska-Todys, M., Rosinska, M., and Edmunds, W. J.796

(2008). Social contacts and mixing patterns relevant to the spread of infectious diseases. PLOS797

Medicine, 5(3):1–1.798

[29] Open VLD (2020). Coronavirus : België heeft z’n exitstrategie vastgelegd.799

[30] Park, M., Cook, A. R., Lim, J. T., Sun, Y., and Dickens, B. L. (2020). A Systematic Review of800

COVID-19 Epidemiology Based on Current Evidence. Journal of clinical medicine, 9(4).801

[31] Riou, J. and Althaus, C. L. (2020). Pattern of early human-to-human transmission of wuhan 2019802

novel coronavirus (2019-ncov), december 2019 to january 2020. Eurosurveillance, 25(4).803

[32] Shaman, J. and Galanti, M. (2020). Will sars-cov-2 become endemic? Science, 370(6516):527–529.804

[33] Snoekx, K. (2021). Vaccinaties in rusthuizen komen in stroomversnelling. De Standaard.805

[34] StatBEL (2020). Structure of the Population.806

[35] To, K. K.-W., Tsang, O. T.-Y., Leung, W.-S., Tam, A. R., Wu, T.-C., Lung, D. C., Yip, C. C.-Y., Cai,807

J.-P., Chan, J. M.-C., Chik, T. S.-H., Lau, D. P.-L., Choi, C. Y.-C., Chen, L.-L., Chan, W.-M., Chan,808

K.-H., Ip, J. D., Ng, A. C.-K., Poon, R. W.-S., Luo, C.-T., Cheng, V. C.-C., Chan, J. F.-W., Hung,809

I. F.-N., Chen, Z., Chen, H., and Yuen, K.-Y. (2020). Temporal profiles of viral load in posterior810

oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an811

observational cohort study. The Lancet Infectious Diseases, 20(5):565–574.812

[36] Verity, R., Okell, L. C., Dorigatti, I., Winskill, P., Whittaker, C., Imai, N., Cuomo-Dannenburg, G.,813

Thompson, H., Walker, P. G. T., Fu, H., Dighe, A., Griffin, J. T., Baguelin, M., Bhatia, S., Boonyasiri,814

A., Cori, A., Cucunubá, Z., FitzJohn, R., Gaythorpe, K., Green, W., Hamlet, A., Hinsley, W., Laydon,815

D., Nedjati-Gilani, G., Riley, S., van Elsland, S., Volz, E., Wang, H., Wang, Y., Xi, X., Donnelly, C. A.,816

Ghani, A. C., and Ferguson, N. M. (2020). Estimates of the severity of coronavirus disease 2019: a817

model-based analysis. The Lancet Infectious Diseases.818

[37] Viner, R. M., Mytton, O. T., Bonell, C., Melendez-Torres, G., Ward, J., Hudson, L., Waddington,819

C., Thomas, J., Russell, S., van der Klis, F., Koirala, A., Ladhani, S., Panovska-Griffiths, J., Davies,820

N. G., Booy, R., and Eggo, R. M. (2020). Susceptibility to sars-cov-2 infection amongst children and821

adolescents compared with adults: a systematic review and meta-analysis. medRxiv.822

38

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES REFERENCES

[38] Vlaamse regering (2020). Heropstart van de lessen op school: wie, waarom en hoe.823

[39] Wei, W. E., Li, Z., Chiew, C. J., Yong, S. E., Toh, M. P., and Lee, V. J. (2020). Presymptomatic824

Transmission of SARS-CoV-2 — Singapore, January 23–March 16, 2020. Morbidity and Mortality825

Weekly Report, 69:411–415.826

[40] Whatty, S. (2020). Tijdelijke werkloosheid bijna gehalveerd. Het Laatste Nieuws.827

[41] Willem, L. (2021). Restore.828

[42] Willem, L., Abrams, S., Petrof, O., Coletti, P., Kuylen, E., Libin, P., Mogelmose, S., Wambua, J.,829

Herzog, S. A., Faes, C., Beutels, P., and Hens, N. (2020). The impact of contact tracing and house-830

hold bubbles on deconfinement strategies for covid-19: an individual-based modelling study.831

[43] Willem, L., Van Kerckhove, K., Chao, D. L., Hens, N., and Beutels, P. (2012). A nice day for an832

infection? weather conditions and social contact patterns relevant to influenza transmission. PLOS833

ONE, 7(11):1–7.834

[44] Wu, J. T., Leung, K., Bushman, M., Kishore, N., Niehus, R., de Salazar, P. M., Cowling, B. J.,835

Lipsitch, M., and Leung, G. M. (2020a). Estimating clinical severity of COVID-19 from the trans-836

mission dynamics in Wuhan, China. Nature Medicine, 26(4):506–510.837

[45] Wu, J. T., Leung, K., and Leung, G. M. (2020b). Nowcasting and forecasting the potential domes-838

tic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling839

study. The Lancet, 395(10225):689 – 697.840

[46] Wu, Z. and McGoogan, J. M. (2020). Characteristics of and important lessons from the coro-841

navirus disease 2019 (covid-19) outbreak in china: Summary of a report of 72314 cases from the842

chinese center for disease control and prevention. JAMA.843

[47] Zou, L., Ruan, F., Huang, M., Liang, L., Huang, H., Hong, Z., Yu, J., Kang, M., Song, Y., Xia, J.,844

Guo, Q., Song, T., He, J., Yen, H.-L., Peiris, M., and Wu, J. (2020). Sars-cov-2 viral load in upper845

respiratory specimens of infected patients. New England Journal of Medicine, 382(12):1177–1179.846

PMID: 32074444.847

39

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


848

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


849

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


850

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


851

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


852

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


853

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


854

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and methods
	The extended SEIQRD-model (SEIpIaQRD)
	Disease dynamics
	Model structure and equations
	Model parameters

	Analysis of hospital data
	Social contact model
	Parameter identification and model predictions
	Effects of non-pharamaceutical interventions

	Results
	Hospitalization parameters
	Model calibration
	Effects of non-pharamaceutical interventions

	Discussion
	Conclusions
	Future research
	Supplementary materials
	Overview of model parameters
	Overview of model assumptions and limitations
	Key events
	Basic reproduction number
	Time-lagged cross correlation
	Supplementary data and figures


