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 2 

Abstract 28 

 29 

Antibody responses vary widely between individuals1, complicating the correct classification 30 

of low-titer measurements using conventional assay cut-offs. We found all participants in a 31 

clinically diverse cohort of SARS-CoV-2 PCR+ individuals (n=105) – and n=33 PCR+ 32 

hospital staff – to have detectable IgG specific for pre-fusion-stabilized spike (S) 33 

glycoprotein trimers, while 98% of persons had IgG specific for the receptor-binding domain 34 

(RBD). However, anti-viral IgG levels differed by several orders of magnitude between 35 

individuals and were associated with disease severity, with critically ill patients displaying 36 

the highest anti-viral antibody titers and strongest in vitro neutralizing responses. Parallel 37 

analysis of random healthy blood donors and pregnant women (n=1,000) of unknown 38 

serostatus, further demonstrated highly variable IgG titers amongst seroconverters, although 39 

these were generally lower than in hospitalized patients and included several measurements 40 

that scored between the classical 3 and 6SD assay cut-offs. Since the correct classification of 41 

seropositivity is critical for individual- and population-level metrics, we compared different 42 

probabilistic algorithms for their ability to assign likelihood of past infection. To do this, we 43 

used tandem anti-S and -RBD IgG responses from our PCR+ individuals (n=138) and a large 44 

cohort of historical negative controls (n=595) as training data, and generated an equal-45 

weighted learner from the output of support vector machines and linear discriminant analysis. 46 

Applied to test samples, this approach provided a more quantitative way to interpret anti-viral 47 

titers over a large continuum, scrutinizing measurements overlapping the negative control 48 

background more closely and offering a probability-based diagnosis with potential clinical 49 

utility. Especially as most SARS-CoV-2 infections result in asymptomatic or mild disease, 50 

these platform-independent approaches improve individual and epidemiological estimates of 51 

seropositivity, critical for effective management of the pandemic and monitoring the response 52 

to vaccination. 53 

 54 

 55 
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 3 

Introduction  58 

 59 

The characterization of nascent SARS-CoV-2-specific antibody responses is critical to our 60 

understanding of the infection at individual and population levels. Although several groups 61 

have carried out elegant work in this regard2–5, consensus on several key issues remains 62 

outstanding, such as: whether all infected persons develop an antibody response to the virus; 63 

what the duration of these responses is following peak levels; and what titers provide 64 

protective immunity against re-infection6–8. 65 

 66 

Antibody responses to the SARS-CoV-2 spike glycoprotein (S) are particularly relevant, as 67 

S-directed antibody specificities mediate virus neutralizing activity and new S variants (such 68 

as B.1.1.7) have emerged. Indeed, the vast majority of COVID-19 vaccines are based on S 69 

surface antigens, as the goal is to induce neutralizing antibodies that block viral entry into 70 

ACE2-positive target cells9,10. Furthermore, because serological studies play such a central 71 

role in immunosurveillance, there is a pressing need for robust assays and quantitative 72 

statistical tools to examine antibody titers of varying levels after vaccination and natural 73 

infection in different target groups.  74 

 75 

To meet these needs, we developed highly sensitive and specific IgM, IgG and IgA ELISA 76 

assays based on mammalian cell-expressed pre-fusion-stabilized soluble trimers of the 77 

SARS-CoV-2 spike (S) glycoprotein and the receptor-binding domain (RBD), and used them 78 

in tandem to survey serum samples from large cohort of individuals PCR+ for SARS-CoV-2. 79 

To validate our assays, we repeatedly analyzed a large set of serum samples from historical 80 

blood donors as negative controls (n=595) - critical for determining the assay background. 81 

 82 

As we show, and as has been reported by others4,7,11, the magnitude of response varied 83 

greatly between seropositive individuals and was associated with disease severity. Those with 84 

most pronounced symptoms had the highest anti-viral antibody titers, while those with 85 

asymptomatic or mild disease (including otherwise healthy blood donors and pregnant 86 

women) exhibited a range of antibody levels, with many measurements in close 87 

approximation to the negative control background, complicating their correct classification. 88 

To improve upon the dichotomization of a continuous variable – which is common to many 89 

clinical tests but results in a loss of information12,13 – we used tandem anti-S and RBD IgG 90 

data from confirmed infections and negative controls to train different probabilistic 91 
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 4 

algorithms to assign likelihood of past infection. Compared to strictly thresholding the assay 92 

at 3 or 6 standard deviations (SD) from the mean of negative control measurements, these 93 

more quantitative approaches modelled the probability a sample was positive, improving the 94 

identification of low titer values and paving the way for a greater utility to antibody test 95 

results.  96 

  97 
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 5 

Results 98 

 99 

Study samples are detailed in Fig. 1A and Table 1. 100 

 101 

Antibody test development 102 

 103 

We developed ELISA protocols to profile IgM, IgG and IgA specific for a pre-fusion-104 

stabilized spike (S) glycoprotein trimer14, the RBD, and the nucleocapsid (N). Trimer 105 

conformation was confirmed in each batch by cryo-EM15 and a representative subset of study 106 

samples was used for assay development (Fig. S1A). In contrast to other studies reporting 107 

significant cross-reactivity to S in the UK population16, we did not observe reproducible IgG 108 

reactivity to S or RBD across all 595 historical controls in the study, although two individuals 109 

who were PCR-positive for endemic coronaviruses (ECV+) in the last six months displayed 110 

reproducible IgM reactivity to both SARS-CoV-2 N and S, and two 2019 blood donors (from 111 

n=72 tested) had low anti-S IgM reactivity (Fig. S1B). Thus, further investigation is required 112 

to establish the contribution of potential cross-reactive memory SARS-CoV-2 responses17.  113 

 114 

Responses to S and the RBD were highly correlated and our assay revealed a greater than 115 

1,000-fold difference in anti-viral IgG titers between Ab-positive individuals when 116 

examining serially diluted sera (Fig. S1C and D). In SARS-CoV-2 PCR+ individuals, anti-117 

viral IgG titers were comparable for S (EC50=3,064; 95% CI [1,197 - 3,626]) and N 118 

(EC50=2,945; 95% CI [543 - 3,936]) and lower for RBD [EC50=1,751; 95% CI 966 - 1,595]. 119 

Notably, a subset (ca. 10%) of the SARS-CoV-2-confirmed individuals did not have 120 

detectable IgG responses against the SARS-CoV-2 nucleocapsid protein (N) (Fig. S1C), as 121 

previously reported18. Therefore, we did not explore responses to N further. These results 122 

highlight that the choice of antigen is critical for seropositivity estimates.  123 

 124 

Elevated anti-viral Ab titers and neutralizing responses are associated with increased disease 125 

severity  126 

 127 

When screening samples from SARS-CoV-2 PCR+ individuals from whom clinical 128 

information was available (n=105), we detected potent IgG responses against S in 100% of 129 

participants, and against RBD in 97% of persons (Fig. 1B), supporting that natural infection 130 

engenders a robust B cell response in the majority of cases, as reported8. IgM and IgA 131 
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 6 

responses were generally weaker and more variable and also spread over a large range (Fig. 132 

1B).  133 

 134 

To examine this further, PCR+ individuals were grouped according to their clinical status: 135 

non-hospitalized (Cat. 1), hospitalized (Cat. 2) or admitted to the intensive care unit (Cat. 3). 136 

To validate our clinical classification, we measured serum IL-6 levels in a random subset of 137 

PCR+ individuals (n=64). IL-6 feeds Ab production19–22, and as has been reported23, was 138 

increased in samples from individuals with severe disease (Fig. 1C). Furthermore, 139 

multivariate analyses (accounting for the effects of age, sex and days from symptom 140 

onset/PCR test) revealed increased anti-viral IgM, IgG and IgA to be associated with disease 141 

severity, as has been reported7 (Fig. 1C and S1D-E, Table S1). Severe disease was most 142 

strongly associated with virus-specific IgA, suggestive of mucosal pathology. We did not 143 

observe an association between ICU or IL-6 status and IgM levels, supporting that levels of 144 

the cytokine and IgA mark a more severe clinical course of COVID-19 (Fig. S1D). Anti-RBD 145 

IgA responses were slightly lower in non-hospitalized and hospitalized females compared to 146 

males, and trended similarly for S (Fig. S1D and Table S1), consistent with females 147 

developing less severe disease4.  148 

 149 

Across all PCR+ individuals (sampled up to two months from PCR test), anti-viral IgG levels 150 

were maintained, while IgM and IgA decreased, in agreement with their circulating t1/2 and 151 

viral clearance (Fig. S1D and Table S1). In longitudinal patient samples (sequential sampling 152 

of PCR+ individuals in the study) where we observed seroconversion, IgM, IgG and IgA 153 

peaked with similar kinetics when all three isotypes developed, although IgA was not always 154 

generated in non-hospitalized or hospitalized individuals (Fig 1E), supporting a more diverse 155 

antibody response in severe disease.  156 

 157 

To extend these observations, we characterized the in vitro virus neutralizing antibody 158 

response in PCR+ patients. Using an established pseudotype virus neutralization assay24, we 159 

detected neutralizing antibodies in the serum of all SARS-CoV-2 PCR+ individuals screened 160 

(n=48) (Fig. 1F). Neutralizing responses were not seen in samples before seroconversion or 161 

negative controls  (Fig. 1E and F). A large range of neutralizing ID50 titers was apparent, with 162 

binding and neutralization being highly correlated (Fig. S1D). In agreement with the binding 163 

data, the strongest neutralizing responses were observed in samples from patients in intensive 164 

care (g.mean ID50=5,058; 95% CI [2,422 - 10,564]) (Fig 1E). 165 
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 7 

 166 

In healthy blood donors and pregnant women (n=1,000 collected between weeks 17-21 2020 167 

– the same time as the patient cohort), who did not have signs or symptoms of COVID-19 for 168 

two weeks prior to sampling, and had not been hospitalized for COVID-19, IgG titers varied 169 

greatly but were generally lower than hospitalized COVID-19 patients, and were comparable 170 

to titers in PCR+ hospital staff (n=33) who also had never been hospitalized following 171 

infection (Fig. 1G).  172 

 173 

Probabilistic analyses of positivity 174 

 175 

As SARS-CoV-2 results in asymptomatic or mild disease in the majority of cases, and 176 

antibody titers decline following peak responses and viral clearance, the correct classification 177 

of low titer values is critical to individual and population-level estimates of antibody-178 

positivity for COVID-19. Indeed, several healthy donor test samples screen in this study had 179 

optical densities between the 3 and 6 SD cut-offs for both or a single antigen (Fig. 1G), 180 

highlighting the problem of assigning case to low responder values.  181 

 182 

To further our understanding of the assay boundary, we repeatedly analyzed a large number 183 

of historical (SARS-CoV-2-negative) controls (blood donors from the spring of 2019, n=595) 184 

alongside test samples throughout the study. We considered the spread of negative values 185 

critical, since the use of a small and unrepresentative set of controls can lead to an incorrectly 186 

set threshold, which can considerably skew the seropositivity estimate. This is illustrated by 187 

the random sub-sampling of non-overlapping groups of negative controls, resulting in a 40% 188 

difference in the positivity estimate (Fig. 2A). Worryingly, many clinically approved tests use 189 

a ratio between a known positive and negative serum calibrator to classify seropositivity25, 190 

although we show here that these are highly variable within the population.  191 

 192 

Therefore, to exploit individual titers generated against multiple antigens, we used anti-S and 193 

RBD data from PCR+ individuals and negative controls to train probabilistic algorithms to 194 

assign likelihood of past infection. To this end, we compared different probabilistic 195 

algorithms – logistic regression (LOG), linear discriminant analysis (LDA), linear support 196 

vector machines (SVM) and quadratic SVM (SVM2) – suited to ELISA data (Fig. 2B, 197 

Materials and Methods). Using ten-fold cross validation and training models on both proteins 198 

simultaneously (S and RBD), we found all methods worked well, with sensitivity >98% and 199 
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 8 

specificity >99.6% (Fig. 2D). On these metrics, LDA gave the highest specificity. Logistic 200 

regression had similarly high specificity on some folds of the training data, but with higher 201 

sensitivity. However, we deliberately considered balanced and unbalanced folds (where 202 

case:control ratios varied between folds) and found LOG to show the least consistency across 203 

strategies, which reflects that the proportion of cases in a sample directly informs a logistic 204 

model’s estimated parameters. SVM methods had lower specificity than LDA in the training 205 

data, but higher sensitivity.  206 

 207 

The standard methods, calling positives by a fixed number of SD above the mean of negative 208 

controls, displayed two extreme behaviors: 3-SD had the highest sensitivity (100%) while 6-209 

SD had the highest specificity, and the lowest sensitivity (Fig. S2A), emphasizing that the 210 

number of SD above the mean is a key parameter, but one which is not learnt in any formal 211 

data-driven manner. Both SVM and LDA offer linear classification boundaries, but we can 212 

see that the probability transition from negative to positive cases is much sharper for LDA 213 

(Fig. 2B) – potentially resulting in false negatives when applied to the test data, but giving the 214 

model high specificity in the training data under cross-validation. SVM exhibits a softer 215 

probability transition around its classification boundary, offering a much more nuanced 216 

approach to the points lying in the mid-range of the two proteins. SVM2 creates a nonlinear 217 

boundary, but the cross validation suggested that this didn’t improve performance relative to 218 

linear SVM.  219 

 220 

Given these results, we chose to create ensemble learners, which were unweighted averages 221 

of SVM (linear) or SVM2 (quadratic) and LDA (ENS and ENS2, respectively), as well as a 222 

LOG-LDA learner, to balance the benefits of each approach. The ensemble learners seemed 223 

to combine the benefits of their parent methods (Fig. S2A). Test data points in the lower right 224 

region of each plot are the hardest to classify due to the relative scarcity of observations in 225 

this region in the training dataset and ENS (SVM-LDA) showed the greatest uncertainty in 226 

these regions, appropriately. Given these results, we chose to use ENS (SVM-LDA), with an 227 

average sensitivity >99.1% and specificity >99.8%, to analyze test data. When applied to the 228 

serology data, the output of ENS is the probability of each sample being antibody-positive. 229 

 230 

In healthy donor test data, the ENS learner estimated 7.8% (95% CI [4.8-12.5]) positivity in 231 

samples collected in week 21 of 2020 (Fig. S2B, Table S2). This is in contrast to the SD 232 

thresholding, which identified 12% and 10% positivity for S and RBD, respectively, at 3 SD, 233 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 6, 2021. ; https://doi.org/10.1101/2020.07.17.20155937doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20155937
http://creativecommons.org/licenses/by/4.0/


 9 

and 8% and 7.5, respectively, at 6 SD (Table S2). Therefore, apart from providing more 234 

accurate population-level estimates – critical to seroprevalence studies, where we have 235 

applied these and related tools in a large cohort26 – these methods have the potential to 236 

provide more nuanced information about titers to an individual after an antibody test. For 237 

example, test samples with a 30-60% chance of being antibody positive (Fig. S2B) can be 238 

targeted for further investigation or help inform vaccine boosting, as antibody titers decline 239 

over time from peak responses. Moreover, such tools are applicable to other clinical metrics 240 

where a continuous scale is dichotomized and code for implementation is freely available via 241 

our online repositories.  242 

  243 
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 10 

Discussion 244 

 245 

Benefitting from a robust antibody test developed alongside a diagnostic clinical laboratory 246 

responsible for monitoring sero-reactivity during the pandemic, we profiled SARS-CoV-2 247 

antibody responses in three cohorts of clinical interest. COVID-19 patients receiving 248 

intensive care showed the highest anti-viral Ab titers, developing augmented serum IgA and 249 

IL-6 with worsening disease and more advance respiratory and/or gastrointestinal pathology. 250 

These results support the use of cytokine and isotype-level measures for patient 251 

management23.  252 

 253 

Importantly, our neutralization data illustrated that nearly all SARS-CoV-2 PCR+ individuals 254 

developed neutralizing antibodies capable of preventing S-mediated cell entry, albeit at 255 

different titers. These data support that SARS-CoV-2 infection generates a functional B cell 256 

response in the majority of people8 and serve as a useful comparator to titers engendered by 257 

vaccination. Indeed, the first generation of mRNA vaccines have been reported to generate 258 

neutralizing titers comparable to samples from individuals with mild infection in our 259 

study9,10. 260 

 261 

Outside of the severe disease setting, it is critical to accurately determine who and how many 262 

people have seroconverted for clinical and epidemiological reasons. However, this is 263 

complicated by low titer values, which in some cases – and increasingly with time since 264 

exposure or vaccination 5,27 – can overlap outlier values among negative control samples. 265 

Test samples with true low anti-viral titers fall into this range, highlighting the need to better 266 

understand the assay boundary. To improve upon strictly thresholding the assay, we 267 

developed probabilistic approaches for ELISA data that characterized the uncertainty in 268 

individual measures. These approaches provide more statistically sound measurements at the 269 

level of cohorts and the potential to communicate more nuanced information to individual 270 

patients – although the communication of probability needs to be approached with care to 271 

ensure what is described matches what an individual interprets. Furthermore, such 272 

approaches will aid the analysis of data from assay platforms measuring the responses to 273 

multiple antigens; longitudinal studies of the duration of immunity after SARS-CoV-2 spike-274 

based vaccines and natural infection; and facilitate comparison of responses in different 275 

cohorts.  276 
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 11 

Materials and methods 277 

 278 

Human samples and ethical declaration  279 

Samples from PCR+ individuals and admitted COVID-19 patients (n=105) were collected by 280 

the attending clinicians and processed through the Departments of Medicine and Clinical 281 

Microbiology at the Karolinska University Hospital. Samples were used in accordance with 282 

approval by the Swedish Ethical Review Authority (registration no. 2020-02811). All 283 

personal identifiers were pseudo-anonymized, and all clinical feature data were blinded to the 284 

researchers carrying out experiments until data generation was complete. PCR testing for 285 

SARS-CoV-2 RNA was by nasopharyngeal swab or upper respiratory tract sampling at 286 

Karolinska University Hospital. As viral RNA levels were determined using different qPCR 287 

platforms (with the same reported sensitivity and specificity) between participants, we did not 288 

analyze these alongside other features. PCR+ individuals (n=105) were questioned about the 289 

date of symptom onset at their initial consultation and followed-up for serology during their 290 

care, up to 2 months post-diagnosis. Serum from SARS-CoV-2 PCR+ individuals was 291 

collected 6-61 days post-test, with the median time from symptom onset to PCR being 5 292 

days.  In addition, longitudinal samples from 10 of these patients were collected to monitor 293 

seroconversion and isotype persistence.  294 

 295 

Hospital workers at Karolinska University Hospital were invited to test for the presence of 296 

SARS-CoV-2 RNA in throat swabs in April 2020 and virus-specific IgG in serum in July 297 

2020. We screened 33 PCR+ individuals to provide additional training data for ML 298 

approaches. All participants provided written informed consent. The study was approved by 299 

the National Ethical Review Agency of Sweden (2020-01620) and the work was performed 300 

accordingly. 301 

 302 

Anonymized samples from blood donors (n=100/week) and pregnant women (n=100/week) 303 

were randomly selected from their respective pools by the department of Clinical 304 

Microbiology, Karolinska University Hospital. No metadata, such as age or sex information 305 

were available for these samples in this study. Pregnant women were sampled as part of 306 

routine for infectious diseases screening during the first trimester of pregnancy. Blood donors 307 

(n=595) collected through the same channels a year previously were randomly selected for 308 

use as negative controls. Serum samples from individuals testing PCR+ for endemic 309 

coronaviruses, 229E, HKU1, NL63, OC43 (n=20, ECV+) in the prior 2-6 months, were used 310 
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 12 

as additional negative controls. The use of study samples was approved by the Swedish 311 

Ethical Review Authority (registration no. 2020-01807). Stockholm County death and 312 

Swedish mortality data was sourced from the ECDC and the Swedish Public Health Agency, 313 

respectively. Study samples are defined in Table 1. 314 

 315 

Serum sample processing 316 

Blood samples were collected by the attending clinical team and serum isolated by the 317 

department of Clinical Microbiology. Samples were anonymized, barcoded and stored at -318 

20oC until use. Serum samples were not heat-inactivated for ELISA protocols but were heat-319 

inactivated at 56oC for 60 min for neutralization experiments. 320 

 321 

SARS-CoV-2 antigen generation 322 

The plasmid for expression of the SARS-CoV-2 prefusion-stabilized spike ectodomain with a 323 

C-terminal T4 fibritin trimerization motif was obtained from14. The plasmid was used to 324 

transiently transfect FreeStyle 293F cells using FreeStyle MAX reagent (Thermo Fisher 325 

Scientific). The ectodomain was purified from filtered supernatant on Streptactin XT resin 326 

(IBA Lifesciences), followed by size-exclusion chromatography on a Superdex 200 in 5 mM 327 

Tris pH 8, 200 mM NaCl.  328 

 329 

The RBD domain (RVQ – QFG) of SARS-CoV-2 was cloned upstream of a Sortase A 330 

recognition site (LPETG) and a 6xHIS tag, and expressed in 293F cells as described above. 331 

RBD-HIS was purified from filtered supernatant on His-Pur Ni-NTA resin (Thermo Fisher 332 

Scientific), followed by size-exclusion chromatography on a Superdex 200. The nucleocapsid 333 

was purchased from Sino Biological.  334 

 335 

Anti-SARS-CoV-2 ELISA 336 

96-well ELISA plates (Nunc MaxiSorp) were coated with SARS-CoV-2 S trimers, RBD or 337 

nucleocapsid (100 μl of 1 ng/μl) in PBS overnight at 4oC. Plates were washed six times with 338 

PBS-Tween-20 (0.05%) and blocked using PBS-5% no-fat milk. Human serum samples were 339 

thawed at room temperature, diluted (1:100 unless otherwise indicated), and incubated in 340 

blocking buffer for 1h (with vortexing) before plating. Serum samples were incubated 341 

overnight at 4oC before washing, as before. Secondary HRP-conjugated anti-human 342 

antibodies were diluted in blocking buffer and incubated with samples for 1 hour at room 343 

temperature. Plates were washed a final time before development with TMB Stabilized 344 
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Chromogen (Invitrogen). The reaction was stopped using 1M sulphuric acid and optical 345 

density (OD) values were measured at 450 nm using an Asys Expert 96 ELISA reader 346 

(Biochrom Ltd.). Secondary antibodies (all from Southern Biotech) and dilutions used: goat 347 

anti-human IgG (2014-05) at 1:10,000; goat anti-human IgM (2020-05) at 1:1000; goat anti-348 

human IgA (2050-05) at 1:6,000. All assays of the same antigen and isotype were developed 349 

for their fixed time and samples were randomized and run together on the same day when 350 

comparing binding between PCR+ individuals. Negative control samples were run alongside 351 

test samples in all assays and raw data were log transformed for statistical analyses.  352 

 353 

In vitro virus neutralisation assay 354 

Pseudotyped viruses were generated by the co-transfection of HEK293T cells with plasmids 355 

encoding the SARS-CoV-2 spike protein harboring an 18 amino acid truncation of the 356 

cytoplasmic tail14; a plasmid encoding firefly luciferase; a lentiviral packaging plasmid 357 

(Addgene 8455) using Lipofectamine 3000 (Invitrogen). Media was changed 12-16 hours 358 

post-transfection and pseudotyped viruses harvested at 48- and 72-hours, filtered through a 359 

0.45 µm filter and stored at -80°C until use. Pseudotyped neutralisation assays were adapted 360 

from protocols validated to characterize the neutralization of HIV, but with the use of 361 

HEK293T-ACE2 cells. Briefly, pseudotyped viruses sufficient to generate ~100,000 RLUs 362 

were incubated with serial dilutions of heat-inactivated serum for 60 min at 37°C. 363 

Approximately 15,000 HEK293T-ACE2 cells were then added to each well and the plates 364 

incubated at 37°C for 48 hours. Luminescence was measured using Bright-Glo (Promega) 365 

according to the manufacturer’s instructions on a GM-2000 luminometer (Promega) with an 366 

integration time of 0.3s. The limit of detection was at a 1:45 serum dilution.   367 

 368 

IL-6 cytometric bead array 369 

Serum IL-6 levels were measured in a subset of PCR+ serum samples (n=64) using an 370 

enhanced sensitivity cytometric bead array against human IL-6 from BD Biosciences (Cat # 371 

561512). Protocols were carried out according to the manufacturer’s recommendations and 372 

data acquired using a BD Celesta flow cytometer.  373 

 374 

Statistical analysis of SARS-CoV-2 PCR+ data 375 

All univariate comparisons were performed using non-parametric analyses (Kruskal-Wallis, 376 

stratified Mann-Whitney, hypergeometric exact tests and Spearman rank correlation), as 377 

indicated, while multivariate comparisons were performed using linear regression of log 378 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 6, 2021. ; https://doi.org/10.1101/2020.07.17.20155937doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20155937
http://creativecommons.org/licenses/by/4.0/


 14 

transformed measures and Wald tests. For multivariate tests, all biochemical measures (IL-6, 379 

PSV ID50 neut., IgG, IgA, IgM) were log transformed to improve the symmetry of the 380 

distribution. As “days since first symptom” and ”days since PCR+ test” are highly correlated, 381 

we cannot include both in any single analysis. Instead, we show results for one, then the other 382 

(Supp. Table 1). 383 

 384 

Probabilistic algorithms for classifying antibody positivity 385 

Prior to analysis, each sample OD was standardized by dividing by the mean OD of ”no 386 

sample controls” on that plate or other plates run on the same day. This resulted in more 387 

similar distributions for 2019 blood donor samples with 2020 blood donors and pregnant 388 

volunteers, as well as smaller coefficients of variation amongst PCR+ COVID patients for 389 

both SPIKE and RBD. 390 

 391 

Our probabilistic learning approach consisted of evaluating different algorithms suited to 392 

ELISA data, which we compared through ten-fold cross validation (CV): logistic regression 393 

(LOG), linear discriminant analysis (LDA), support vector machines (SVM) with a linear 394 

kernel, and quadratic SVM (SVM2). Logistic regression and linear discriminant analysis both 395 

model log odds of a sample being case as a linear equation with a resulting linear decision 396 

boundary. The difference between the two methods is in how the coefficients for the linear 397 

models are estimated from the data. When applied to new data, the output of logistic 398 

regression and LDA is the probability of each new sample being a case. Support vector 399 

machines is an altogether different approach. We opted for a linear kernel, once again 400 

resulting in a linear boundary. SVM constructs a boundary that maximally separates the 401 

classes (i.e. the margin between the closest member of any class and the boundary is as wide 402 

as possible), hence points lying far away from their respective class boundaries do not play an 403 

important role in shaping it. SVM thus puts more weight on points closest to the class 404 

boundary, which in our case is far from being clear. Linear SVM has one tuning parameter C, 405 

a cost, with larger values resulting in narrower margins. We tuned C on a vector of values 406 

(0.001, 0.01, 0.5, 1, 2, 5, 10) via an internal 5-fold CV with 5 repeats (with the winning 407 

parameter used for the final model for the main CV iteration). We also note that the natural 408 

output of SVM are class labels rather than class probabilities, so the latter are obtained via the 409 

method of Platt28.  410 

 411 
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We considered three strategies for cross-validation: i) random: individuals were sampled into 412 

folds at random, ii) stratified: individuals were sampled into folds at random, subject to 413 

ensuring the balance of cases:controls remained fixed and iii) unbalanced: individuals were 414 

sampled into folds such that each fold was deliberately skewed to under or over-represent 415 

cases compared to the total sample. We sought a method with performance that was 416 

consistently good across all cross-validation sampling schemes, because the true proportion 417 

of cases in the test data is unknown, and we want a method that is not overly sensitive to the 418 

proportion of cases in the training data. We chose to assess performance using sensitivity and 419 

specificity, as well as consistency. 420 

 421 

Given the good performance of all learners (described in the results), we considered the 422 

prediction surface associated with each SVM, LDA, SVM-LDA ensemble, and the standard 423 

3-SD, 6-SD hard decision boundaries. Note that while methods trained on both proteins can 424 

draw decision contours at any angle, SD methods are limited to vertical or horizontal lines. 425 

We can see that success, or failure, of the SD cut-offs depends on how many positive and 426 

negative cases overlap for a given measure (S or RBD) in the training sample. In the training 427 

data the two classes are nearly linearly separable when each protein is considered on its own, 428 

which explains good performance of 3-SD and 6-SD thresholds. However, the test data 429 

contain many more points in the mid-range of S-RBD, which makes hard cut-offs a 430 

problematic choice for classifying test samples. 431 

 432 

We trained the learners on all 733 training samples and used these to predict the probability 433 

of anti-SARS-CoV-2 antibodies in blood donors and pregnant volunteers sampled in 2020. 434 

We inferred the proportion of the sampled population with positive antibody status each week 435 

using multiple imputation. We repeatedly (1,000 times) imputed antibody status for each 436 

individual randomly according to the ensemble prediction, and then analyzed each of the 437 

1,000 datasets in parallel, combining inference using Rubin's rules, derived for the Wilson 438 

binomial proportion confidence interval29. 439 

 440 

Data and code availability statement 441 

 442 

Data generated as part of the study, along with custom code for statistical analyses, is openly 443 

available via our GitHub repository: https://github.com/chr1swallace/elisa-paper. 444 

  445 
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Figure 1: Anti-SARS-CoV-2 Ab phenotypes in COVID-19 patients, PCR+ individuals, blood donors and pregnant women. 
(A) Study samples. (B) Raw optical density (450nm) for anti-S and -RBD IgG (first graph) IgM and IgA responses (second graph) in SARS-CoV-2 PCR+ 
individuals (n=105). A 6SD cut-off based on n=595 control (HC) values is shown for the IgG assay and a small number of HC samples are shown (red) for 
the IgM and IgA assays. Individual responses for the three isotypes are shown by a heatmap.  (C) Circulating IL-6 levels in serum are associated with 
disease severity. (D) Anti-viral antibody levels are associated with disease severity, most pronounced for anti-viral IgA. Anti-S and RBD responses are 
graphed together. P values for S are shown. (E) Two discordant longitudinal profiles of seroconversion and neutralisation capacity are shown in hospitalized 
COVID-19 patients. (F) In vitro pseudotyped virus neutralization ID50 titers are associated with disease severity, with the highest titers observed in Cat 3 
(ICU) patients. n=48 SARS-CoV-2 PCR+ individuals were analyzed in duplicate. (G) Comparison of anti-S IgG levels between PCR+ individuals (n=105), 
PCR+ hospital staff (PCR+ HS, n=33), blood donors (BD, n=500) and pregnant women (PW, n=500). 3 and 6 SD cut-offs are shown by red lines. 
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A

Figure 2: Probability-based seropositivity estimates in blood donors and pregnant women
(A) Random sub-sampling of non-overlapping negative controls illustrates how the range of negative control (C) values can influence a
conventional test cut-off, here 6 SD from the mean of the respective C groups. In the test data, depending on the control values used to
set the test threshold for positivity, SP estimates varied 40%. Blood donor and pregnant women sample values are used as an example.
Anti-S IgG values are shown. (B) Comparison of probabilistic algorithms suited to ELISA measurements. Logistic regression (LOG),
linear discriminant analysis (LDA), support vector machines (SVM) and quadratic SVM (SVM2). Learners were trained using anti-S and
RBD IgG data from 595 negative control values and 138 SARS-CoV-2 PCR+ individual samples. Ensemble (ENS) learners were
generated from the output of SVM-LDA, SVM2-LDA and LOG-LDA.
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Table 1 – Study samples

SARS-CoV-2 PCR+ individuals§ n=105
Females 44 (41.9%)
Males 61 (58.1%)
Median age (years) 53.0 (49-61)

Females 51.5 (48-56.2)
Males 55.0 (49-63)

Non-hospitalized (n=) 53
Females, males 28, 25

Hospitalized patients (n=) 31
Females, males 12, 17

Intensive care (ICU) patients (n=) 21
Females, males 3, 17

SARS-CoV2+ PCR (n=) 105
Sample collection dates March-May 2020

SARS-CoV-2 PCR+ KI hospital staff* n=33
Sample collection dates July 2020

Blood donors* n=500
Sample collection dates Weeks 17-21 (March-May) 2020

Pregnant women* n=500
Sample collection dates Weeks 17-21 (March-May) 2020

Historical blood donors* n=595
Sample collection dates March-June 2019

ECV+ donors* n=20
Sample collection dates July-December 2019

§Under the care of Karolinska University Hospital
*No additional metadata available for any samples

Table 1



Figure S1: Antibody phenotypes in PCR+ individuals.
(A) Study samples used for assay development. (B) Anti-S IgM reactivity observed in a random subset of historical controls. Binding
was confirmed in these samples in an independent experiment. No reproducible IgG reactivity to S trimers of the RBD was observed
across all historical controls in the study. (C) Serial dilution of n=30 random PCR+ individuals. ECV+ (n=4) controls are shown in red.
(D) Spearman’s rank correlation of PCR+ dataset features and antibody levels. DOB - date of birth; d-p SymO - days post-symptom
onset; d-p PCR – days post SARS-CoV-2+ PCR; PSV ID50 – neutralizing titer. (E) Adjusted fold-change compared to Category 1
PCR+ individuals. The effects of age (DOB), sex, days from PCR test were considered.
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A
Sensitivity and specificty of different methods using different cross validation sampling

LDA-SVM (ENS)

B

Figure S2: Performance of different probabilistic approaches.
(A) Comparisons of specificity and sensitivity for the different probabilistic methods (and 3 and 6 SD 
thresholding) using different cross-validation strategies. (B) ENS probabilities when applied to healthy donor 
test data, providing a highly sensitive, specific and consistent multi-dimensional solution to the problem of low 
responders, and assigning each data point a probability of being positive. 
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