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 2 

Abstract 31 

 32 

The levels of the antibody response against SARS-CoV-2 varies widely between individuals, 33 

which together with the decline of antibody responses over time, complicates the correct 34 

classification of seropositivity using conventional assay cut-offs. All subjects in a cohort of 35 

SARS-CoV-2 PCR+ individuals representing different disease severity categories (n=105), and 36 

a group of PCR+ hospital staff (n=33), developed IgG against pre-fusion-stabilized spike (S) 37 

trimers and 97% did against the receptor-binding domain (RBD). The levels differed by several 38 

orders of magnitude and associated with disease phenotype. Concomitant analysis of a cohort 39 

of healthy blood donors and pregnant women (n=1,000), representing individuals who had 40 

undergone milder infections, demonstrated highly variable IgG titers, including several that 41 

scored between the classical 3SD and 6SD cut-offs. Since the correct classification of 42 

seropositivity is critical for epidemiological estimates, we trained probabilistic algorithms to 43 

assign likelihood of past infection using anti-S and -RBD IgG data from PCR+ individuals and 44 

a large cohort of historical negative controls (n=595). Applied to blood donors and pregnant 45 

women, this probabilistic approach provided a more accurate way to interpret antibody titers 46 

spread over a large continuum offering a probability-based diagnosis. The methods described 47 

here are directly applicable to serological measurements following natural infection and 48 

vaccination. 49 

 50 
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 3 

Introduction  52 

 53 

The characterization of nascent SARS-CoV-2-specific antibody responses is critical to our 54 

understanding of the infection at both individual and population levels1. While several studies 55 

have reported antibody phenotypes of SARS-CoV-2 infection, consensus on several key issues 56 

remains outstanding, such as whether all persons who have had the infection develop antibody 57 

responses to the virus, what the duration of these responses are following peak responses and 58 

what levels provide protective immunity against re-infection2–6. 59 

 60 

Because serological studies have such a central role, both in immunosurveillance and for our 61 

basic understanding of how humans respond to infection, there is a pressing need for robust 62 

and reproducible platforms - and statistical tools - to examine antibody titers of varying levels, 63 

as highlighted by the current SARS CoV-2 pandemic7. Antibody responses to the virus spike 64 

glycoprotein are particularly relevant as spike-directed specificities mediate virus neutralizing 65 

activity. The great majority of COVID-19 vaccines are based on the spike surface antigen as 66 

the goal is to induce neutralizing antibodies that block virus entry into Ace2-positive target 67 

cells8,9. There is, therefore, a great need for well-validated assays to monitor both infection and 68 

immunization-induced antibody responses against SARS-CoV-2 spike, and this will increase 69 

further as different spike-based vaccines are introduced world-wide and follow-up studies are 70 

undertaken to understand the magnitude and quality of responses in different target groups.   71 

 72 

To meet this need, we developed highly sensitive and specific IgM, IgG and IgA ELISAs based 73 

on mammalian cell-expressed pre-fusion-stabilized soluble trimers of the SARS-CoV-2 spike 74 

(S) glycoprotein and the receptor-binding domain (RBD), and used them in tandem to survey 75 

serum samples from large cohort of individuals PCR+ for SARS-CoV-2. For a robust 76 

validation of the assays, we used a large set of serum samples from historical blood donors as 77 

negative controls (n=595), which is critical for determining the assay background.  We then 78 

applied these assays to blood donors and pregnant women for whom serostatus was unknown.  79 

 80 

As we show, and as has been reported by others3,10, the magnitude of response varied greatly 81 

between individuals and was associated with disease severity. Those with most pronounced 82 

symptoms, as observed in our cohort of hospitalized patients, tended to have very high anti-83 

viral antibody titers, while those with asymptomatic or mild disease, represented by randomly 84 

sampled blood donors and pregnant women, exhibited a range of antibody levels, some of 85 
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which were high and others that were close to the negative control serum samples, complicating 86 

their correct classification.  87 

 88 

To improve upon the dichotomization of a continuous variable – which is common to many 89 

clinical tests but generally results in a loss of information11,12 – we used tandem anti-S and 90 

RBD IgG data from confirmed infections and negative controls to train different probabilistic 91 

approaches to identify likelihood of past infection. Compared to strictly thresholding the assay 92 

based on standard 3SD or 6SD cut-offs, the more quantitative approaches modelled the 93 

probability a sample was positive from training responses, improving the identification of low 94 

titer values.  95 

 96 

Results 97 

 98 

Study samples are detailed in Table 1. 99 

 100 

Antibody test development 101 

 102 

We developed ELISA protocols to profile IgM, IgG and IgA specific for a pre-fusion 103 

conformation stabilized spike (S) glycoprotein trimer13, the RBD, and the viral nucleocapsid 104 

(N). Trimer conformation was confirmed in each batch by cryo-EM14 and a representative 105 

subset of study samples was used for assay development (Fig. S1A). No reproducible IgG 106 

reactivity to S or RBD was observed across all 595 historical controls in the study, although 107 

two individuals who were PCR-positive for endemic coronaviruses (ECV+) in the last six 108 

months displayed robust IgM reactivity to both SARS-CoV-2 N and S, and two 2019 blood 109 

donors (from n=72 tested) had low anti-S IgM reactivity (Fig. S1B). Thus, further investigation 110 

is required to establish the contribution of potential cross-reactive memory SARS-CoV-2 111 

responses15.  112 

 113 

Our assay revealed a greater than 1,000-fold difference in anti-viral IgG titers between Ab-114 

positive individuals when examining serially diluted sera, a wide range difficult to capture in a 115 

single test (Fig. S1C). In SARS-CoV-2 PCR+ individuals, anti-viral IgG titers were 116 

comparable for S (EC50=3,064; 95% CI [1,197 - 3,626]) and N (EC50=2,945; 95% CI [543 - 117 

3,936]) and lower for RBD [EC50=1,751; 95% CI 966 - 1,595]. A subset (ca. 10%) of the 118 

SARS-CoV-2-confirmed individuals did not have detectable IgG responses against the SARS 119 
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 5 

CoV-2 nucleocapsid protein (N) (Fig. S1C), as previously reported16. Therefore, we did not 120 

explore responses to N further. 121 

 122 

Elevated anti-viral Ab titers and neutralizing responses are associated with increased disease 123 

severity  124 

 125 

When screening all SARS-CoV-2 PCR+ individuals from whom clinical information was 126 

available (n=105), we detected potent IgG responses against S in 100% of participants, and 127 

against RBD in 97% of persons. IgM and IgA responses were generally weaker and more 128 

variable and also spread over a large range (Fig. 1A).  129 

 130 

To examine this further, PCR+ individuals were classified according to their clinical status as 131 

follows: non-hospitalized; hospitalized or admitted to the intensive care unit. Serum IL-6 132 

levels, a cytokine that feeds Ab production17–20, were increased in severe disease samples (Fig. 133 

1B). Furthermore, multivariate analyses revealed increased anti-viral IgM, IgG and IgA to also 134 

be associated with disease severity, as has been reported3, although IgM was reduced in 135 

intensive care samples, compared to hospitalized patients (Fig. 1C and S1D-E, Table S1). 136 

Severe disease was most associated with virus-specific IgA, suggestive of mucosal pathology. 137 

We did not observe an association between ICU or IL-6 status and IgM levels, supporting that 138 

levels of the cytokine and IgA mark a more severe clinical course of COVID-19 (Fig. S1D). 139 

IgA anti-RBD responses were lower in non-hospitalized and hospitalized females compared to 140 

males, trending similarly for S (Table S1)10.  141 

 142 

Across all PCR+ individuals (sampled up to two months from PCR test), anti-viral IgG levels 143 

were maintained, while IgM and IgA decreased, in agreement with their circulating t1/2 and 144 

viral clearance (Table S1). In longitudinal patient samples (sequential sampling of PCR+ 145 

individuals in the study) where we observed seroconversion, IgM, IgG and IgA peaked with 146 

similar kinetics when all three isotypes developed, although IgA was not always generated in 147 

non-hospitalized or hospitalized individuals (Fig 1D), supporting a more diverse antibody 148 

response in severe disease.  149 

 150 

To extend these observations, we characterized the virus neutralizing Ab response in PCR+ 151 

patients. Using a robust in vitro pseudotype virus neutralization assay21, we detected 152 

neutralizing antibodies in the serum of all SARS-CoV-2 PCR+ individuals (from n=48). 153 
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 6 

Neutralizing responses were not seen in samples before seroconversion (Fig. 1D) or negative 154 

controls. A large range of neutralizing ID50 titers was apparent, with binding and neutralization 155 

being highly correlated (Fig. S1D). In agreement with the binding data, the strongest 156 

neutralizing responses were observed in samples from patients in intensive care (g.mean 157 

ID50=5,058; 95% CI [2,422 - 10,564]) (Fig 1E). 158 

 159 

In healthy blood donors and pregnant women (n=1,000 collected between weeks 17-21, 2020), 160 

who did not have signs or symptoms of COVID-19 when they were sampled or two weeks 161 

prior to sampling, and had no history of being hospitalized for COVID-19, IgG titers varied 162 

greatly but were generally lower than hospitalized COVID-19 patients (Fig. 1F).  163 

 164 

Probabilistic analyses of positivity 165 

 166 

As SARS-CoV-2 results in asymptomatic or mild disease in the majority of cases, and antibody 167 

titers decline following peak responses, the detection of low titer values is critical to individual 168 

and population-level estimates of antibody-positivity. Indeed, many healthy donor test samples 169 

screen in this study had optical densities between the 3 and 6 SD cut-offs for both or a single 170 

antigen (Fig. 1E), highlighting the problem of assigning case to low responder values.  171 

 172 

To improve our understanding of the assay boundary, we repeatedly analyzed a large number 173 

of historical (SARS-CoV-2-negative) controls (blood donors from the spring of 2019, n=595) 174 

alongside test samples throughout the study (Fig. 2A). We considered the spread of known 175 

negative values critical, since the use of a small and unrepresentative set of controls can lead 176 

to an incorrectly set threshold, which skews the seropositivity estimate. This is illustrated by 177 

the random sub-sampling of non-overlapping groups of negative controls, resulting in a 40% 178 

difference in the positivity estimate (Fig. 2B).  179 

 180 

To exploit individual titers and further improve our statistical estimates, we used anti-S and 181 

RBD data from PCR+ individuals and negative controls to train probabilistic algorithms to 182 

assign likelihood of past infection. A small cohort of PCR+ individuals among Karolinska 183 

University Hospital staff (n=33) provided additional training values four months post-PCR 184 

test.  185 

 186 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 24, 2020. ; https://doi.org/10.1101/2020.07.17.20155937doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20155937
http://creativecommons.org/licenses/by/4.0/


 7 

To this end, we compared different probabilistic algorithms – namely, logistic regression 187 

(LOG), linear discriminant analysis (LDA), linear support vector machines (SVM) and 188 

quadratic SVM (SVM2) – suited to ELISA data (Fig. 2C, Materials and Methods). Using ten-189 

fold cross validation and training models on both proteins simultaneously (S and RBD), we 190 

found all methods worked well, with sensitivity >98% and specificity >99.6% (Fig. 2D). On 191 

this metric, LDA gave the highest specificity. Logistic regression had similarly high specificity 192 

on some folds of the training data, but with higher sensitivity. We deliberately considered 193 

balanced and unbalanced folds (where case:control ratios varied between folds) and found 194 

LOG showed the least consistency across strategies, which reflects that the proportion of cases 195 

in a sample directly informs a logistic model’s estimated parameters. SVM methods had lower 196 

specificity than LDA in the training data, but higher sensitivity.  197 

 198 

The standard methods, calling positives by a fixed number of SD above the mean of negative 199 

controls, displayed two extreme behaviors: 3-SD had the highest sensitivity (100%) while 6-200 

SD had the highest specificity, and the lowest sensitivity (Fig. 2D), emphasizing that the 201 

number of SD above the mean is a key parameter, but one which is not learnt in any formal 202 

data-driven manner. Both SVM and LDA offer linear classification boundaries, but we can see 203 

that the probability transition from negative to positive cases is much sharper for LDA (Fig. 204 

2C) – potentially resulting in false negatives when applied to the test data, but giving the model 205 

high specificity in the training data under cross-validation. SVM exhibits a softer probability 206 

transition around its classification boundary, offering a much more nuanced approach to the 207 

points lying in the mid-range of the two proteins. SVM2 creates a nonlinear boundary, but the 208 

cross validation suggested that this didn’t improve performance relative to linear SVM.  209 

 210 

We chose to create ensemble learners, which were an unweighted average of SVM (linear) or 211 

SVM2 (quadratic) and LDA (ENS and ENS2, respectively), as well as a LOG-LDA learner, to 212 

balance the benefits of each approach. The ensemble learners seemed to combine the benefits 213 

of their parent methods (Fig. 2C). Test data points in the lower right region of each plot are the 214 

hardest to classify due to the relative scarcity of observations in this region in the training 215 

dataset and ENS (SVM-LDA) showed the greatest uncertainty in these regions, appropriately. 216 

Given these results, we chose to use ENS (SVM-LDA), with an average sensitivity >99.1% and 217 

specificity >99.8%, to analyze the test data.  218 

 219 
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 8 

When applied to serology data, the output of ENS is the probability of each sample being 220 

antibody-positive. In healthy donor test data, the ENS learner (considering S and RBD 221 

responses in an individual sample) estimated 7.8% (95% CI [4.8-12.5]) positivity in samples 222 

collected in week 21 of 2020 (Fig. 2E, Table S2). This is in contrast to the SD thresholding, 223 

which identified 12% and 10% positivity for S and RBD, respectively at 3 SD, and 8% and 7.5, 224 

respectively at 6 SD at this time point (Table S2). Therefore, apart from providing more 225 

accurate population-level estimates, critical to seroprevalence studies, these approaches have 226 

the potential to provide more nuanced information about titers to an individual after an antibody 227 

test. For example, the test samples with a 30-60% chance of being antibody positive (Fig. 2E) 228 

can be targeted for further investigation. Moreover, such tools are applicable to other clinical 229 

metrics where a continuous scale is dichotomized and all data and code for implementation is 230 

freely available via our online repositories.  231 

 232 

Discussion 233 

 234 

Benefitting from a robust antibody test developed alongside a diagnostic clinical laboratory 235 

responsible for monitoring sero-reactivity during the pandemic, we profiled SARS-CoV-2 236 

antibody responses in three cohorts of clinical interest. COVID-19 patients receiving intensive 237 

care showed the highest anti-viral Ab titers, developing augmented serum IgA and IL-6 with 238 

worsening disease and more advance respiratory and/or gastrointestinal pathology. These 239 

results demonstrate the inflammatory nature of severe COVID-19, and support that cytokine 240 

and isotype-level measures can help patient monitoring22.  241 

 242 

Importantly, our neutralization data illustrated that nearly all SARS-CoV-2 PCR+ individuals 243 

and healthy donors who seroconverted developed neutralizing antibodies capable of preventing 244 

S-mediated cell entry, albeit at different titers. These data support that SARS-CoV-2 infection 245 

generates a functional B cell response in the majority of people6 and serve as a useful 246 

comparator to titers in response to vaccination.  247 

 248 

Outside of the severe disease setting, it is critical to accurately determine who and how many 249 

people have seroconverted for clinical and epidemiological reasons. However, this is 250 

complicated by low titer values, which in some cases – and increasingly with time since 251 

exposure and in mild disease23,24 – overlap outlier values among negative control samples. Test 252 

samples with true low anti-viral titers fall into this range, highlighting the need to better 253 
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 9 

understand the assay boundary. To improve upon strictly thresholding the assay, we developed 254 

probabilistic approaches that characterized uncertainty in individual measures. These and 255 

related approaches provide  more statistically sound measurements at the level of cohorts and 256 

the potential to communicate more nuanced information to individual patients - although the 257 

communication of probability needs to be approached with care to ensure what is described 258 

matches what an individual interprets. Furthermore, such approaches will aid longitudinal 259 

studies of the duration of immunity after SARS-CoV-2 spike-based vaccines and natural 260 

infection and facilitate the comparison of responses between different cohorts.  261 
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 10 

Materials and methods 262 

 263 

Human samples and ethical declaration  264 

Samples from PCR+ individuals and admitted COVID-19 patients (n=105) were collected by 265 

the attending clinicians and processed through the Departments of Medicine and Clinical 266 

Microbiology at the Karolinska University Hospital. Samples were used in accordance with 267 

approval by the Swedish Ethical Review Authority (registration no. 2020-02811). All personal 268 

identifiers were pseudo-anonymized, and all clinical feature data were blinded to the 269 

researchers carrying out experiments until data generation was complete. PCR testing for 270 

SARS-CoV-2 RNA was by nasopharyngeal swab or upper respiratory tract sampling at 271 

Karolinska University Hospital. As viral RNA levels were determined using different qPCR 272 

platforms (with the same reported sensitivity and specificity) between participants, we did not 273 

analyze these alongside other features. PCR+ individuals (n=105) were questioned about the 274 

date of symptom onset at their initial consultation and followed-up for serology during their 275 

care, up to 2 months post-diagnosis. Serum from SARS-CoV-2 PCR+ individuals was collected 276 

6-61 days post-test, with the median time from symptom onset to PCR being 5 days.  In 277 

addition, longitudinal samples from 10 of these patients were collected to monitor 278 

seroconversion and isotype persistence.  279 

 280 

Hospital workers at Karolinska University Hospital were invited to test for the presence of 281 

SARS-CoV-2 RNA in throat swabs in April 2020 and virus-specific IgG in serum in July 2020. 282 

We screened 33 PCR+ individuals to provide additional training data for ML approaches. All 283 

participants provided written informed consent. The study was approved by the National 284 

Ethical Review Agency of Sweden (2020-01620) and the work was performed accordingly. 285 

 286 

Anonymized samples from blood donors (n=100/week) and pregnant women (n=100/week) 287 

were randomly selected from their respective pools by the department of Clinical 288 

Microbiology, Karolinska University Hospital. No metadata, such as age or sex information 289 

were available for these samples in this study. Pregnant women were sampled as part of routine 290 

for infectious diseases screening during the first trimester of pregnancy. Blood donors (n=595) 291 

collected through the same channels a year previously were randomly selected for use as 292 

negative controls. Serum samples from individuals testing PCR+ for endemic coronaviruses, 293 

229E, HKU1, NL63, OC43 (n=20, ECV+) in the prior 2-6 months, were used as additional 294 

negative controls. The use of study samples was approved by the Swedish Ethical Review 295 
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Authority (registration no. 2020-01807). Stockholm County death and Swedish mortality data 296 

was sourced from the ECDC and the Swedish Public Health Agency, respectively. Study 297 

samples are defined in Table 1. 298 

 299 

Serum sample processing 300 

Blood samples were collected by the attending clinical team and serum isolated by the 301 

department of Clinical Microbiology. Samples were anonymized, barcoded and stored at -20oC 302 

until use. Serum samples were not heat-inactivated for ELISA protocols but were heat-303 

inactivated at 56oC for 60 min for neutralization experiments. 304 

 305 

SARS-CoV-2 antigen generation 306 

The plasmid for expression of the SARS-CoV-2 prefusion-stabilized spike ectodomain with a 307 

C-terminal T4 fibritin trimerization motif was obtained from13. The plasmid was used to 308 

transiently transfect FreeStyle 293F cells using FreeStyle MAX reagent (Thermo Fisher 309 

Scientific). The ectodomain was purified from filtered supernatant on Streptactin XT resin 310 

(IBA Lifesciences), followed by size-exclusion chromatography on a Superdex 200 in 5 mM 311 

Tris pH 8, 200 mM NaCl.  312 

 313 

The RBD domain (RVQ – QFG) of SARS-CoV-2 was cloned upstream of a Sortase A 314 

recognition site (LPETG) and a 6xHIS tag, and expressed in 293F cells as described above. 315 

RBD-HIS was purified from filtered supernatant on His-Pur Ni-NTA resin (Thermo Fisher 316 

Scientific), followed by size-exclusion chromatography on a Superdex 200. The nucleocapsid 317 

was purchased from Sino Biological.  318 

 319 

Anti-SARS-CoV-2 ELISA 320 

96-well ELISA plates (Nunc MaxiSorp) were coated with SARS-CoV-2 S trimers, RBD or 321 

nucleocapsid (100 μl of 1 ng/μl) in PBS overnight at 4oC. Plates were washed six times with 322 

PBS-Tween-20 (0.05%) and blocked using PBS-5% no-fat milk. Human serum samples were 323 

thawed at room temperature, diluted (1:100 unless otherwise indicated), and incubated in 324 

blocking buffer for 1h (with vortexing) before plating. Serum samples were incubated 325 

overnight at 4oC before washing, as before. Secondary HRP-conjugated anti-human antibodies 326 

were diluted in blocking buffer and incubated with samples for 1 hour at room temperature. 327 

Plates were washed a final time before development with TMB Stabilized Chromogen 328 

(Invitrogen). The reaction was stopped using 1M sulphuric acid and optical density (OD) 329 
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 12 

values were measured at 450 nm using an Asys Expert 96 ELISA reader (Biochrom Ltd.). 330 

Secondary antibodies (all from Southern Biotech) and dilutions used: goat anti-human IgG 331 

(2014-05) at 1:10,000; goat anti-human IgM (2020-05) at 1:1000; goat anti-human IgA (2050-332 

05) at 1:6,000. All assays of the same antigen and isotype were developed for their fixed time 333 

and samples were randomized and run together on the same day when comparing binding 334 

between PCR+ individuals. Negative control samples were run alongside test samples in all 335 

assays and raw data were log transformed for statistical analyses.  336 

 337 

In vitro virus neutralisation assay 338 

Pseudotyped viruses were generated by the co-transfection of HEK293T cells with plasmids 339 

encoding the SARS-CoV-2 spike protein harboring an 18 amino acid truncation of the 340 

cytoplasmic tail13; a plasmid encoding firefly luciferase; a lentiviral packaging plasmid 341 

(Addgene 8455) using Lipofectamine 3000 (Invitrogen). Media was changed 12-16 hours post-342 

transfection and pseudotyped viruses harvested at 48- and 72-hours, filtered through a 0.45 µm 343 

filter and stored at -80°C until use. Pseudotyped neutralisation assays were adapted from 344 

protocols validated to characterize the neutralization of HIV, but with the use of HEK293T-345 

ACE2 cells. Briefly, pseudotyped viruses sufficient to generate ~100,000 RLUs were incubated 346 

with serial dilutions of heat-inactivated serum for 60 min at 37°C. Approximately 15,000 347 

HEK293T-ACE2 cells were then added to each well and the plates incubated at 37°C for 48 348 

hours. Luminescence was measured using Bright-Glo (Promega) according to the 349 

manufacturer’s instructions on a GM-2000 luminometer (Promega) with an integration time of 350 

0.3s. The limit of detection was at a 1:45 serum dilution.   351 

 352 

IL-6 cytometric bead array 353 

Serum IL-6 levels were measured in a subset of PCR+ serum samples (n=64) using an 354 

enhanced sensitivity cytometric bead array against human IL-6 from BD Biosciences (Cat # 355 

561512). Protocols were carried out according to the manufacturer’s recommendations and 356 

data acquired using a BD Celesta flow cytometer.  357 

 358 

Statistical analysis of SARS-CoV-2 PCR+ data 359 

All univariate comparisons were performed using non-parametric analyses (Kruskal-Wallis, 360 

stratified Mann-Whitney, hypergeometric exact tests and Spearman rank correlation), as 361 

indicated, while multivariate comparisons were performed using linear regression of log 362 

transformed measures and Wald tests. For multivariate tests, all biochemical measures (IL-6, 363 
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PSV ID50 neut., IgG, IgA, IgM) were log transformed to improve the symmetry of the 364 

distribution. As “days since first symptom” and ”days since PCR+ test” are highly correlated, 365 

we cannot include both in any single analysis. Instead, we show results for one, then the other 366 

(Supp. Table 1). 367 

 368 

Probabilistic algorithms for classifying antibody positivity 369 

Prior to analysis, each sample OD was standardized by dividing by the mean OD of ”no sample 370 

controls” on that plate or other plates run on the same day. This resulted in more similar 371 

distributions for 2019 blood donor samples with 2020 blood donors and pregnant volunteers, 372 

as well as smaller coefficients of variation amongst PCR+ COVID patients for both SPIKE and 373 

RBD. 374 

 375 

Our probabilistic learning approach consisted of evaluating different algorithms suited to 376 

ELISA data, which we compared through ten-fold cross validation (CV): logistic regression 377 

(LOG), linear discriminant analysis (LDA), support vector machines (SVM) with a linear 378 

kernel, and quadratic SVM (SVM2). Logistic regression and linear discriminant analysis both 379 

model log odds of a sample being case as a linear equation with a resulting linear decision 380 

boundary. The difference between the two methods is in how the coefficients for the linear 381 

models are estimated from the data. When applied to new data, the output of logistic regression 382 

and LDA is the probability of each new sample being a case. Support vector machines is an 383 

altogether different approach. We opted for a linear kernel, once again resulting in a linear 384 

boundary. SVM constructs a boundary that maximally separates the classes (i.e. the margin 385 

between the closest member of any class and the boundary is as wide as possible), hence points 386 

lying far away from their respective class boundaries do not play an important role in shaping 387 

it. SVM thus puts more weight on points closest to the class boundary, which in our case is far 388 

from being clear. Linear SVM has one tuning parameter C, a cost, with larger values resulting 389 

in narrower margins. We tuned C on a vector of values (0.001, 0.01, 0.5, 1, 2, 5, 10) via an 390 

internal 5-fold CV with 5 repeats (with the winning parameter used for the final model for the 391 

main CV iteration). We also note that the natural output of SVM are class labels rather than 392 

class probabilities, so the latter are obtained via the method of Platt25.  393 

 394 

We considered three strategies for cross-validation: i) random: individuals were sampled into 395 

folds at random, ii) stratified: individuals were sampled into folds at random, subject to 396 

ensuring the balance of cases:controls remained fixed and iii) unbalanced: individuals were 397 
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sampled into folds such that each fold was deliberately skewed to under or over-represent cases 398 

compared to the total sample. We sought a method with performance that was consistently 399 

good across all cross-validation sampling schemes, because the true proportion of cases in the 400 

test data is unknown, and we want a method that is not overly sensitive to the proportion of 401 

cases in the training data. We chose to assess performance using sensitivity and specificity, as 402 

well as consistency. 403 

 404 

Given the good performance of all learners (described in the results), we considered the 405 

prediction surface associated with each SVM, LDA, SVM-LDA ensemble, and the standard 3-406 

SD, 6-SD hard decision boundaries. Note that while methods trained on both proteins can draw 407 

decision contours at any angle, SD methods are limited to vertical or horizontal lines. We can 408 

see that success, or failure, of the SD cut-offs depends on how many positive and negative 409 

cases overlap for a given measure (S or RBD) in the training sample. In the training data the 410 

two classes are nearly linearly separable when each protein is considered on its own, which 411 

explains good performance of 3-SD and 6-SD thresholds. However, the test data contain many 412 

more points in the mid-range of S-RBD, which makes hard cut-offs a problematic choice for 413 

classifying test samples. 414 

 415 

We trained the learners on all 733 training samples and used these to predict the probability of 416 

anti-SARS-CoV-2 antibodies in blood donors and pregnant volunteers sampled in 2020. We 417 

inferred the proportion of the sampled population with positive antibody status each week using 418 

multiple imputation. We repeatedly (1,000 times) imputed antibody status for each individual 419 

randomly according to the ensemble prediction, and then analyzed each of the 1,000 datasets 420 

in parallel, combining inference using Rubin's rules, derived for the Wilson binomial 421 

proportion confidence interval26. 422 

 423 

Data and code availability statement 424 

 425 

Data generated as part of the study, along with custom code for statistical analyses, is openly 426 

available via our GitHub repository: https://github.com/chr1swallace/elisa-paper. 427 
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Figure 1: Anti-SARS-CoV-2 Ab phenotypes in COVID-19 patients, PCR+ individuals, blood donors and pregnant women.
(A) OD450nm optical density for anti-S and -RBD IgM, IgG and IgA responses in SARS-CoV-2 PCR+ individuals (n=105), blood
donors (BD, n=500) and pregnant women (PW, n=500). A small number of controls for each assay are represented by open
circles. (B) Circulating IL-6 levels in serum are associated with disease severity. (C) Anti-viral antibody levels are associated
with disease severity, most pronounced for anti-viral IgA. Anti-S and RBD responses are graphed together. (D) Two discordant
longitudinal profiles of seroconversion and neutralisation capacity are shown in hospitalized COVID-19 patients. (E) In vitro
pseudotyped virus neutralization ID50 titers are associated with disease severity, with the highest titers observed in Cat 3 (ICU)
patients. n=48 SARS-CoV-2 PCR+ individuals were analyzed in duplicate. (E) Comparison of anti-S IgG levels between PCR+
individuals, blood donors (BD) and pregnant women (PW). 3 and 6 SD cut-offs are shown.
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A

Figure 2: Probability-based positivity estimates in blood donors and pregnant women
(A) Distribution of Anti-S and RBD IgG OD values for 595 historical controls (blood donors from Spring 2019). (B) Random sub-sampling
of non-overlapping negative controls illustrates how the range of negative control (C) values can influence a conventional test cut-off,
here 6 SD from the mean of the respective C groups. In the test data, depending on the control values used to set the test threshold for
positivity, SP estimates vary by 40%. Blood donor and pregnant women sample values are used as an example. Anti-S IgG values are
shown. (C) Comparison of probabilistic algorithms suited to ELISA measurements. Logistic regression (LOG), linear discriminant analysis
(LDA), support vector machines (SVM) and quadratic SVM. Learners were trained using anti-S and RBD IgG data from 595 negative
control values and 138 SARS-CoV-2 PCR+ individuals. Ensemble (ENS) learners were generated from the output of SVM-LDA, SVM2-
LDA and LOG-LDA, as described. (D) Comparisons of specificity and sensitivity for the different probabilistic methods (and SD
thresholding) using different cross-validation strategies. (E) ENS probabilities when applied to healthy donor test data, providing a highly
sensitive, specific and consistent multi-dimensional solution to the problem of low responders, and assigning each data point a probability
of being positive.
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Table 1 – Study samples

SARS-CoV-2 PCR+ individuals§ n=105
Females 44 (41.9%)
Males 61 (58.1%)
Median age (years) 53.0 (49-61)

Females 51.5 (48-56.2)
Males 55.0 (49-63)

Non-hospitalized (n=) 53
Females, males 28, 25

Hospitalized patients (n=) 31
Females, males 12, 17

Intensive care (ICU) patients (n=) 21
Females, males 3, 17

SARS-CoV2+ PCR (n=) 105
Sample collection dates March-May 2020

SARS-CoV-2 PCR+ KI hospital staff n=33
Sample collection dates July 2020

Blood donors n=500
Sample collection dates Weeks 17-21 (March-August) 2020

Pregnant women n=500
Sample collection dates Weeks 17-21 (March-May) 2020

Historical blood donors n=595
Sample collection dates March-June 2019

ECV+ donors n=20
Sample collection dates July-December 2019

§Under the care of Karolinska University Hospital
No additional metadata available for any samples

Table 1
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Figure S1: Antibody phenotypes in PCR+ individuals and healthy participants
(A) Study samples used for assay development. (B) Anti-S IgM reactivity observed in a random subset of historical controls. Binding
was confirmed in these samples in an independent experiment. No reproducible IgG reactivity to S trimers of the RBD was observed
across all historical controls in the study. (C) Serial dilution of n=30 random PCR+ individuals. ECV+ (n=4) controls are shown in red.
(D) Spearman’s rank correlation of PCR+ dataset features and antibody levels. DOB - date of birth; d-p SymO - days post-symptom
onset; d-p PCR – days post SARS-CoV-2+ PCR; PSV ID50 – neutralizing titer. (E) Adjusted fold-change compared to Category 1
PCR+ individuals. The effects of age (DOB), sex, days from PCR test were considered.
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