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 2 

Abstract 28 

 29 

Serology is critical for understanding pathogen-specific immune responses, but is fraught with 30 

difficulty, not least because the strength of antibody (Ab) response varies greatly between 31 

individuals and mild infections generally generate lower Ab titers1–3. We used robust IgM, IgG 32 

and IgA Ab tests to evaluate anti-SARS-CoV-2 responses in individuals PCR+ for virus RNA 33 

(n=105) representing different categories of disease severity, including mild cases. All PCR+ 34 

individuals in the study became IgG-positive against pre-fusion trimers of the virus spike (S) 35 

glycoprotein, but titers varied greatly. Elevated IgA, IL-6 and neutralizing responses were 36 

present in intensive care patients. Additionally, blood donors and pregnant women (n=2,900) 37 

sampled throughout the first wave of the pandemic in Stockholm, Sweden, further 38 

demonstrated that anti-S IgG titers differed several orders of magnitude between individuals, 39 

with an increase of low titer values present in the population at later time points4,5. To 40 

improve upon current methods to identify low titers and extend the utility of individual 41 

measures6,7, we used our PCR+ individual data to train machine learning algorithms to assign 42 

likelihood of past infection. Using these tools that assigned probability to individual responses 43 

against S and the receptor binding domain (RBD), we report SARS-CoV-2-specific IgG in 13.7% 44 

of healthy donors five months after the peak of spring COVID-19 deaths, when mortality and 45 

ICU occupancy in the country due to the virus were at low levels. These data further our 46 

understanding of antibody responses to the virus and provide solutions to problems in 47 

serology data analysis. 48 

 49 

Significance statement: 50 

Antibody testing provides critical clinical and epidemiological information during an emerging 51 

disease pandemic. We developed robust SARS-CoV-2 IgM, IgG and IgA antibody tests and 52 

profiled COVID-19 patients and exposed individuals throughout the outbreak in Stockholm, 53 

Sweden, where full societal lockdown was not employed. As well as elucidating several 54 

disease immunophenotypes, our data highlight the challenge of identifying low IgG titer 55 

individuals, who comprise a significant proportion of the population following 56 

mild/asymptomatic infection, especially as antibody titers wane following peak responses. To 57 

provide a solution to this, we used SARS-CoV-2 PCR+ individual data to develop machine 58 

learning approaches that assigned likelihood of past infection to blood donors and pregnant 59 

women, improving the accuracy and utility of individual and population-level Ab measures. 60 

 61 

  62 
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 3 

Introduction  63 

Characterization of the humoral response to nascent SARS-CoV-2 outbreaks is central to 64 

optimizing approaches to the pandemic and further our understanding of human 65 

immunology8,9. Here, we followed the first wave of the pandemic in Stockholm, Sweden, 66 

characterizing Ab responses in severely ill COVID-19 patients and exposed healthy individuals.  67 

 68 

Despite the plethora of Ab testing and phenotyping for SARS-CoV-210–17, consensus on several 69 

key issues remains outstanding. For instance, the majority of data are derived from 70 

commercial, mass-produced kits utilizing spike derivatives (e.g. S1 or S2 domains) or the 71 

nucleocapsid to detect pathogen-specific antibodies10,18,19. Many of these assays suffer from 72 

epitope loss/modification20, cross-reactivity10,21 and suboptimal sensitivity22–25. Here, we 73 

developed highly sensitive and specific ELISA protocols based on in-house native-like pre-74 

fusion-stabilized spike (S) trimers26 and the smaller ACE-2 receptor-binding domain (RBD), 75 

and used them in tandem to evaluate anti-viral Ab responses. As S and the RBD are required 76 

for ACE-2-mediated cell entry, we also examined virus neutralisation capacity and isotype 77 

levels alongside a descriptive set of clinical features.  78 

 79 

Aside from the target antigen, a major consideration for Ab testing concerns setting the assay 80 

cut-off for positivity. Commonly, 3 or 6 standard deviations (SD) from the mean of negative 81 

controls is used27–29, which is highly dependent on a representative set of negative control 82 

sera - significantly affecting seroprevalence estimates and individual clinical management30. 83 

It is important to note that humoral responses within the population are not so much positive 84 

or negative, but rather represent a wide spectrum2, highlighting the need for more 85 

quantitative tools to examine low titer individuals. To obtain accurate seroprevalence 86 

estimates in key community groups, we strictly controlled our assay with a large number of 87 

historical controls (n=595, repeatedly analyzed alongside test samples) and used tandem anti-88 

S and RBD responses from SARS-CoV-2 PCR+ individuals to train machine learning (ML) 89 

algorithms on ELISA measurements.  90 

 91 

Developing these approaches, that assigned likelihood of past infection to each data point 92 

(values and code openly available), we sampled 100 blood donors and 100 pregnant women 93 

per week throughout the outbreak in Stockholm. Both groups are a good proxy for population 94 

health. Furthermore, blood donors serve as an important clinical resource (including for 95 

COVID-19 plasma therapy), while pregnant women require close clinical monitoring with 96 

respect to fetal-maternal health and are known to employ poorly characterized 97 

immunological mechanisms impacting infectious pathology31–33. The study was terminated 98 

when new cases, mortality and ICU occupancy were at low levels. As Sweden did not impose 99 

a strict lockdown in response to the pandemic, these data provide a contrast to comparable 100 

settings where social lockdown was not imposed.  101 

102 
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 4 

Results 103 

 104 

Study samples are detailed in Table 1. 105 

 106 

Antibody test development 107 

We developed ELISA protocols to profile IgM, IgG and IgA specific for a stabilized spike (S) 108 

glycoprotein trimer26, the RBD, and the internal viral nucleocapsid (N). The two S antigens 109 

were produced in mammalian cells (Fig. S1A) and the trimer conformation was confirmed in 110 

each batch by cryo-EM34. A representative subset of study samples (n = 230, Fig S1) was used 111 

for assay development (Fig. S1B). No IgG reactivity was recorded amongst the negative 112 

control samples during test development, although two individuals who were PCR-positive 113 

for endemic coronavirus-positive (ECV+) displayed reproducible IgM reactivity to SARS-CoV-2 114 

N and S, and two 2019 blood donors had low anti-S IgM reactivity (Fig. S1C). Thus, further 115 

investigation is required to establish the contribution of cross-reactive memory and germline 116 

immunoglobulin alleles to SARS-CoV-2 responses35. We did not observe reproducible IgG 117 

reactivity to S or RBD across all 595 historical controls in the study.  118 

 119 

Our assay revealed a greater than 10,000-fold difference in anti-viral IgG titers between Ab-120 

positive individuals when examining serially diluted sera. In SARS-CoV-2 PCR+ individuals, 121 

anti-viral IgG titers were comparable for S (EC50=3,064; 95% CI [1,197 - 3,626]) and N 122 

(EC50=2,945; 95% CI [543 - 3,936]) and lower for RBD [EC50=1,751; 95% CI 966 - 1,595]. A 123 

subset (ca. 10%) of the SARS CoV-2-confirmed individuals in test development did not have 124 

detectable IgG responses against N (Fig. S1D), as previously reported10. Therefore, we did not 125 

explore responses to N further.  126 

 127 

Elevated anti-viral Ab titers are associated with increased disease severity  128 

We next screened all SARS-CoV-2 PCR+ individuals collected for the study (n=105) and 129 

detected potent IgG responses against S in all participants, and against RBD in 97% of persons 130 

(Fig. 1A and S2A). In healthy blood donors and pregnant women, titers varied greatly but were 131 

generally lower (Fig. 1A and S2A). In PCR+ patients, IgM and IgA responses against S and RBD 132 

were generally weaker and more variable between individuals than the IgG response (Fig. 1B 133 

and S2B). Therefore, we sought to investigate whether isotype titers segregated with clinical 134 

features.  135 

 136 

To achieve this, SARS-CoV-2 PCR+ individuals (n=105) were grouped with regards to their 137 

disease severity: Category 1 – non-hospitalized (mild and asymptomatic infections); Category 138 

2 – hospitalized; Category 3 – intensive care (on mechanical ventilation) (Table 1). In all PCR+ 139 

individuals, anti-S and anti-RBD responses were highly correlated (Fig. S2C) and multivariate 140 

analyses revealed that increased anti-viral IgM, IgG and IgA were positively correlated with 141 

disease severity (Supp. Table 1), in line with the lower titers observed in blood donors and 142 

pregnant women, who did not have signs or symptoms of COVID-19 when they were sampled. 143 
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 5 

Severe disease was most associated with virus-specific IgA, suggestive of mucosal disease36, 144 

as well as elevated serum IL-6 (Fig. 1C and S2D), a cytokine that feeds Ab production37–40. IL-145 

6 is dysregulated in several common non-communicable diseases41–43 and during acute 146 

respiratory distress syndrome44, risk factors for COVID-19-associated mortality45,46. 147 

Interestingly, we observed a lack of association between IL-6 and IgM levels, supporting that 148 

levels of the cytokine and IgA mark a protracted, severe clinical course of COVID-19. IgA anti-149 

RBD responses were lower in non-hospitalized and hospitalized females as compared to 150 

males, trending similarly for S (Fig. S3A) and in line with females developing less severe 151 

disease47.  152 

 153 

In our study, PCR+ individual anti-viral IgG levels were maintained two months post-disease 154 

onset/positive PCR test, while IgM and IgA decreased, in agreement with their circulating t1/2 155 

and viral clearance (Fig. S3B). In longitudinal patient samples (sequential serum sampling of 156 

10 PCR+ individuals in the study) where we observed seroconversion, IgM, IgG and IgA peaked 157 

with similar kinetics when all three isotypes developed, although IgA was not always 158 

generated in Category 1 and 2 individuals (Fig 1D). Overall, disease severity showed the most 159 

consistent relationship with any measure and was the primary predictor of Ab levels (Fig. S3C 160 

and D).  161 

 162 

We next characterized the virus neutralizing Ab response, a key parameter for understanding 163 

the potential for protective humoral immune responses and the selection of plasma therapy 164 

donors. Benefitting from a robust in vitro pseudotype virus neutralization assay48, we 165 

measured serum inhibition of viral cell entry and detected neutralizing antibodies in the 166 

serum of all SARS-CoV-2 PCR+ individuals (n=48), and in all except two healthy Ab-positive 167 

donors screened (n=56). Neutralizing responses were not seen in samples before 168 

seroconversion (Fig. 1D) or negative controls. A large range of neutralizing ID50 titers was 169 

apparent, with binding and neutralizing Ab levels being highly correlated (Fig. S3D). The 170 

strongest neutralizing responses were observed in samples from patients on mechanical 171 

ventilation in intensive care (Category 3, g.mean ID50=5,058; 95% CI [2,422 - 10,564]), in-172 

keeping with their elevated Ab response (Fig 1E). Sera from healthy blood donors and 173 

pregnant women also displayed neutralizing responses, but consistent with the binding data 174 

were less potent than those observed in individuals with severe disease (ID50=600; 95% CI 175 

[357 – 1,010] and ID50=350; 95% CI [228 - 538], respectively, Fig. 1F). Across the two antigens 176 

and three isotypes, anti-RBD IgG levels were most strongly correlated with neutralization. 177 

 178 

Probabilistic seroprevalence estimates in blood donors and pregnant women 179 

As Stockholm is a busy urban area and Sweden did not impose strict lockdown in response to 180 

SARS-CoV-2 emergence, we sought to better understand the frequency and nature of anti-181 

viral responses in healthy blood donors and pregnant women sampled throughout the first 182 

outbreak (March 30 - August 23rd 2020) (Fig. 2A). However, critical to accurate individual 183 

measures and seroprevalence estimates is the decision about whether a sample is defined as 184 
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 6 

positive or not. For example, current clinically approved tests use a ratio between a 185 

“representative” positive and negative serum calibrator to determine positivity, although we 186 

show here that these are highly variable.  187 

 188 

To improve our understanding of the assay boundary, we repeatedly analyzed a large number 189 

of historical (SARS-CoV-2-negative) controls (blood donors from the spring of 2019, n=595) 190 

alongside test samples throughout the study. We considered the spread of negative values 191 

critical, since the use of a small and unrepresentative set of controls can lead to an incorrectly 192 

set threshold and errors in the seroprevalence measurement. This is illustrated by the random 193 

sub-sampling of non-overlapping groups of negative controls, resulting in a 40% difference in 194 

the seroprevalence estimate (Fig. S4A). Seroprevalence in the healthy cohorts according to 195 

conventional 3 and 6 SD cut-offs are shown in Fig. 2C.  196 

 197 

The fact that many healthy donor test samples had optical densities between the 3 and 6 SD 198 

cut-offs for both or a single antigen (Fig. 2B and C), highlights the problem of assigning case 199 

to low responder values. Therefore, to exploit individual titers and improve our statistical 200 

estimates, we used the data from PCR+ individuals (Fig. 1) and our negative controls (Fig. S4B) 201 

to train machine learning (ML) algorithms to assign likelihood of past infection. A small cohort 202 

of seropositive individuals among Karolinska University Hospital staff (n=33) provided 203 

additional low titer training values four months post SARS-CoV-2+ PCR (Fig. S4C).  204 

 205 

After comparing different methods for this purpose (Materials & Methods), we found that 206 

logistic regression (LOG) achieved the highest sensitivity, while linear discriminant analysis 207 

(LDA) showed the best specificity. LOG and LDA both model log odds of a sample being case 208 

as a linear equation with a resulting linear decision boundary, but differ in how the 209 

coefficients for the linear models are estimated from the data. When applied to the Ab 210 

response data, the output of LOG and LDA is the probability of each new sample being case. 211 

Therefore, we generated an equal-weighted ensemble learner (ENS) from the output of LOG 212 

and LDA that maximized sensitivity, specificity and consistency across different cross-213 

validation strategies (Fig. 2D and S4D). While weekly rates varied (S Table 2), the ENS learner 214 

identified 13.7% seroprevalence in healthy blood donors and pregnant women at the last 215 

sampling week (Supp. Table 2). Importantly, ENS identified 155 (5.3%) blood donor and 216 

pregnant women measures to be associated with some degree of uncertainty, encouraging 217 

follow-up investigation in given cases (Fig. 2E and S4E).  218 

 219 

Finally, to model population changes in seroprevalence over time, we developed and 220 

validated a cut-off-independent Bayesian ML framework able to share information between 221 

sampling weeks49 (Fig. 2F and Materials & Methods). Using this model on the combined BD 222 

and PW data, we found an almost linear increase in seroprevalence since the start of the 223 

pandemic (Fig. 2E), consistent with continued virus spread in the Stockholm population during 224 

the study period. The results mirrored the results obtained using ENS, yielding a 225 
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 7 

seroprevalence of 13.2% (95% Bayesian CI [10.1-16.8]) at the end of the study period (Supp. 226 

Table 3). We propose that these tools and related approaches be used to facilitate future 227 

antibody measures and better characterize Ab test uncertainty at individual and population 228 

levels. 229 

   230 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 19, 2020. ; https://doi.org/10.1101/2020.07.17.20155937doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20155937
http://creativecommons.org/licenses/by/4.0/


 8 

Discussion  231 

 232 

Serology remains the gold standard for estimating previous exposure to pathogens and 233 

benefits from a large historical literature. Although the concept of herd immunity is based 234 

upon the study of antibodies, worryingly, there is no standardization for the many SARS-CoV-235 

2 Ab tests currently available. Globally, hospital staff and health authorities are struggling 236 

with test choices, negatively impacting individual outcomes and efforts to contain the 237 

pandemic. 238 

  239 

Benefitting from a robust antibody test developed alongside a diagnostic clinical laboratory 240 

responsible for monitoring sero-reactivity during the pandemic, we profiled SARS-CoV-2 Ab 241 

responses in three cohorts of clinical interest. COVID-19 patients receiving intensive care 242 

showed the highest anti-viral Ab titers, developing augmented serum IgA and IL-6 with 243 

worsening disease. Isotype-level measures may assist COVID-19 clinical management and 244 

determine, for example, whether all critically ill patients develop class-switched mucosal 245 

responses to SARS-CoV-2, potentially informing lung therapeutic delivery50,51. Our 246 

neutralization data showed that nearly all SARS-CoV-2 PCR+ individuals and healthy donors 247 

who seroconvert, develop neutralizing Ab capable of preventing S-mediated cell entry in vitro.  248 

 249 

Outside of the severe disease setting, it is critical to accurately determine who and how many 250 

people have seroconverted. This is complicated by low titer values, which in some cases - and 251 

increasingly with time since exposure - overlap outlier values among negative control 252 

samples. Test samples with true low anti-viral titers will, therefore, fall into this range of weak 253 

responders as the B lymphocyte response contracts following viral clearance, highlighting the 254 

need to better understand the assay boundary in multiple dimensions. As future tests begin 255 

to survey individual Ab responses to a multitude of antigens in parallel, the ML approaches 256 

presented here will enable the identification of disease sub-types and facilitate longitudinal 257 

measures.  258 

 259 

We applied these tools to blood donors and pregnant women, two good sentinels for 260 

population health, although they are not enriched for groups with high risk for SARS-CoV-2 261 

infection, such as healthcare workers and public transportation employees, where 262 

seroprevalence may be higher. Blood donors are generally working age, active and mobile 263 

members of society with a good understanding of health, and pregnant women in Sweden 264 

will have been advised to take precautions against infectious diseases through their 265 

practitioners. Interestingly, in our study, both groups showed a similar seroprevalence during 266 

the time period analyzed. Tracking these cohorts over time, we modelled seroprevalence 267 

changes at the population level. We found the steep climb in Ab positivity at the start of the 268 

pandemic (as the virus emerged) to increase at a slower rate during subsequent weeks, 269 

reaching nearly 14% by five months from the peak of spring 2020 COVID-19 deaths in the 270 

country. These data indicate that serological herd immunity to the initial outbreak was not 271 
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 9 

achieved in these cohorts. We terminated the study in line with the decreasing caseload and 272 

number of fatalities in Sweden52, despite on-going virus spread in the Stockholm population. 273 

 274 

Given the uniqueness of the public health response to the pandemic in the country53, these 275 

data may inform the management of this and future pandemics elsewhere. Our data also 276 

highlight high inter-individual variability in anti-viral Ab responses and offer solutions for how 277 

to handle this at individual and population levels.  278 

  279 
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 10 

Materials and methods 280 

 281 

Human samples and ethical declaration  282 

Samples from PCR+ individuals and admitted COVID-19 patients (n=105) were collected by 283 

the attending clinicians and processed through the Departments of Medicine and Clinical 284 

Microbiology at the Karolinska University Hospital. Samples were used in accordance with 285 

approval by the Swedish Ethical Review Authority (registration no. 2020-02811). All personal 286 

identifiers were pseudo-anonymized, and all clinical feature data were blinded to the 287 

researchers carrying out experiments until data generation was complete. PCR testing for 288 

SARS-CoV-2 RNA was by nasopharyngeal swab or upper respiratory tract sampling at 289 

Karolinska University Hospital. As viral RNA levels were determined using different qPCR 290 

platforms (with the same reported sensitivity and specificity) between participants, we did 291 

not analyze these alongside other features. PCR+ individuals (n=105) were questioned about 292 

the date of symptom onset at their initial consultation and followed-up for serology during 293 

their care, up to 2 months post-diagnosis. Serum from SARS-CoV-2 PCR+ individuals was 294 

collected 6-61 days post-test, with the median time from symptom onset to PCR being 5 days.  295 

In addition, longitudinal samples from 10 of these patients were collected to monitor 296 

seroconversion and isotype persistence.  297 

 298 

Hospital workers at Karolinska University Hospital were invited to test for the presence of 299 

SARS-CoV-2 RNA in throat swabs in April 2020 and virus-specific IgG in serum in July 2020. We 300 

screened 33 PCR+ individuals to provide additional training data for ML approaches. All 301 

participants provided written informed consent. The study was approved by the National 302 

Ethical Review Agency of Sweden (2020-01620) and the work was performed accordingly. 303 

 304 

Anonymized samples from blood donors (n=100/week) and pregnant women (n=100/week) 305 

were randomly selected from their respective pools by the department of Clinical 306 

Microbiology, Karolinska University Hospital. No metadata, such as age or sex information 307 

were available for these samples in this study. Pregnant women were sampled as part of 308 

routine for infectious diseases screening during the first trimester of pregnancy. Blood donors 309 

(n=595) collected through the same channels a year previously were randomly selected for 310 

use as negative controls. Serum samples from individuals testing PCR+ for endemic 311 

coronaviruses, 229E, HKU1, NL63, OC43 (n=20, ECV+) in the prior 2-6 months, were used as 312 

additional negative controls. The use of study samples was approved by the Swedish Ethical 313 

Review Authority (registration no. 2020-01807). Stockholm County death and Swedish 314 

mortality data was sourced from the ECDC and the Swedish Public Health Agency, 315 

respectively. Study samples are defined in Table 1. 316 

 317 

Serum sample processing 318 

Blood samples were collected by the attending clinical team and serum isolated by the 319 

department of Clinical Microbiology. Samples were anonymized, barcoded and stored at -320 
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20oC until use. Serum samples were not heat-inactivated for ELISA protocols but were heat-321 

inactivated at 56oC for 60 min for neutralization experiments. 322 

 323 

SARS-CoV-2 antigen generation 324 

The plasmid for expression of the SARS-CoV-2 prefusion-stabilized spike ectodomain with a 325 

C-terminal T4 fibritin trimerization motif was obtained from26. The plasmid was used to 326 

transiently transfect FreeStyle 293F cells using FreeStyle MAX reagent (Thermo Fisher 327 

Scientific). The ectodomain was purified from filtered supernatant on Streptactin XT resin (IBA 328 

Lifesciences), followed by size-exclusion chromatography on a Superdex 200 in 5 mM Tris pH 329 

8, 200 mM NaCl.  330 

 331 

The RBD domain (RVQ – QFG) of SARS-CoV-2 was cloned upstream of a Sortase A recognition 332 

site (LPETG) and a 6xHIS tag, and expressed in 293F cells as described above. RBD-HIS was 333 

purified from filtered supernatant on His-Pur Ni-NTA resin (Thermo Fisher Scientific), followed 334 

by size-exclusion chromatography on a Superdex 200. The nucleocapsid was purchased from 335 

Sino Biological.  336 

 337 

Anti-SARS-CoV-2 ELISA 338 

96-well ELISA plates (Nunc MaxiSorp) were coated with SARS-CoV-2 S trimers, RBD or 339 

nucleocapsid (100 μl of 1 ng/μl) in PBS overnight at 4oC. Plates were washed six times with 340 

PBS-Tween-20 (0.05%) and blocked using PBS-5% no-fat milk. Human serum samples were 341 

thawed at room temperature, diluted (1:100 unless otherwise indicated), and incubated in 342 

blocking buffer for 1h (with vortexing) before plating. Serum samples were incubated 343 

overnight at 4oC before washing, as before. Secondary HRP-conjugated anti-human 344 

antibodies were diluted in blocking buffer and incubated with samples for 1 hour at room 345 

temperature. Plates were washed a final time before development with TMB Stabilized 346 

Chromogen (Invitrogen). The reaction was stopped using 1M sulphuric acid and optical 347 

density (OD) values were measured at 450 nm using an Asys Expert 96 ELISA reader (Biochrom 348 

Ltd.). Secondary antibodies (all from Southern Biotech) and dilutions used: goat anti-human 349 

IgG (2014-05) at 1:10,000; goat anti-human IgM (2020-05) at 1:1000; goat anti-human IgA 350 

(2050-05) at 1:6,000. All assays of the same antigen and isotype were developed for their 351 

fixed time and samples were randomized and run together on the same day when comparing 352 

binding between PCR+ individuals. Negative control samples were run alongside test samples 353 

in all assays and raw data were log transformed for statistical analyses.  354 

 355 

In vitro virus neutralisation assay 356 

Pseudotyped viruses were generated by the co-transfection of HEK293T cells with plasmids 357 

encoding the SARS-CoV-2 spike protein harboring an 18 amino acid truncation of the 358 

cytoplasmic tail26; a plasmid encoding firefly luciferase; a lentiviral packaging plasmid 359 

(Addgene 8455) using Lipofectamine 3000 (Invitrogen). Media was changed 12-16 hours post-360 

transfection and pseudotyped viruses harvested at 48- and 72-hours, filtered through a 0.45 361 
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µm filter and stored at -80°C until use. Pseudotyped neutralisation assays were adapted from 362 

protocols validated to characterize the neutralization of HIV, but with the use of HEK293T-363 

ACE2 cells. Briefly, pseudotyped viruses sufficient to generate ~100,000 RLUs were incubated 364 

with serial dilutions of heat-inactivated serum for 60 min at 37°C. Approximately 15,000 365 

HEK293T-ACE2 cells were then added to each well and the plates incubated at 37°C for 48 366 

hours. Luminescence was measured using Bright-Glo (Promega) according to the 367 

manufacturer’s instructions on a GM-2000 luminometer (Promega) with an integration time 368 

of 0.3s. The limit of detection was at a 1:45 serum dilution.   369 

 370 

IL-6 cytometric bead array 371 

Serum IL-6 levels were measured in a subset of PCR+ serum samples (n=64) using an enhanced 372 

sensitivity cytometric bead array against human IL-6 from BD Biosciences (Cat # 561512). 373 

Protocols were carried out according to the manufacturer’s recommendations and data 374 

acquired using a BD Celesta flow cytometer.  375 

 376 

Statistical analysis of SARS-CoV-2 PCR+ data 377 

All univariate comparisons were performed using non-parametric analyses (Kruskal-Wallis, 378 

stratified Mann-Whitney, hypergeometric exact tests and Spearman rank correlation), as 379 

indicated, while multivariate comparisons were performed using linear regression of log 380 

transformed measures and Wald tests. For multivariate tests, all biochemical measures (IL-6, 381 

PSV ID50 neut., IgG, IgA, IgM) were log transformed to improve the symmetry of the 382 

distribution. As “days since first symptom” and ”days since PCR+ test” are highly correlated, 383 

we cannot include both in any single analysis. Instead, we show results for one, then the other 384 

(Supp. Table 1). 385 

 386 

Probabilistic seroprevalence estimations 387 

Prior to analysis, each sample OD was standardized by dividing by the mean OD of ”no sample 388 

controls” on that plate or other plates run on the same day. This resulted in more similar 389 

distributions for 2019 blood donor samples with 2020 blood donors and pregnant volunteers, 390 

as well as smaller coefficients of variation amongst PCR+ COVID patients for both SPIKE and 391 

RBD. 392 

 393 

We employed two distinct probabilistic strategies for estimating seroprevalence without 394 

thresholds, each developed independently. Our machine learning approach consisted of 395 

evaluating different algorithms suited to ELISA data, which we compared through ten-fold 396 

cross validation (CV): logistic regression (LOG), linear discriminant analysis (LDA), and support 397 

vector machines (SVM) with a linear kernel. Logistic regression and linear discriminant 398 

analysis both model log odds of a sample being case as a linear equation with a resulting linear 399 

decision boundary. The difference between the two methods is in how the coefficients for 400 

the linear models are estimated from the data. When applied to new data, the output of 401 

logistic regression and LDA is the probability of each new sample being a case. Support vector 402 
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machines is an altogether different approach. We opted for a linear kernel, once again 403 

resulting in a linear boundary. SVM constructs a boundary that maximally separates the 404 

classes (i.e. the margin between the closest member of any class and the boundary is as wide 405 

as possible), hence points lying far away from their respective class boundaries do not play 406 

an important role in shaping it. SVM thus puts more weight on points closest to the class 407 

boundary, which in our case is far from being clear. Linear SVM has one tuning parameter C, 408 

a cost, with larger values resulting in narrower margins. We tuned C on a vector of values 409 

(0.001, 0.01, 0.5, 1, 2, 5, 10) via an internal 5-fold CV with 5 repeats (with the winning 410 

parameter used for the final model for the main CV iteration). We also note that the natural 411 

output of SVM are class labels rather than class probabilities, so the latter are obtained via 412 

the method of Platt54.  413 

 414 

We considered three strategies for cross-validation: i) random: individuals were sampled into 415 

folds at random, ii) stratified: individuals were sampled into folds at random, subject to 416 

ensuring the balance of cases:controls remained fixed and iii) unbalanced: individuals were 417 

sampled into folds such that each fold was deliberately skewed to under or over-represent 418 

cases compared to the total sample. We sought a method that worked equally well across all 419 

cross-validation schemes, as the true proportion of cases in the test data is unknown and so 420 

a good method should not be overly sensitive to the proportion of cases in the training data. 421 

We found most methods worked well and chose to create an ensemble (ENS) method 422 

combining the method with the highest sensitivity (LOG) with the highest specificity (LDA), 423 

defined as an unweighted average of the probabilities generated under both.  424 

 425 

We trained the ensemble learner on all 733 training samples and predicted the probability of 426 

anti-SARS-CoV-2 antibodies in blood donors and pregnant volunteers sampled in 2020. The 427 

ENS learner had average sensitivity > 99.1% and average specificity >99.8%. We inferred the 428 

proportion of the sampled population with positive antibody status each week using multiple 429 

imputation. We repeatedly (1,000 times) imputed antibody status for each individual 430 

randomly according to the ensemble prediction, and then analyzed each of the 1,000 datasets 431 

in parallel, combining inference using Rubin's rules, derived for the Wilson binomial 432 

proportion confidence interval55. 433 

 434 

Our Bayesian approach is explained in detail in Christian et al49. Briefly, we used a logistic 435 

regression over anti-RBD and -S training data to model the relationship between the ELISA 436 

measurements and the probability that a sample is antibody-positive. We adjusted for the 437 

training data class proportions and used these adjusted probabilities to inform the 438 

seroprevalence estimates for each time point. Given that the population seroprevalence 439 

cannot increase dramatically from one week to the next, we constructed a prior over 440 

seroprevalence trajectories using a transformed Gaussian Process, and combined this with 441 

the individual class-balance adjusted infection probabilities for each donor to infer the 442 

posterior distribution over seroprevalence trajectories. 443 
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 444 

Data and code availability statement 445 

 446 

Data generated as part of the study, along with custom code for statistical analyses, is openly 447 

available via our GitHub repositories: https://github.com/MurrellGroup/  448 

DiscriminativeSeroprevalence/ and https://github.com/chr1swallace/seroprevalence-paper. 449 
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Figure 1: Anti-SARS-CoV-2 Ab phenotypes in COVID-19 patients, PCR+ individuals, blood donors and pregnant
women (A) Raw optical density (OD) anti-S and -RBD IgG responses are shown in SARS-CoV-2 PCR+ individuals
(n=105), blood donors (BD, n=1,500) and pregnant women (PW, n=1,400). Controls, C, represent n=595 blood donors
from spring 2019. Conventional 6 SD cut-offs shown by dotted lines. (B) IgM, IgG and IgA responses against S and RBD in
PCR+ individuals (n=105), with a limited number of controls for each assay represented by open circles. (C) Anti-viral Ab
levels are associated with disease severity, most pronounced for IgA. COVID-19 patients in the ICU category were
mechanically ventilated. Anti-S and RBD responses are graphed together. (D) Two discordant longitudinal profiles of
seroconversion and neutralisation capacity are shown. (E) In vitro pseudotyped virus neutralization ID50 titers are
associated with disease severity, with the highest titers observed in Cat 3 (ICU) patients. Forty-eight SARS-CoV-2 PCR+
individuals analyzed in duplicate. (F) Comparison of neutralization ID50 titers between PCR+ individuals (n=48), BD (n=28)
and PW (n=28), all analyzed in duplicate. Bars represent the geometric mean and P values are from a two-tailed Mann-
Whitney test.
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A

Figure 2: Probability-based seroprevalence estimates in Stockholm during the initial outbreak
(A) Study sample collection intervals are shown alongside the 14-day COVID-19 death rate per million inhabitants
in Sweden and relevant countries for comparison. (B) Log-transformed un-normalized OD measurements from all
BD and PW in the study. Conventional 3 (dotted red line) and 6 SD (solid red line) cut-offs are shown; calculated
from n=595 historical controls; 100 random negative controls (C, with 95% CI of the median) are shown for each
assay. (C) The percentage anti-S and -RBD IgG positive per sampling week in BD and PW show according to 3 or
6 SD cut-offs. (D) S and RBD responses from PCR+ individuals were used to train different machine learning
algorithms to assign likelihood of past infection. We created an ensemble learner (ENS) from the output of logistic
regression and linear discriminant analysis, providing a highly sensitive, specific and consistent multi-dimensional
solution to the problem of weak reactors, and assigning each data point a probability of being positive.
Conventional 3 and 6 SD cut-offs are shown for each antigen, with probabilities assigned to selected points. (E)
Heatmap of assigned ENS probabilities for the top 35 BD and PW values per week, with each square representing
an individual. (F) Seroprevalence (SP) estimates in Stockholm modelled over time in BD and PW using a cut-off-
independent Bayesian framework.
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Table 1 – Study samples

SARS-CoV-2 PCR+ individuals§ n=105

Females n=44 (41.9%)

Males n=61 (58.1%)

Median age (years) 53.0 (49-61)

Females 51.5 (48-56.2)

Males 55.0 (49-63)

Non-hospitalized n=53

Females, males 28, 25

Hospitalized patients n=31

Females, males 12, 17

Intensive care (ICU) patients n=21

Females, males 3, 17

SARS-CoV2+ PCR n=105

Sample collection dates March-August 2020

SARS-CoV-2 PCR+ KI hospital staff n=33

Sample collection dates July 2020

Blood donors n=1,500

Sample collection dates Weeks 14-34 (March-August) 2020

Pregnant women n=1,400

Sample collection dates Weeks 17-34 (April-August) 2020

Historical blood donors n=595

Sample collection dates April-June 2019

ECV+ donors n=20

Sample collection dates July-December 2019

§Under the care of Karolinska University Hospital
No additional metadata available for any samples

Table 1
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Figure S1: Anti-SARS-CoV-2 ELISA protocol development
(A) Trimeric S and RBD were expressed in 293F cells and purified as described. (B) A random subset of PCR+ individuals,
negative controls and BD were used to validate the assays for the three isotypes, these were individuals with confirmed
SARS CoV-2 infection (n=36, from a range of disease severity categories); blood donors from the spring of 2020 (n=100);
two sets of negative controls, blood donors from the spring of 2019 (n=75) and individuals PCR+ for endemic coronaviruses
(ECV+) (n=20). (C) Two ECV+ donors, K2 and K4, showed reproducible IgM binding to S. Testing of another subset of
historical controls (n=75) for a similar observation, two additional individuals were found to show IgM binding to S. (D)
Serial dilutions of PCR+ participant serum are shown (in a representative sample, n=40) of titrated individuals for anti-S and
anti-RBD IgG.
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Figure S2: Antibody phenotypes in PCR+ individuals and healthy participants
(A) Log10 OD450 anti-S and -RBD IgG responses in SARS-CoV-2 PCR+ individuals and healthy donors, with
a 6 SD cut-off shown calculated from all 595 negative control values. (B) Raw OD450 isotypic responses in
PCR+ individuals. A limited number of negative controls are depicted by clear circles. (C) Anti-S vs -RBD
responses in PCR+ individuals are highly correlated. (D) Elevated anti-viral Ab and serum IL-6 are associated
with disease severity in PCR+ individuals, IgM and IgG.
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Figure S3: Antibody phenotypes in PCR+ individuals
(A) Antibody responses according to sex for anti-S and –RBD IgA. (B) IgM and IgA titers declined with time
from first symptom/SARS-CoV-2+ PCR. IgG levels were maintained during this time. P values from a
Spearman rank correlation test. (C) Spearman’s rank correlation of PCR+ dataset features and antibody levels.
DOB - date of birth; d-p SymO - days post-symptom onset; d-p PCR – days post SARS-CoV-2+ PCR; PSV
ID50 – neutralizing titer (D) Adjusted fold-change for dataset features in PCR+ individuals compared to category
1. The effects of age (DOB), sex, days from PCR test were considered.
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A

Figure S4: Considerations and methods for SP estimates in BD and PW
(A) Random sub-sampling of non-overlapping negative controls illustrates how the range of negative control
values can influence the conventional test cut-off. Depending on the control values used to set the test threshold
for positivity, seroprevalence (SP) estimates vary by 40%. 600 BD and PW values are used as an example. Anti-
S IgG values are shown. (B) The distribution of negative control serum values for anti-S and –RBD IgG. (C) As
ML methods improve with additional data, we analyzed a small cohort (n=33) of PCR+ Karolinska University
hospital staff (HS) for S and RBD IgG responses. n=32 historical controls, C, were analyzed alongside. (D)
Comparison of logistic regression, linear discriminant analysis and the ENS learner, showing the training data
set and BD and PW test samples. ENS was trained using 595 negative control values and 138 PCR+
individuals. (E) ENS identified several study BD and PW to have uncertain measurements when S and RBD
responses were considered, facilitating individual re-testing.
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Supplementary Table 1 COVID-19 patient multivariate analysis

IL.6 IL.6
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0808524 0.7558497 1.4299833 0.1589412 (Intercept) 1.3337536 0.7900611 1.6881651 0.0972562
Days.FFS -0.0138028 0.0092132 -1.4981536 0.1403806 Days.PCR -0.0179820 0.0091674 -1.9615105 0.0550817
Severity2 0.6751029 0.2725780 2.4767330 0.0166860 Severity2 0.5419503 0.2784989 1.9459695 0.0569693
Severity3 2.0818073 0.3139723 6.6305441 0.0000000 Severity3 1.7879936 0.3174311 5.6326988 0.0000007
SexF -0.0048214 0.2490798 -0.0193569 0.9846335 SexF -0.0418102 0.2496296 -0.1674892 0.8676226
Years 0.0006194 0.0120141 0.0515519 0.9590912 Years -0.0002995 0.0127464 -0.0234942 0.9813443

checking robustness with 2 outliers removed checking robustness with 2 outliers removed
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.5938320 0.6085196 0.9758633 0.3340249 (Intercept) 0.7050756 0.6754753 1.0438215 0.3014906
Days.FFS -0.0048689 0.0073761 -0.6600921 0.5123499 Days.PCR -0.0046541 0.0079825 -0.5830368 0.5624379
Severity2 0.6314650 0.2134847 2.9578929 0.0047955 Severity2 0.5212971 0.2297047 2.2694227 0.0275018
Severity3 1.5427576 0.2627737 5.8710497 0.0000004 Severity3 1.3678120 0.2739547 4.9928394 0.0000073
SexF -0.1881632 0.2020666 -0.9311939 0.3564134 SexF -0.1798193 0.2123891 -0.8466500 0.4011457
Years 0.0047880 0.0095726 0.5001784 0.6192350 Years 0.0039051 0.0107259 0.3640784 0.7173046

PSV.ID50 PSV.ID50
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5012562 1.8338893 2.4544864 0.0193831 (Intercept) 5.2752610 1.6958032 3.1107742 0.0035845
Days.FFS -0.0150209 0.0222419 -0.6753408 0.5040267 Days.PCR -0.0282459 0.0190912 -1.4795302 0.1474633
Severity2 1.4888195 0.5062151 2.9410804 0.0058489 Severity2 1.4647193 0.4544978 3.2227205 0.0026504
Severity3 1.4175205 1.0591033 1.3384157 0.1896430 Severity3 1.9419796 0.7912711 2.4542533 0.0189450
SexF -0.1325308 0.4944022 -0.2680627 0.7902707 SexF 0.1871493 0.4244939 0.4408763 0.6618680
Years 0.0484696 0.0266019 1.8220360 0.0772562 Years 0.0378735 0.0253337 1.4949856 0.1433991

checking robustness with 1 outlier removed checking robustness with 1 outlier removed
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5186312 1.7467553 2.5868713 0.0142822 (Intercept) 5.3454881 1.5958448 3.3496292 0.0019089

Days from first symptom Days from SARS-CoV-2+ PCR test
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Days.FFS -0.0063506 0.0215775 -0.2943131 0.7703621 Days.PCR -0.0197376 0.0183073 -1.0781255 0.2881490
Severity2 1.2195131 0.4986724 2.4455196 0.0199661 Severity2 1.2106216 0.4404721 2.7484639 0.0092996
Severity3 1.4434429 1.0088452 1.4307873 0.1618932 Severity3 1.9906995 0.7447805 2.6728673 0.0112300
SexF -0.0004480 0.4750254 -0.0009431 0.9992532 SexF 0.3062324 0.4024577 0.7609059 0.4516688
Years 0.0403811 0.0256244 1.5758858 0.1245916 Years 0.0297967 0.0240715 1.2378418 0.2237872

S.IgG S.IgG
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.4338183 0.1572226 -2.7592622 0.0070039 (Intercept) -0.3943762 0.1612688 -2.4454589 0.0163490
Days.FFS 0.0056162 0.0018643 3.0124437 0.0033555 Days.PCR 0.0055996 0.0019357 2.8928024 0.0047551
Severity2 0.2636915 0.0582979 4.5231746 0.0000183 Severity2 0.2736918 0.0600135 4.5605006 0.0000155
Severity3 0.1553421 0.0760363 2.0429981 0.0439450 Severity3 0.1924181 0.0764924 2.5155192 0.0136010
SexF -0.1061612 0.0537241 -1.9760431 0.0511786 SexF -0.0761660 0.0536223 -1.4204181 0.1588299
Years 0.0025710 0.0026281 0.9782727 0.3305330 Years 0.0021211 0.0027262 0.7780124 0.4385365

RBD.IgG RBD.IgG
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5916830 0.2306770 -2.5649851 0.0119546 (Intercept) -0.4864143 0.2323367 -2.0935746 0.0390193
Days.FFS 0.0034375 0.0027353 1.2566928 0.2120811 Days.PCR 0.0026259 0.0027887 0.9416332 0.3488201
Severity2 0.3166891 0.0855347 3.7024646 0.0003657 Severity2 0.3090881 0.0864603 3.5749131 0.0005579
Severity3 0.3183027 0.1115605 2.8531842 0.0053580 Severity3 0.3412088 0.1102011 3.0962391 0.0025904
SexF -0.1630434 0.0788241 -2.0684471 0.0414354 SexF -0.1373444 0.0772525 -1.7778632 0.0786949
Years 0.0021569 0.0038560 0.5593721 0.5772819 Years 0.0009867 0.0039277 0.2512189 0.8021991

S.IgM S.IgM
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.8300628 0.3562796 -2.3298074 0.0220285 (Intercept) -0.7023442 0.3495024 -2.0095550 0.0473764
Days.FFS -0.0117670 0.0042247 -2.7852943 0.0065067 Days.PCR -0.0140527 0.0041950 -3.3498589 0.0011693
Severity2 0.4216830 0.1321079 3.1919588 0.0019404 Severity2 0.3945068 0.1300616 3.0332313 0.0031359
Severity3 0.1256475 0.1723047 0.7292168 0.4677418 Severity3 0.1480218 0.1657746 0.8929099 0.3742101
SexF -0.1603918 0.1217434 -1.3174576 0.1909928 SexF -0.0547174 0.1162104 -0.4708481 0.6388518
Years 0.0144308 0.0059556 2.4230696 0.0173698 Years 0.0113959 0.0059083 1.9287769 0.0568080
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RBD.IgM RBD.IgM
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.0387929 0.4130592 -2.5148767 0.0136629 (Intercept) -0.8655000 0.3973594 -2.178129 0.0319255
Days.FFS -0.0138623 0.0048980 -2.8302083 0.0057240 Days.PCR -0.0172033 0.0047694 -3.606981 0.0005008
Severity2 0.5057259 0.1531617 3.3019087 0.0013732 Severity2 0.4913299 0.1478708 3.322698 0.0012758
Severity3 0.1944795 0.1997646 0.9735434 0.3328641 Severity3 0.2406897 0.1884739 1.277045 0.2047656
SexF -0.2399048 0.1411454 -1.6996999 0.0926033 SexF -0.1394645 0.1321230 -1.055566 0.2939009
Years 0.0171226 0.0069047 2.4798392 0.0149844 Years 0.0133309 0.0067174 1.984546 0.0501421

S.IgA S.IgA
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.2343625 0.3626807 -0.6461952 0.5197793 (Intercept) -0.3012762 0.3728826 -0.8079654 0.4211724
Days.FFS -0.0097902 0.0043006 -2.2764744 0.0251627 Days.PCR -0.0098957 0.0044757 -2.2110117 0.0294865
Severity2 0.7529383 0.1344814 5.5988283 0.0000002 Severity2 0.6714710 0.1387621 4.8390072 0.0000052
Severity3 1.0042292 0.1754004 5.7253524 0.0000001 Severity3 0.9000684 0.1768642 5.0890358 0.0000019
SexF -0.2661040 0.1239307 -2.1472001 0.0344358 SexF -0.2758111 0.1239844 -2.2245634 0.0285297
Years -0.0057710 0.0060626 -0.9519015 0.3436685 Years -0.0041292 0.0063036 -0.6550579 0.5140475

RBD.IgA RBD.IgA
Estimate Std. Error t value Pr(>|t|) Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.2710503 0.4094717 -0.6619513 0.5096753 (Intercept) -0.2267285 0.4122576 -0.5499679 0.5836598
Days.FFS -0.0180531 0.0048554 -3.7181129 0.0003466 Days.PCR -0.0196414 0.0049483 -3.9693438 0.0001418
Severity2 0.5614106 0.1518315 3.6975911 0.0003718 Severity2 0.4589973 0.1534149 2.9918687 0.0035499
Severity3 0.9648132 0.1980296 4.8720661 0.0000046 Severity3 0.8788819 0.1955404 4.4946297 0.0000200
SexF -0.4683261 0.1399195 -3.3471098 0.0011886 SexF -0.4433399 0.1370767 -3.2342474 0.0016890
Years -0.0023814 0.0068447 -0.3479188 0.7287046 Years -0.0029664 0.0069692 -0.4256455 0.6713496
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Supplementary Table 2 ENS  learner estimates

Type Week N Estimate lower.ci upper.ci
Blood donors Wk14 100 0.0105199999999998 0.00186267413688987 0.0571124452130694
Blood donors Wk17 100 0.0599300000000007 0.0277067084436435 0.124818422697639
Blood donors Wk18 100 0.0302500000000004 0.0103369986968445 0.0852198537817097
Blood donors Wk19 100 0.0819899999999993 0.0420758061055538 0.153692847546347
Blood donors Wk20 100 0.0888300000000009 0.046518592804669 0.163045245940735
Blood donors Wk21 100 0.0606200000000007 0.0279295559709151 0.126590435953148
Blood donors Wk22 100 0.0518599999999995 0.0223967600811795 0.115503146139443
Blood donors Wk23 100 0.103139999999999 0.0568755500979782 0.179860591957947
Blood donors Wk24 100 0.0491799999999993 0.0208070659558649 0.111824427597925
Blood donors Wk25 100 0.0645900000000004 0.0299472449446712 0.133780545972474
Blood donors Wk30 100 0.14169 0.0843021051364242 0.22839998832092
Blood donors Wk31 100 0.088070000000001 0.0460906749148218 0.161798798516266
Blood donors Wk32 100 0.13474 0.07991254449231 0.218260850763384
Blood donors Wk33 100 0.122090000000001 0.0711556354845674 0.201571777003771
Blood donors Wk34 100 0.181310000000001 0.116915378458736 0.270315226797433
Pregnant volunteers Wk17 100 0.02785 0.00854309329510716 0.0869623409679927
Pregnant volunteers Wk18 100 0.0593100000000001 0.0263543448650153 0.128056041293278
Pregnant volunteers Wk19 100 0.0779199999999988 0.0392832595316614 0.148676738526427
Pregnant volunteers Wk20 100 0.0613500000000007 0.028401055595685 0.12750757406586
Pregnant volunteers Wk21 100 0.090440000000002 0.0482644667169825 0.163152425697498
Pregnant volunteers Wk22 100 0.0205599999999997 0.00565556676979313 0.0719026340509295
Pregnant volunteers Wk23 100 0.0725799999999993 0.0355650368403294 0.142429663079253
Pregnant volunteers Wk24 100 0.0902100000000021 0.0481585199364663 0.162703789795822
Pregnant volunteers Wk25 100 0.0705999999999996 0.0338472442954616 0.141419016311214
Pregnant volunteers Wk30 100 0.13676 0.0802505417653763 0.22339634766703
Pregnant volunteers Wk31 100 0.10084 0.0549469530519067 0.17785049838699
Pregnant volunteers Wk32 100 0.1025 0.055496584850798 0.181656768852696
Pregnant volunteers Wk33 100 0.0988799999999996 0.0537530085744113 0.174890088243812
Pregnant volunteers Wk34 100 0.0921200000000004 0.0482559484435156 0.168784935290148
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Combined Wk14 100 0.0105199999999998 0.00186267413688987 0.0571124452130694
Combined Wk17 200 0.0438900000000003 0.0227358905689 0.0830537591523687
Combined Wk18 200 0.0447800000000002 0.0231970950185039 0.084702634433189
Combined Wk19 200 0.0799549999999993 0.0494561100547252 0.126754068380355
Combined Wk20 200 0.0750900000000004 0.0456186256545027 0.121183433120669
Combined Wk21 200 0.075530000000001 0.0462139889421297 0.121081899484158
Combined Wk22 200 0.0362099999999997 0.01767721923418 0.0727338989258544
Combined Wk23 200 0.0878600000000001 0.0555074115333125 0.136347182613079
Combined Wk24 200 0.0696949999999998 0.0417896481831635 0.11401710633583
Combined Wk25 200 0.067595 0.0396097669899812 0.113025523482377
Combined Wk30 200 0.139225 0.0959384551539447 0.197769606826778
Combined Wk31 200 0.0944549999999999 0.0605819855281929 0.144356990235433
Combined Wk32 200 0.11862 0.07965512726089 0.173061192324389
Combined Wk33 200 0.110484999999999 0.0737258058315149 0.162359527188935
Combined Wk34 200 0.136715 0.0949178112379659 0.192992997104021
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Supplementary Table 3 Bayesian framework esimates

Weeks low_95 CI low_70 CI median high_70 CI high_95 CI
14 0.003601532073810209 0.010015687500615324 0.02436939594002145 0.043456945152414495 0.05616568875771716
15 0.013309857927117485 0.020660967591371423 0.032365176467805026 0.04686039254667125 0.057377820643647284
16 0.02043808572781734 0.029802245381973035 0.040635466265145775 0.05175183854151783 0.060108358798232966
17 0.028769918494488296 0.03854036071416008 0.0474550179123166 0.056517830868095725 0.06401279669503077
18 0.037835374202155374 0.04509305165735621 0.052891120720793466 0.061614679337302775 0.06926247627139652
19 0.045462175043307455 0.050609840723507125 0.05808259302264415 0.0667054486902604 0.07438983764874765
20 0.04989302616185007 0.054706576021972896 0.06245970619115278 0.07129624957262747 0.07830821520536643
21 0.0521467423382186 0.05791442812480507 0.06609758175045291 0.07540895724676397 0.08350881740670542
22 0.055047827319195435 0.06082934394956948 0.06969771188215743 0.07893154646022037 0.08722346458242437
23 0.05711768032568647 0.0637732596810297 0.07335796512117096 0.08312494379587673 0.09144734645121028
24 0.06014606597769269 0.06715508580434398 0.07787976883612677 0.08778705973980627 0.09682553258559098
25 0.06299793120194423 0.07069250124677944 0.0826946388601972 0.09317717560756934 0.10369128433164672
26 0.06602989547112409 0.07508000767946306 0.08853855012377168 0.09994937727503311 0.11182458833601834
27 0.06985908821576527 0.08017185227745025 0.0943598228711556 0.10855805993002561 0.11926306095722854
28 0.07476922509955214 0.08558359989814068 0.10022639992693635 0.11541477895810452 0.1271732638528928
29 0.08082697654221173 0.09275025575500671 0.10674528554019073 0.1217751009883986 0.1344831422782898
30 0.08646878995507364 0.09813325123006669 0.11267222418259133 0.12725420939287801 0.13926953632738423
31 0.09151610720807343 0.10385128682754727 0.11794062384310447 0.13236742750330485 0.14463687104722203
32 0.09644471072863017 0.10818117279519804 0.12286691608479247 0.1371665138984982 0.1507955221582018
33 0.09949317715060758 0.11140308251196819 0.12768748654593065 0.14278530800957942 0.15741777628373163
34 0.10113899378615351 0.11440405570419197 0.1318447325503226 0.14907986575631751 0.16784211995757845
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