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Abstract  

Background—There is a controversy whether the response of both sexes to cardiac 

resynchronization therapy (CRT) is similar. Optimal CRT delivery requires procedure planning.  

Objective—To apply machine learning (ML) to develop a prediction model for CRT response.  

Methods—Participants from the SmartDelay Determined AV Optimization (SMART-AV) trial 

(n=741; age, 66 ±11 yrs; 33% female; 100% NYHA III-IV; 100% EF≤35%) were randomly split 

into training & testing (80%; n=593), and validation (20%; n=148) samples. The entropy 

balancing procedure was used to match for the means of 30 covariates in male and female 

groups. Baseline clinical, ECG, echocardiographic and biomarker characteristics, and left 

ventricular (LV) lead position (43 variables) were included in 6 ML models (random forests, 

convolutional neural network, lasso, adaptive lasso, plugin lasso, elastic net, ridge, and logistic 

regression). A composite of freedom from death and heart failure hospitalization and a >15% 

reduction in LV end-systolic volume index at 6-months post-CRT was the endpoint.  

Results—The primary endpoint was met by 337 patients (45.5%). Weighting resulted in a 

perfect balance of means of covariates in men and women. After reweighting, CRT response for 

women versus men was similar (OR 1.53; 95%CI 0.88-2.65; P=0.131). The adaptive lasso model 

was more accurate than class I ACC/AHA guidelines criteria (AUC 0.759; 95%CI 0.678-0.840 

versus 0.639; 95%CI 0.554-0.722; P<0.0001), well-calibrated, and parsimonious (19 predictors; 

nearly half are potentially modifiable).  

Conclusions—After balancing for covariates, both sexes similarly benefit from CRT. ML 

predicts short-term CRT response and thus may help with CRT procedure planning. 

Keywords: cardiac resynchronization therapy, women, sex 
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Abbreviations: 

AV=atrioventricular 

ACEI/ARB=angiotensin converting enzyme inhibitor or angiotensin II receptor blocker 

CM=cardiomyopathy 

CRT=cardiac resynchronization therapy 

EF=ejection fraction 

HF=heart failure 

LBBB=left bundle branch block 

LV=left ventricular 

ML=machine learning 

NYHA=New York Heart Association 

SMART-AV=SmartDelay Determined Atrioventricular Optimization 

RCT=randomized controlled trial 

BSA=body surface area 

OR=odds ratio 
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Introduction 

Cardiac resynchronization therapy (CRT) is an established treatment for patients with 

systolic heart failure (HF) and ventricular dyssynchrony.1 However, despite proven benefit, 

nearly a third of CRT recipients are considered to be “non-responders”.2 Furthermore, although 

many previous studies have suggested that female sex is associated with a higher responder rate, 

there is still  controversy: some studies determined that the response of both sexes to CRT is 

similar.3-5  

Guided left ventricular (LV) lead placement considering the timing of LV activation and 

electrical delay6, together with dynamic atrioventricular (AV) optimization7, can potentially 

reduce the CRT non-response rate. Previous analysis of the SMART-AV (SmartDelay 

Determined AV Optimization: A Comparison to Other AV Delay Methods Used in Cardiac 

Resynchronization Therapy) study showed an enhanced response to AV optimization in women 

as compared to men.8 Furthermore, the SMART-AV study suggested a strategy for using 

measures of LV electrical delay at implantation to guide LV lead placement.9 However, a 

complex interaction between cardiac veins anatomy and cardiomyopathy substrate can make 

guided LV lead placement procedure technically difficult. Prediction of the probability of a CRT 

response can possibly help with the allocation of resources and CRT procedure planning.  

Machine learning (ML) has taken hold in a number of fields to improve risk prediction as 

compared to traditional methods.10 Several studies have applied ML to address the clinical 

challenge of CRT patient selection and showed that ML algorithms perform better than 

guidelines-recommended QRS duration and bundle branch block (BBB) morphology.11-14 

However, all previous ML-prediction models targeted the long-term (≥ 1 year) CRT outcomes. 
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At present, there is no short-term (6-month) CRT response prediction tool that can be used to 

plan CRT implantation and delivery.  

We conducted the current study with two goals: (1) determine whether the response of 

both sexes to CRT is similar, and (2) use ML to predict short-term (6-month) response to CRT.  

Methods  

The authors used the deidentified SMART-AV study dataset, provided by the executive 

study committee. The Oregon Health & Science University Institutional Review Board reviewed 

the current study and determined the deidentified nature of the dataset. We provided open-source 

code for statistical data analysis at https://github.com/Tereshchenkolab/statistics. 

Study population 

The SMART-AV was a randomized, multicenter, single-blinded clinical trial15, 16 that sought 

to determine whether AV delay optimization would improve CRT response at six months post-

implant. The trial enrolled New York Heart Association (NYHA) class III-IV HF patients with 

left ventricular ejection fraction (LVEF)≤35% despite optimal medical therapy, and QRS 

duration ≥120 ms, in sinus rhythm. HF patients who were in complete heart block, could not 

tolerate pacing at VVI-40-RV for up to two weeks, or previously received CRT were excluded. 

Enrollment was completed from May 2008 through December 2009. In the current study, we 

excluded participants with missing candidate predictor variables and lost to follow-up (Figure 1). 

Of the 980 randomized SMART-AV participants, 741 CRT recipients were included in this 

study. 
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Candidate predictor variables 

At the enrollment visit, baseline clinical characteristics data were collected, which included 

medical history, current cardiovascular evaluation (NYHA class) and medications list, the 6-

minute walk test, quality of life (Minnesota Living with Heart Failure Questionnaire), and blood 

draw for biomarkers.15, 16 We calculated estimated glomerular filtration rate (eGFR) using the 

chronic kidney disease (CKD) Epidemiology Collaboration equation (CKD-EPI).17 LV lead 

location was selected at the discretion of the implanting physician. Baseline ECG and 

echocardiogram were recorded post-implant (no biventricular pacing).15, 16 We normalized LV 

volumes and dimensions by body surface area (BSA).  

The study endpoint 

In the current study, we defined the primary endpoint as a composite of freedom from death 

and HF hospitalization and a >15% reduction7-9, 18 in LV end-systolic volume index (LVESVI) at 

six months of follow-up. LVESV was the primary endpoint in the SMART-AV trial.15, 16 A 

single core laboratory performed all echocardiographic measurements in a blinded fashion. 

Statistical analysis 

Unadjusted comparisons 

Normally distributed continuous variables were compared using the t-test and reported as 

mean ± standard deviation (SD). Variables with a skewed distribution were compared using the 

Wilcoxon rank-sum test and reported as the median and interquartile range (IQR). Categorical 

variables were compared using the χ2 test. Univariate logistic regression compared the odds of 

CRT response. 
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Adjusted analysis of sex differences in CRT response 

Previous multivariate analysis of the SMART-AV data8 adjusted only for key sex differences 

in baseline characteristics. Previous regression analyses comparing CRT outcomes in men and 

women faced limitations due to the relatively small proportion of female participants and, 

therefore, were not able to conduct comprehensive adjustment for all known sex differences. To 

compensate for the noticeable difference in sex subgroup fractions and baseline characteristics of 

men and women in the study8, we used entropy balancing, a data matching procedure that allows 

reweighting a dataset such that the covariate distributions in the reweighted male group match 

the covariate moments in female group.19 We matched for the means of 30 covariates 

(Supplemental Table 1). 

Prediction of the endpoint using machine learning 

We randomly split the study population into two non-overlapping samples: training & testing 

(80%; n=593), and validation (20%; n=148). Considering future clinical implementation, we 

included routinely available predictor variables that describe baseline clinical, ECG, 

echocardiographic and biomarker characteristics, and LV lead position (43 variables, Table 1). 

We fitted eight different models (random forests20, convolutional neural network21, lasso, 

adaptive lasso, plugin lasso, elastic net, ridge, and logistic regression).  

To train the random forests algorithm, we arranged the data in a randomly sorted order and 

tuned the number of subtrees and number of variables to randomly investigate at each split. We 

calculated both out-of-bag error (tested against training data subsets that are not included in 

subtree construction) and a validation error (tested against the validation data) to find the model 

with the highest testing accuracy.  
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We trained the convolutional neural network with 20 hidden layers, using 500 iterations with 

a training factor 2 and 4 normalization parameters. The network was comprised of 3 layers, 64 

neurons per layer, and 901 synapse weights.  

The family of lasso (least absolute shrinkage and selection operator) models employed ten-

fold cross-validation in the training & testing sample. In lasso model, cross-validation selected 

the tuning parameter λ that minimized the out-of-sample deviance. The adaptive lasso performed 

multistep cross-validation, performing the second cross-validation step among the covariates 

selected in the first cross-validation step. The plugin lasso used partialing-out estimators to 

determine which covariates belong in the model, achieving an optimal bound on the number of 

covariates it included.22 The elastic net permitted retention of correlated covariates.23 In the ridge 

model, the penalty parameter used squared terms and kept all predictors in the model. 

We validated the predictive accuracy of the models by comparing the area under the receiver 

operator curve (ROC AUC) in the validation sample. To assess calibration, we compared the 

observed and predicted proportions within the groups formed by the Hosmer-Lemeshow test24, 

and used the calibration belt25 to examine the relationship between out-of-sample estimated 

probabilities and observed CRT response rates. For the lasso family of models, we also 

calculated the out-of-sample deviance and deviance ratio. 

We compared the performance of the selected model to the current 2013 American College 

of Cardiology Foundation/American Heart Association class I guideline criteria (QRS>150 ms 

and the presence of LBBB).26  

Statistical analysis was performed using STATA MP 16.1 (StataCorp LP, College Station, 

TX). P-value < 0.05 was considered statistically significant.  
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Results 

Study population 

The SMART-AV study population characteristics in men and women are vastly different, as 

shown in Table 1 and have been previously reported elsewhere.8 At baseline, men were more 

likely white, with ischemic cardiomyopathy, AV block, a lower LVEF, and higher LVESVI, 

LVEDVI, and NT-proBNP. Women more likely had LBBB and used aldosterone antagonists. 

There was no difference in LV lead location between men and women.  

Comparison of the response of men and women to CRT 

The primary endpoint was met by 337 patients (45.5%), 134 were women (55.6% response), 

and 203 were men (40.6% response); P<0.0001. Out of 404 participants who failed to respond, 

13 died (10 men and 3 women), 75 participants (53 men and 22 women) were hospitalized 

because of HF, and 316 (334 men and 82 women) participants failed to achieve a volumetric 

response.   

Univariate logistic regression analysis showed that women had an 80% higher probability for 

composite CRT response (Odds ratio (OR) 1.83; 95%CI 1.34-2.50); P<0.0001). Weighting 

resulted in a perfect balance of means of covariates in men and women (Supplemental Table 1). 

After reweighting, there was no significant difference in CRT response for women as compared 

to men (OR 1.53; 95%CI 0.88-2.65; P=0.131).  

Prediction of CRT response  

In tuning the random forests algorithm, we observed that both out-of-bag error and validation 

error stabilized after 300 iterations at 30-35% (Supplemental Figure 1), and we conservatively 

chose 500 subtrees. The minimum validation error was observed for 7 variables, and we chose 7 
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variables to investigate at each split randomly. The final random forests model reported 26% 

error in validation sample; it accurately predicted freedom from composite CRT response 

endpoint in 71 out of 83 participants (specificity 85.5%), and correctly predicted CRT response 

in 38 out of 65 individuals (sensitivity 58.5%), having a positive predictive value of 76% and 

negative predictive value of 72.4%. The single most important predictor was diabetes (Figure 2), 

which, together with demographic characteristics (age, sex, race) and other comorbidities 

(hypertension, smoking) comprised six the most important predictors.  

A comparison of the prediction models’ performance is shown in Table 2. The convolutional 

neural network demonstrated the highest predictive accuracy in the training & testing sample, 

with a final error of only 6%. However, the calibration of the convolutional neural network 

model was unsatisfactory (Hosmer-Lemeshow test P<0.0001; Supplemental Figure 2), and 

predictive accuracy in the validation sample did not differ from the lasso family of models.  

Several models (lasso, adaptive lasso, elastic net, ridge, and logistic regression) demonstrated 

similar fit and predictive accuracy both in training & testing, and validation samples (Table 2), 

which was significantly higher than current class I clinical guidelines (AUC 0.639; 95%CI 

0.554-0.722), P<0.0001. Figure 3 shows the cross-validation function and selected λ for each 

model. Only a few models (logistic regression, adaptive lasso, and plugin lasso) showed 

satisfactory out-of-sample calibration (Figure 4). Ultimately, we selected the adaptive lasso 

model as the most accurate, well-calibrated, and parsimonious (19 predictors listed in 

Supplemental Table 2).  

In the adaptive lasso model, the most important predictors (Figure 5) characterized 

dyssynchrony (ventricular conduction type, QRS duration), underlying disease substrate 

(cardiomyopathy type, primary prevention indication), and modifiable characteristics (NT-
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proBNP, systolic blood pressure), including PR interval. Nonischemic cardiomyopathy, female 

sex, primary prevention indication, history of valvular heart disease and cancer, and higher QRS 

duration, systolic blood pressure, LVEDVI, 6-min walk distance, eGFRCKD-EPI, and age were 

associated with CRT response. Non-LBBB, AV block, and higher NT-proBNP, CRP, PR 

interval, LVEF, LVESDI, and weight were associated with non-response. Participants in the 5th 

quantile as compared to those in the 1st quantile had 14-fold higher odds of composite CRT 

response (Figure 6). The online calculator is freely available at www.ecgpredictscd.org  

Discussion 

There are two main findings in our study. First, we showed that both sexes equally benefit 

from CRT. Frequently observed better CRT outcomes in women than men are explained by the 

sex differences in baseline characteristics, including the disease substrate, dyssynchrony, 

comorbidities, and HF treatment. Second, using the ML approach, we developed a parsimonious 

model for the prediction of CRT response that is comprised of routinely available baseline 

clinical, ECG, and echocardiographic characteristics  - measures of the disease substrate, 

dyssynchrony, and comorbidities. Importantly, many included predictors could be potentially 

modifiable. The model included both the PR interval and AV block, suggesting the importance 

of the dynamic AV optimization. Developed in this study, the short-term CRT response 

prediction model opens an avenue for a future randomized controlled trial, testing CRT 

implantation planning strategy, incorporating targeted lead placement and dynamic AV 

optimization programming.7, 9  
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The response of both sexes to CRT is similar 

Our study adds to the significant body of evidence indicating that fundamentally, men and 

women respond to CRT similarly.3-5 Men and women have substantial differences in underlying 

disease substrate, degree, and characteristics of dyssynchrony3, a spectrum of comorbidities, and 

HF treatment. Therefore, many previous studies concluded that CRT is more beneficial for 

women than men.8 Similar trends in the most predictive baseline comorbidities are seen in the 

landmark MADIT-CRT study, supporting the significance of our observation and the modeling 

done in the current study.27, 28 Importantly, our study utilized an appropriate analytical approach 

and demonstrated that both sexes benefit from CRT similarly. We used entropy balancing – the 

advanced matching analytical approach19 that efficiently balanced sex differences. Conclusion 

about the similar benefit for both sexes is important; it demystifies sex-specific CRT response 

and removes ground for sex inequality. However, our finding of similar benefit from CRT for 

both sexes does not negate sex differences in dyssynchrony, HF substrate, and response to pacing 

therapy8, 29, which have to be studied further. 

Prediction of composite CRT Response in a Short-Term – perspective for planning LV lead 

placement and CRT delivery 

It has been previously shown that increasing degrees of interventricular (rather than 

intraventricular) dyssynchrony is expected to result in improved rates of clinical CRT response.30 

Previous analysis of the SMART-AV study showed that optimally timed AV delay provides an 

incremental benefit to the substantial interventricular conduction delay7, 9, suggesting that both 

LV lead and right ventricular (RV) lead placement should target maximizing RV-LV delay. Pre-

procedural planning may involve expensive and time-consuming cardiac imaging. Our risk score 

can predict the probability of the short-term composite CRT response and, therefore, can help to 
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preserve resources while improving clinical outcomes. Careful pre-procedural planning would be 

particularly critical for CRT candidates with a moderate or low probability of CRT response, 

especially if they have modifiable factors. Notably, both the baseline PR interval and the 

presence of AV block were selected by the adaptive lasso model as essential predictors in the 

model, indicating the likely benefit of dynamic AV optimization.  

Consistently with prior studies9, 11-14, we confirmed that ML could improve patient 

selection for CRT therapy beyond current guidelines. The strength of ML algorithms is the 

ability to capture complex interactions.31 Several prior studies have used ML to predict CRT 

response. Kalscheur et al analyzed 595 COMPANION NYHA III/IV patients,11 Cikes et al 

studied 1106 MADIT-CRT NYHA class ≤ II patients,14 Feeny et al evaluated 470 NYHA I-IV 

patients from an observational cohort, and Hu et al retrospectively analyzed 990 predominately 

NYHA II-III patients from a single-center cohort.32 Of note, all previous studies considered long-

term CRT benefits, answering a question of CRT candidate selection. In contrast, our prediction 

model is focusing on a short-term CRT response and can help planning the CRT delivery 

strategy, in addition to selecting the most appropriate CRT candidate. Distinguishing those at 

high risk of non-response could alert cardiologists to a specific group that requires special 

attention within the first six months after CRT implantation. 

Presently response and outcomes following CRT implantation vary significantly2, making 

it crucial to improve patient selection for CRT. Improved identification of CRT responders could 

help to avoid CRT implantation in patients unlikely to benefit and to disproportionately incur 

undue harm and risk. Better prediction of CRT non-responders could be used to identify patients 

that may be better served with earlier consideration of advanced HF therapies, including 
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mechanical circulatory support and transplantation rather than CRT, which would carry a lower 

yield of clinical improvement.  

In this study, an absence of sustained ventricular tachyarrhythmia (primary prevention 

indication) was an important predictor of CRT response. This finding is consistent with previous 

studies that showed the antiarrhythmic effect of CRT and reversed electrical remodeling33, which 

can be facilitated by the autonomic nervous system response.34  

A comparison of ML models and selection of the “best” model also deserves discussion. We 

observed similar accuracy in all but one (plugin lasso) models, leaving seven models for 

consideration. However, only two of them (logistic regression and adaptive lasso) demonstrated 

satisfactory calibration. The parsimonious model (adaptive lasso) won because of (1) 

convenience (19 versus 43 predictors), and (2) approach to feature importance ranking. The most 

important predictors in the random forests model describe comorbidities and demographic 

characteristics, which unlikely to be modified (age, sex, race, diabetes, hypertension, smoking). 

In contrast, the most important predictors in the adaptive lasso model provide a meaningful 

characterization of the disease substrate and its electrophysiology (a type of cardiomyopathy and 

conduction abnormality, QRS duration, history of sustained ventricular tachyarrhythmia or 

cardiac arrest, NT-proBNP and systolic blood pressure), which can guide CRT delivery.  

Strengths and Limitations 

SMART-AV is a large multicenter randomized control trial with careful phenotyping that 

included blinded analysis of echocardiograms and biomarkers in core laboratories, and 

appropriate follow-up, providing an opportunity to study composite CRT response. A strength of 

the present study was the use of a composite endpoint of clinical outcomes (death, HF 

hospitalization) and volumetric remodeling. However, limitations of the study have to be taken 
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into account. The study population was predominantly men, although this is characteristic and 

similar to other CRT trials. We limited candidate predictor variables by currently widely 

available and did not include novel ECG measures of dyssynchrony that can potentially further 

improve prediction.18, 35 

Conclusion 

The response of both sexes to CRT is similar, as outcome disparities between sex subgroups 

are substantially explained by differences in disease substrate, characteristics of dyssynchrony, 

comorbidities, and HF treatment. ML predicts short-term CRT response and thus may help with 

CRT procedure planning.  
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Table 1. Baseline Clinical Characteristics in Men and Women 

Characteristics All (n=741) Women (n=241) Men (n=500) p-value 
Age(SD), y 66.0(11.0) 64.8(11.4) 66.5(10.7) 0.046 
White, n(%) 575(77.6) 172(71.4) 403(80.6) 0.005 
LVEF(SD), % 27.5(8.7) 28.5(8.7) 27.0(8.7) 0.031 
Weight(SD), kg 87.4(20.8) 79.2(19.0) 91.3(20.4) <0.0001 
Height(SD), cm 171.6(10.3) 161.9(7.7) 176.3(7.7) <0.0001 
Body mass index (SD), kg/m2 29.6(6.2) 30.2(6.7) 29.3(6.0) 0.086 
BP systolic(SD), mmHg 124.5(20.9) 125.9(23.1) 123.9(19.8) 0.246 
BP diastolic(SD), mmHg 71.4(12.7) 69.9(12.9) 72.0(12.6) 0.036 
Ischemic cardiomyopathy Hx, n(%) 426(57.5) 90(37.3) 336(67.2) <0.0001 
Primary prevention, n(%) 589(79.5) 211(87.6) 378(75.6) <0.0001 
Smoking Hx(current or former), n(%) 461(62.2) 113(46.9) 348(72.6) <0.0001 
Hypertension Hx, n(%) 528(71.3) 173(71.8) 355(71.0) 0.220 
Diabetes Hx, n(%) 289(39.0) 93(38.6) 196(39.2) 0.873 
Revascularization Hx, n(%) 380(51.3) 76(31.5) 304(60.8) <0.0001 
Autoimmune disease Hx, n(%) 19.0(2.6) 9(3.7) 10(2.0) 0.162 
Sleep apnea Hx, n(%) 89(12.0) 18(7.5) 71(14.2) 0.008 
Cancer Hx, n(%) 67(9.0) 24(10.0) 43(8.6) 0.546 
Renal disease Hx, n(%) 119(16.1) 25(10.4) 94(18.8) 0.003 
COPD Hx, n(%) 109(14.7) 25(10.4) 84(16.8) 0.021 
Valve disease Hx, n(%) 40(5.4) 12(5.0) 28(5.6) 0.726 
Pacemaker implant Hx, n(%) 15(2.0) 0 15(3.0) 0.007 
AV block, n(%) 138(18.6) 19(7.9) 119(23.8) <0.0001 
PR interval(SD), ms 198.2(50.4) 183.2(36.7) 205.4(54.6) <0.0001 
Heart rate(SD), bpm 71.3(12.5) 72.8(12.7) 70.5(12.4) 0.021 
QRS duration(SD), ms 151.8(19.9) 151.3(17.1) 152.0(21.1) 0.6410 
Conduction disease:LBBB, n(%) 552(74.5) 204(84.7) 348(69.6) 

<0.0001 
RBBB 81(10.9) 13(5.4) 68(13.6) 
IVCD 86(11.6) 18(7.5) 68(13.6) 

RBBB+left hemiblock 22(3.0) 6(2.5) 16(3.2) 
NYHA class               II, n (%) 21(2.8) 5(2.1) 16(3.2) 

0.588 III 698(94.2) 230(95.4) 468(93.6) 
IV 22 (3.0) 6(2.5) 16(3.2) 

6 minute walk(SD), m 268.2(124.7) 236.5(114.6) 283.5(126.6) <0.0001 
Quality of life(SD), points 47.2(25.0) 49.3(24.6) 46.2(25.2) 0.110 
Potassium(SD), mmol/L 4.3(0.5) 4.2(0.5) 4.3(0.5) 0.001 
Sodium(SD), mmol/L 138.7(3.1) 138.9(3.1) 138.6(3.2) 0.224 
C-reactive protein(SD), ng/mL 6,438(4,425) 6,467(4,261) 6,423(4,506) 0.898 
NT-proBNP median(IQR), pmol/L 1691(863-3952) 1534(807-3635) 1802(899-4174) 0.035 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.16.20155424doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20155424


22 

eGFRCKD-EPI (SD), mL/min/1.73 m² 63.6(22.8) 64.5(22.6) 63.2(22.9) 0.484 
Use of ACEI/ARB, n (%) 485(65.5) 156(64.7) 329(65.8) 0.774 
Use of beta blocker, n(%) 681(91.9) 223(92.5) 458(91.6) 0.663 
Use of aldosterone antagonist, n(%) 262(35.4) 99(41.1) 163(32.6) 0.024 
LV end systolic volume index (SD), mL/m2 64.7(29.8) 58.1(25.2) 68.0(31.0) <0.0001 
LV end diastolic volume index (SD), mL/m2 87.0(32.0) 79.3(27.3) 90.7(33.5) <0.0001 
LV end systolic diameter index (SD), cm/m2 2.8(0.5) 2.8(0.5) 2.7(0.5) 0.031 
LV end diastolic diameter index (SD), cm/m2 3.2(0.5) 3.2(0.5) 3.1(0.5) 0.004 
Lead location Apical n(%) 98(13.2) 30(12.5) 68(13.6) 

0.493            Basal 47(6.3) 12(5.0) 35(7.0) 
           Mid 596(80.4) 199(82.6) 397(79.4) 
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Table 2. Development and validation of composite CRT response prediction tool 

  Training & testing sample (N=593) Validation sample (N=148) 
Group Model Deviance Deviance 

ratio 
Number of 
predictors 

ROC AUC 
(95%CI) 

P-value Deviance Deviance 
ratio 

N  
predictors 

ROC AUC (95%CI) P-value 

A
ll 

pa
rti

ci
pa

nt
s 

Ridge 1.201 0.129 43 0.753(0.714-0.792) 

0.277 

1.164 0.151 43 0.778(0.699-0.857) 

0.368 

Elastic net 1.196 0.133 30 0.751(0.711-0.790) 1.163 0.152 30 0.769(0.688-0.849) 
Lasso 1.187 0.140 29 0.752(0.713-0.792) 1.155 0.158 29 0.770(0.690-0.850) 
Adaptive lasso 1.184 0.142 19 0.751(0.712-0.790) 1.169 0.148 19 0.759(0.678-0.840) 
Logistic regress 1.147 0.168 43 0.768(0.730-0.805) 1.135 0.172 43 0.774(0.697-0.851) 
CNN - - 43 0.979(0.966-0.993) <0.0001 - - 43 0.759(0.682-0.837) 
Random forest - - 43 0.642(0.600-0.683) <0.0001 - - 43 0.720(0.649-0.791) 
Plugin lasso 1.295 0.061 2 0.655(0.613-0.696) <0.0001 1.296 0.055 2 0.667(0.582-0.751) 0.028 

All coefficients are penalized except plugin lasso (postselection) 
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Figure Legends 

Figure 1: Flowchart of study cohort development.  

Figure 2. Importance scores of predictor variables in the random forests model. 

Figure 3. Cross-validation (CV) function (the mean deviance in the CV samples) is plotted over 

the search grid for the lasso penalty parameter λ on a reverse logarithmic scale for (A) lasso, (B) 

adaptive lasso, (C) elastic net, (D) ridge models. The first λ tried is on the left, and the last λ tried 

is on the right.  

Figure 4. The calibration belt with 80% and 95% confidence intervals on the external sample 

shows the observed and predicted CRT response proportions in (A) logistic regression, (B) lasso, 

(C) adaptive lasso, (D) plugin lasso, (E) elastic net, and (F) ridge models for all participants.  

Figure 5. Importance of the selected predictors in the adaptive lasso model. The most important 

predictors were added to the model early.  

Figure 6. Probabilities of composite CRT response by quantiles of the adaptive lasso model. 
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Figure 1.  
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Figure 2: 
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Figure 3: 
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Figure 4: 
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Figure 5: 
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Figure 6: 
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Supplemental Table 1. The balance table of means of covariates before and after weighting  

 Before balancing After balancing 
Characteristics means Women (n=241) Men (n=500) Women (n=241) Men (n=500) 
Age, y 64.78 66.53 64.78 64.78 
White 0.71 0.81 0.71 0.71 
LVEF 0.29 0.27 0.29 0.29 
Body mass index, kg/m2 30.18 29.30 30.18 30.18 
Nonischemic cardiomyopathy 0.63 0.33 0.63 0.63 
Primary prevention 0.88 0.76 0.88 0.88 
Never smoking  0.53 0.30 0.53 0.53 
Hypertension 0.72 0.71 0.72 0.72 
Diabetes 0.39 0.39 0.39 0.39 
Revascularization 0.32 0.61 0.32 0.32 
Sleep apnea 0.07 0.14 0.07 0.07 
Cancer 0.10 0.09 0.10 0.10 
Renal disease 0.10 0.19 0.10 0.10 
COPD 0.10 0.17 0.10 0.10 
Valve disease 0.05 0.06 0.05 0.05 
AV block 0.08 0.24 0.08 0.08 
PR interval, ms 183.2 205.4 183.20 183.20 
QRS duration, ms 151.3 152.0 151.3 151.3 
Conduction disease:   IVCD 0.075 0.136 0.075 0.075 

RBBB 0.054 0.136 0.054 0.054 
NYHA class                 III 0.95 0.94 0.95 0.95 

IV 0.02 0.03 0.02 0.02 
6 minute walk, m 236.5 283.5 236.5 236.5 
Quality of life, points 49.27 46.15 49.27 49.27 
eGFRCKD-EPI, mL/min/1.73 m² 64.48 63.23 64.48 64.48 
Use of ACEI/ARB 0.85 0.84 0.85 0.85 
Use of beta blocker 0.93 0.92 0.93 0.93 
Use of aldosterone antagonist 0.41 0.33 0.41 0.41 
LVESVI, mL/m2 58.05 67.97 58.05 58.05 
LVEDVI, mL/m2 79.35 90.70 79.35 79.35 
LVESDI, cm/m2 2.81 2.73 2.81 2.81 
LVEDDI, cm/m2 3.24 3.13 3.24 3.24 
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Supplemental Table 2. Lassoknots, or predictors in the adaptive lasso model listed in the order 

of their importance 

Predictor  Importance Rank Beta-coefficient  
Conduction type (non-LBBB) 1 -0.339 
Nonischemic CM 2 0.267 
QRS duration, ms 3 0.217 
NT-proBNP 4 -0.180 
Systolic BP, mmHg 5 0.186 
Primary prevention  5 0.167 
PR interval, ms 6 -0.155 
Female 7 0.171 
LVEF 8 -0.210 
CRP 9 -0.100 
LVEDVI 9 0.260 
LVESDI 9 -0.368 
6-min walk 10 0.114 
eGFRCKD-EPI 11 0.110 
Age, y 12 0.155 
Valve disease 13 0.069 
Any AV block 13 -0.056 
Weight, kg 13 -0.135 
Cancer 14 0.011 
constant  -0.202 

Conduction type categories include: 
1=LBBB 
2=RBBB+left hemiblock 
3=IVCD 
4=RBBB 
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Supplemental Figure 1. Out-of-bag error and validation error plotted versus (A) number of iterations or subtrees, and (B) number 

of variables randomly investigated at each split in a random forests model. 
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Supplemental Figure 2: The calibration plot shows the observed and predicted CRT response proportions in convolutional neural 

network model for all participants. The size of the circles is proportional to the amount of data. 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 18, 2020. ; https://doi.org/10.1101/2020.07.16.20155424doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20155424

	Using Machine-Learning for Prediction of the Response to Cardiac Resynchronization Therapy: the SMART-AV Study
	Abstract
	Abbreviations:
	Introduction
	Methods
	Study population
	Candidate predictor variables
	The study endpoint
	Statistical analysis
	Unadjusted comparisons
	Adjusted analysis of sex differences in CRT response
	Prediction of the endpoint using machine learning


	Results
	Study population
	Comparison of the response of men and women to CRT
	Prediction of CRT response

	Discussion
	The response of both sexes to CRT is similar
	Prediction of composite CRT Response in a Short-Term – perspective for planning LV lead placement and CRT delivery
	Strengths and Limitations

	Conclusion
	References
	Table 1. Baseline Clinical Characteristics in Men and Women
	Table 2. Development and validation of composite CRT response prediction tool

	Figure Legends
	Figure 1.
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Supplemental Table 1. The balance table of means of covariates before and after weighting
	Supplemental Table 2. Lassoknots, or predictors in the adaptive lasso model listed in the order of their importance
	Supplemental Figure 1. Out-of-bag error and validation error plotted versus (A) number of iterations or subtrees, and (B) number of variables randomly investigated at each split in a random forests model.
	Supplemental Figure 2: The calibration plot shows the observed and predicted CRT response proportions in convolutional neural network model for all participants. The size of the circles is proportional to the amount of data.


