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Abstract5

Deep learning methods have been shown to achieve excellent performance on6

diagnostic tasks, but it is still an open challenge how to optimally combine them7

with expert knowledge and existing clinical decision pathways. This question8

is particularly important for the early detection of cancer, where high vol-9

ume workflows might potentially benefit substantially from automated anal-10

ysis. Here, we present a deep learning framework to analyse samples of the11

Cytosponge R©-TFF3 test, a minimally invasive alternative to endoscopy, for12

detecting Barrett’s Esophagus, the main precursor of esophageal cancer. We13

trained and independently validated the framework on data from two clin-14

ical trials, analysing a combined total of 4,662 pathology slides from 2,33115
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patients. Our approach exploits screening patterns of expert gastrointestinal16

pathologists and established decision pathways to define eight triage classes of17

varying priority for manual expert review. By substituting manual review with18

automated review in low-priority classes, we can reduce pathologist workload19

by up to 66% while matching the diagnostic performance of expert patholo-20

gists. These results lay the foundation for tailored, semi-automated decision21

support systems embedded in clinical workflows.22

Introduction23

Early detection of cancer often leads to better survival (1), because pre-malignant lesions and24

early stage tumors can be more effectively treated (2). Most pre-malignant lesions amenable to25

early detection rely on targeted sampling and show only minor tissue changes on pathology as-26

sessment (3–5). In addition, pathology procedures often involve laborious and time-consuming27

steps which can lead to errors and adversely affect patient care (6). Recent developments in Ar-28

tificial Intelligence (AI) have achieved excellent performance on diagnostic tasks (7–9). How-29

ever, understanding how these techniques can be integrated into clinical workflows most effi-30

ciently and to assess the actual benefits they bring remains a challenge. The design of a clinical31

decision support system needs to balance its performance against workload reduction and po-32

tential economic impact. Replacing pathologists entirely could lead to substantial workload33

reduction, but such an approach would only be viable if performance remains comparable to34

that of human experts. Between a fully automated approach and the status quo of fully manual35

review lies a semi-automated approach, which uses computational methods to triage patients36

and only presents pathologists with difficult cases. A semi-automated approach will not reduce37

workload as much as a fully automated approach, but its performance benefits from existing38

expert knowledge and heuristics. Here we present such a semi-automated triage system using39
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deep learning for the early detection of esophageal cancer.40

Esophageal cancer is the sixth most common cause for cancer related deaths (10). Patients41

usually present at an advanced stage with dysphagia and weight loss, and the 5-year overall42

survival of esophageal adenocarcinoma (EAC), one of two pathological subtypes, is 13% (11).43

EAC can arise from a precursor lesion called Barrett’s Esophagus (BE) (12, 13), providing an44

effective starting point for early detection. BE occurs in patients with Gastresophageal Reflux45

Disease (GERD), a digestive disorder where acid and bile from the stomach return into the46

esophagus leading to heartburn symptoms. In Western countries, 10 to 15% of the adult popu-47

lation are affected by GERD (14) and, therefore, at an increased risk of having BE. The pathog-48

nomonic feature of BE is intestinal metaplasia (IM), a process whereby the stratified squamous49

epithelial lining localized in the lower esophagus is replaced with columnar epithelium con-50

taining goblet cells (15, 16). The conventional diagnosis of BE requires an invasive endoscopic51

procedure of the upper gastrointestinal tract. However, there is no routine endoscopic screening52

of the GERD population and thus the vast majority of BE patients are undiagnosed (14).53

Cytosponge-TFF3 is a non-endoscopic, minimally invasive diagnostic test for BE (17–19).54

It is a cell collection device consisting of a compressed sponge on a string inside a gelatin55

capsule. The capsule is swallowed by the patient and the gelatin dissolves in the stomach after56

a few minutes, allowing the sponge to expand. The sponge is then withdrawn from the stomach57

by the attached string, sampling superficial epithelial cells from the top of the stomach, the58

esophagus, and the oropharynx (Figure 1a). Therefore, the cellular composition of the sample59

is dominated by squamous cells, gastric columnar epithelium, and respiratory epithelium as well60

as any Barrett’s cells, if present. Following removal, the device is placed in a container with61

preservative solution and the sampled cells are processed, embedded in paraffin and stained with62

Hematoxylin & Eosin (H&E) as well as immunohistochemically stained with Trefoil Factor 363

(TFF3) (20). H&E stains allow the identification and quantification of cellular phenotypes,64
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Figure 1: Cytosponge procedure with conceptual patient triage scheme and data summary. a Dur-
ing withdrawal the sponge samples superficial epithelial cells from the top of the stomach and the esoph-
agus. These cells are processed into a cell block, then sectioned and stained with Hematoxylin & Eosin
(H&E) and Trefoil Factor 3 (TFF3). b Convolutional neural networks, trained on an independent training
dataset, are used for inference of H&E and TFF3 stains. The resulting tile maps are analysed for rele-
vant regions (columnar epithelium on H&E and goblet cells on TFF3 stain) and aggregated into quality
control and diagnostic classes based on tile detections. c Quality and diagnostic classes are mapped to a
conceptualised pathway for sample stratification. The review layer (bottom) describes to what extent a
human pathologist has to review the microscopy slides. (Pos = Positive, Neg = Negative) d Overview of
data used in this study.

4

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.16.20154732doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20154732
http://creativecommons.org/licenses/by-nc/4.0/


which is critical for quality control. TFF3 is over-expressed in mucin-producing goblet cells65

which are a key feature of BE. TFF3 also functions as a protector of the mucosa from insults,66

stabilizes the mucus layer, and promotes healing of the epithelium (21). TFF3 stains allow the67

identification and quantification of goblet cells, which are indicative of IM. Therefore, TFF3 is68

the key diagnostic biomarker for BE (20).69

The Cytosponge-TFF3 approach has profound and well-tested clinical significance. It of-70

fers, with substantial clinical trial data underpinning its efficacy, a long-awaited diagnostic al-71

ternative to endoscopy (BEST1 (17), BEST2 (18), BEST3 (22)). The BEST3 study found that72

the Cytosponge-TFF3 test had in excess of a 10-fold increase in detection of Barrett’s compared73

to usual clinical care in which patients with heartburn receive medication and an endoscopy if74

deemed necessary. This performance makes the Cytosponge a major advance in patient man-75

agement. The BEST3 study also concluded that the pathology assessment is a major bottleneck76

for scaling the test to large patient populations. Since the analysis of Cytosponge-TFF3 pathol-77

ogy slides is a very laborious process due to the large amount of sampled cellular material. It78

comprises several time-consuming tasks such as assessing the amount of sampled material and79

checking the presence of gastric-type columnar epithelium to confirm that the capsule reached80

the stomach, followed by assessment for the presence of goblet cells indicative of BE. Though81

effective, the laboriousness of this process gives rise to a major opportunity for a clinical deci-82

sion support system to improve analysis and scalability of the Cytosponge-TFF3 test.83

Here, we use a deep learning approach for quality control and diagnosis of pathology slides84

for the Cytosponge-TFF3 test (Figure 1b). We propose a triage-driven approach, which retains85

diagnostic accuracy by leveraging the decision-making rules of expert gastrointestinal patholo-86

gists (Figure 1c). We train, calibrate, and internally validate our approach on data of the BEST287

multi-centre clinical trial (18) and externally validate it in an independent cohort from the recent88

BEST3 multi-centre trial (22) (Figure 1d). Additionally, we explore in a simulation study how89

5

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.16.20154732doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20154732
http://creativecommons.org/licenses/by-nc/4.0/


well our results generalise to more general populations.90

Results91

Deep learning models achieve high performance for tile-level classifications92

The first step of our approach is based on the tile-level detection of different classes of cells93

relevant for quality control and diagnosis of BE. For model development and internal valida-94

tion, we used 812 Cytosponge-TFF3 patient samples with paired pathology and endoscopy data95

from the BEST2 clinical case-control study (18). Samples were randomly divided into train-96

ing/development (n=100), calibration (n=187) and internal validation (n=525) sets (Figure 1d).97

An additional independent dataset (n=1,519) from the BEST3 study was used for external vali-98

dation of the developed approach.99

Training sets of larger size did not improve tile-level accuracy (Figure S1). Training, cali-100

bration, and validation sets were kept separate. Endoscopic as well as Cytosponge pathology101

diagnoses were only unblinded after tile-wise tissue classification models were calibrated and102

validated, respectively. All training slides were tessellated prior to training: For H&E we de-103

rived 193,734 tiles from 100 slides and for TFF3 we derived 235,932 tiles from 100 slides (based104

on the size of annotated areas, see Methods). All tiles were 200-by-200 µm and all labels were105

taken from expert slide annotations.106

For both quality control (H&E) and diagnostic (TFF3) tasks, we trained several state-of-the-107

art networks (AlexNet (23), DenseNet (24), Inception v3 (25), ResNet-18 (26), SqueezeNet (27),108

and VGG-16 (28)) and evaluated their performance on the development datatset. Using indi-109

vidual tiles, we compared tile-level precision and recall for classifying columnar epithelium110

using the presence of gastric-type cells (on H&E) and positive goblet cells (on TFF3) (Ta-111

ble S1, description in Methods): For gastric-type columnar epithelium, VGG-16, DenseNet and112

Inception v3 achieved the highest recalls (0.950, 0.947, 0.940, respectively) with consistent pre-113
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cisions (0.843, 0.865, 0.857). For goblet cells, VGG-16, Inception v3, and ResNet-18 achieved114

the highest recalls (0.919, 0.919, 0.912) with consistent precisions (0.856, 0.856, 0.827). Ex-115

amples for whole slide images classified positive and negative for quality control and diagnosis116

are shown in Figure 2a. We also observed a relationship between the tile-level results and the117

complexity of the applied architectures (Table S1).118

Saliency maps agree with pathologist criteria for classification of tissue tiles119

To understand which characteristics of the tile images were relevant to our models’ classifica-120

tions, we generated saliency maps using Gradient-weighted Class Activation Mapping (Grad-121

CAM) (29). These maps highlight the local regions of an image most relevant to a model’s iden-122

tification of a particular class. We generated saliency maps for classes in one H&E-based model123

(VGG-16) and one TFF3-based model (VGG-16) (Figure 2b). For the gastric-type columnar ep-124

ithelium class of the H&E-based model, the saliency maps highlight gastric cells by both the125

linear organisation of their nuclei as well as the presence of a straight border between the cells126

and the lumen. For the positive class of the TFF3-based model, we found that the saliency127

maps highlighted the mucin-containing goblet cells that characterise IM with high precision. In128

addition to the three representative examples in Figure 2b, we compared landmarks selected by129

an expert pathologist with tile images and respective saliency maps (Figure S2). The saliency130

maps confirm that the models learned features are similar to those used by pathologists to iden-131

tify different tissue classes.132

Fully automated approach shows suboptimal performance133

Tile-level classifications were aggregated into patient-level classifications using tile counts above134

thresholds determined by the specificity of expert pathologists on the calibration cohort (Meth-135

ods, Table S2, Figure S4). We then performed Receiver Operating Characteristics (ROC) anal-136

ysis with matched Cytosponge pathology and endoscopy ground truth on the internal validation137
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Figure 2: Tile and patient-level classification of Cytosponge-TFF3 samples. a Examples of tile-level
inference maps for samples, which were classified by a pathologist as positive and negative for quality
control (H&E) and diagnosis (TFF3), respectively. b Comparison of two tile images from H&E and
one tile image from TFF3 with their respective Grad-CAM saliency maps. Top: Columnar epithelium
(H&E) of gastric type with clear focus on columnar arrangement in saliency map. Middle: Squamous
cells (H&E) with distributed focus in saliency map. Bottom: TFF3-positive goblet cells with localisation
in saliency maps. Scale bar = 100 µm. c ROC-AUC internal validation cohort analysis of automated
tile counts of columnar epithelium on H&E with pathologist ground truth. d ROC-AUC internal valida-
tion cohort analysis of automated tile counts of positive goblet cells on TFF3 with pathologist ground
truth. e ROC-AUC internal validation cohort analysis of pathologist and automated tile counts of pos-
itive goblet cells on TFF3 with endoscopy ground truth (BE patients defined according to the Prague
criteria (Methods) with confirmed IM on biopsy). Pathologist performance: Sensitivity: 81.749% (CI:
76.597% - 85.951%), Specificity: 92.748% (CI: 89.444% - 95.769%). VGG-16 performance (calibration
point determined as in Methods): Sensitivity: 72.624% (CI: 67.424% - 78.213%), Specificity: 93.130%
(CI: 90.038% - 96.133%). SqueezeNet performance (calibration point, Methods): Sensitivity: 69.582%
(CI: 63.915% - 75.522%), Specificity: 92.366% (88.468% - 95.518%). CI = 95% bootstrap confidence
interval. Shaded areas show CIs.
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cohort (Figure 2c-e).138

First, the patient-level scores were compared against the binary Cytosponge-TFF3 ground139

truth by the pathologist on the internal validation set. For quality control, VGG-16 ranked high-140

est for detecting columnar epithelium in H&E stains (ROC-AUC: 0.99 (CI 95%: 0.98 - 0.99)).141

SqueezeNet, the least complex architecture we trained, ranked lowest (ROC-AUC: 0.97 (CI142

95%: 0.95 - 0.98), Figure 2c). For diagnosis, VGG-16 ranked highest for detecting goblet cells143

in TFF3 stains (ROC-AUC: 0.97 (CI 95%: 0.96 - 0.99), Figure 2d). Again, SqueezeNet ranked144

lowest (ROC-AUC: 0.94 (CI 95%: 0.92 - 0.96)). Confidence intervals were derived by boot-145

strapping (Methods). Results for all architectures are presented in table S3, and fig. S5a/b. In146

summary, for both quality control and diagnosis in comparison to Cytosponge-TFF3 pathology147

ground truth, VGG-16 provided the highest performance, and SqueezeNet the lowest.148

Next, patient-level counts were compared to endoscopy ground truth for detecting BE on149

the internal validation set (Methods). This ground truth was defined according to the Prague150

criteria (Methods) with confirmed IM on endoscopy biopsies (30). To calculate sensitivity and151

specificity for the fully automated method on the internal validation cohort, we used operating152

points determined on the calibration cohort (Table S2). VGG-16 ranked highest for detecting153

patients with BE from TFF3 stains (ROC-AUC: 0.88 (CI 95%: 0.85 - 0.91), Sensitivity: 72.62%154

(CI: 67.42% - 78.21%), Specificity: (93.13% (CI: 90.04% - 96.13%)), Figure 2e). SqueezeNet155

ranked lowest for detecting patients with BE from TFF3 stains (ROC-AUC: 0.85 (CI 95%: 0.81156

- 0.88), Sensitivity: 69.58% (CI: 63.92% - 75.52%), Specificity: 92.37% (88.47% - 95.52%),157

Figure 2e). For comparison, the pathologists achieve a sensitivity of 81.7% (CI 95%: 77.4% -158

86.5%) and a specificity of 92.7% (CI 95%: 89.6% - 95.6%). Performances of all architectures159

are presented in table S3, and fig. S5c. In summary, results for the fully automated approach160

on the internal validation cohort showed a loss of sensitivity of 9.1% for BE detection when161

compared to an expert pathologist.162
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Triage-driven approach selects patients for manual review163

We then explored whether a different modelling approach based on established decision path-164

ways could boost performance. We developed a triage-driven, semi-automated approach as an165

alternative to the fully automated approach described above. Both approaches use the same166

patient-level aggregations as input, but their outputs are different: the fully automated approach167

tries to directly mimic pathology assessment by classifying patients as positive or negative for168

BE. In contrast, the triage approach defines different quality and diagnostic confidence classes169

to select challenging patient samples for manual review. Although it cannot reduce workload as170

much as a fully automated approach, a triage approach keeps sample stratification more inter-171

pretable and transparent.172

We first selected deep learning architectures and defined cut-offs for different quality and173

diagnostic confidence classes based on thresholds determined by two expert observers on the174

calibration cohort (Figure S6, Methods). For quality confidence classes, pathologists conclude175

that the sponge reached the stomach if they observe columnar epithelial groups (18,20). We en-176

coded these subjective metrics in a quantitative scheme where the number of tiles detected with177

gastric-type columnar epithelium on H&E were classified as no confidence, low confidence, or178

high confidence (Figure S6a, Table S4). For diagnostic confidence classes, the number of tiles179

detected with TFF3-positive goblet cells were classified as high confidence negative, low confi-180

dence equivocal, or high confidence positive (Figure S6b, Table S4). On the internal validation181

cohort, we observed a visual agreement between these confidence classes and pathology and182

endoscopy ground truths (Figure 3, Table S5).183

We then combined the quality and diagnostic classes into eight triage classes of varying184

priority for manual review (Figure 4a). The relative priority of each class was determined by185

expert pathologists: Cases with low confidence in sample quality (none or few columnar ep-186

ithelium detected on H&E) or low confidence in diagnosis (few goblet cells detected on TFF3)187

10
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should be prioritised for human expert assessment over cases with high-confidence positive or188

negative evidence. In our internal validation cohort, we find that only 13.0% of patients fall189

into the triage classes with high priority (4 and 5), while 87.0% fall into the other six classes190

(Figure 4a).191

We next asked which classes can be substituted by automated review while retaining the192

accuracy of full manual review by a human pathologist (sensitivity: 81.7%; specificity: 92.7%).193

We applied a cumulative substitution scheme and started by substituting class 1 with automated194

review, then classes 1 and 2, then classes 1, 2, and 3, and so on. In the validation cohort, we195

found that sensitivity and specificity remain stable if classes 1, 2, and 3 are substituted, but196

decrease with the substitution of class 4, 5, and 6 (Figure 4b). Repeating this procedure starting197

with class 8 shows that sensitivity and specificity are stable if classes 8 or 7 are substituted, but198

decrease with the substitution of classes 6, 5, and 4 (Figure 4c). These results show that five of199

the eight classes (1, 2, 3, 7, 8) can be substituted by automated review while three classes (4,200

5, 6) should be manually reviewed by a pathologist. This substitution scheme would result in201

similar performance (sensitivity: 82.5% (CI 95%: 77.3% - 87.2%); specificity: 92.7% (CI 95%:202

89.6% - 95.9%)) as fully manual review by a pathologist. These classes cover the majority203

of patients (66.3% (CI 95%: 62.7% - 70.1%) in validation cohort) and triage-driven, semi204

automated review would thus save 66% of the pathologists’ workload (Methods) by enabling205

them to focus on difficult cases while leaving easy cases for automated review.206

Simulation of varying cohort composition corroborates reduction in expected workload207

Our case-control cohort is not representative of a real-world population eligible for Cytosponge-208

TFF3 testing. In our internal validation set we had a disease prevalence of 50.0%, while the209

prevalence expected in a real-world population with GERD symptoms ranges from 3.0% to210

7.5% (17, 31–33). Additionally, the allocation of samples to triage classes depends directly on211
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Priority for
manual review No. Quality control Diagnosis Automated result Validation

1 No confidence High confidence negative Negative 33 (6.1%)

2 High confidence High confidence negative Negative 59 (11.2%)

3 Low confidence High confidence negative Negative 54 (10.3%)

4 No confidence Low confidence equivocal* Positive 23 (4.4%)

5 Low confidence Low confidence equivocal Positive 45 (8.6%)

6 High confidence Low confidence equivocal Positive 109 (20.8%)

7 Low confidence High confidence positive Positive 17 (3.2%)

8 High confidence High confidence positive Positive 186 (35.4%)

525 in total

Fully manual review
by pathologist

Fully manual review
by pathologist

Fully automated review

1 1, 2 1, 2, 3 1, 2, 3, 4 1, 2, 3, 4, 5 1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6, 7 1, 2, 3, 4, 5, 6, 7, 8

8 8,7 8, 7, 6 8, 7, 6, 5 8, 7, 6, 5, 4 8, 7, 6, 5, 4, 3 8, 7, 6, 5, 4, 3, 2 8, 7, 6, 5, 4, 3, 2, 1

Cumulative substitution of classes with automated review

Fully automated reviewCumulative substitution of classes with automated review

Figure 4: Triage-driven approach with incremental triage class substitution scheme on internal
validation set a Table of quality control and diagnosis classes. Each class has been assigned a qual-
itative priority for manual review. Column ‘Automated result’ refers to the label a sample would be
assigned if all samples of this class were automatically reviewed. Asterisk (*): includes combination
of no confidence (quality control) and high confidence positive (diagnosis) despite minimal likelihood
of occurrence. b Cumulative substitution scheme starting with fully manual review, followed by sub-
stitution with automated review of class no. 1, then 1 and 2, etc. Red rectangle indicates a drop of
performance at substitution stage. c Cumulative substitution scheme starting with fully manual review,
followed by substitution with automated review of class no. 8, then 8 and 7, etc. Red rectangle indicates
a drop of performance at substitution stage.
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the amount of sampled cellular material and the resulting sample confidence, which can vary212

widely and might improve with future refinements of the device administration procedure.213

To understand how our results generalize, we devised a simulation approach to vary how214

many samples have BE and how many samples are allocated to high/low confidence triage215

classes (Methods). To simulate the change in workload over a range of possible prevalences216

of BE, we first determined the proportion of patients with and without BE in each triage class217

and then weighted each vector of proportions by a new prevalence ranging from 0 to 55%. To218

simulate the effect that relative changes in overall sample confidence have on the workload,219

we first determined the proportion of patients in triage classes with highest sample confidence220

(determined by quality control and diagnostic class: 2 and 8) and lower sample confidence (1,221

3, 4, 5, 6, and 7). We then modified the proportion of high confidence samples and inversely222

adapted the proportion of lower confidence samples within a range from -25% to 25%.223

Over a fine grid of varying disease prevalence and changes in sample confidence, we ob-224

served a negative impact of decreasing cohort BE prevalence and a positive impact of sample225

confidence on the potential workload reduction (Figure 5a). According to this simulation, in226

a realistic cohort with a BE prevalence of 7%, we would still be able to reduce the pathology227

workload by 57%. In order to retain the same workload reduction we observed in the validation228

cohort, the proportion of samples with high confidence in a realistic cohort would need to be229

increased by 15%.230

External validation of triage-driven approach231

Finally, we tested the validity of our results and the extrapolation in the simulation study in232

an independent test set of 3038 slides from 1519 patients from from 109 primary care sites233

in the UK (BEST3 trial) (22). All slides were processed in the same way and with the same234

model parameters as the BEST2 validation cohort (fig. S7, table S6). Following the method235
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Characteristics of internal validation cohort
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Figure 5: Triage model applied to external validation cohort and simulation of cohort variation
Simulation of changes in cohort prevalence of BE and sample confidence with impact on workload
reduction. Every contour line (blue) represents the same level of workload reduction as indicated by the
percentages. Solid black lines indicate the workload reduction of the validation cohort. The dotted yellow
line illustrates the workload reduction of a realistic primary care referral cohort (with 7% prevalence)
with no change in sample confidence classes (lower yellow marker) and the confidence change required
to match the same amount of workload reduction as in the validation cohort (upper yellow marker). The
results from the external validation cohort are shown in red.
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described in the previous section, we used manual pathologist reviews for samples that fell into236

triage classes 4, 5 and 6. In the BEST3 trial, endoscopy data was only available for positive237

Cytosponge patients and those who had Barrett’s diagnosed at follow-up as a result of standard238

of care. In addition, the trial was not designed to investigate sensitivity or specificity but positive239

predictive value (PPV) instead. We also calculated the negative predictive value (NPV) based240

on findings aggregated through the primary endpoint analysis (coded BE diagnosis in patient241

records). For this external validation cohort, fully manual review by pathologists resulted in a242

PPV of 56.08% and NPV of 99.02%. After application of the triage-driven, semi-automated243

approach the PPV of the overall cohort was 53.37% and the NPV 99.39% (fig. S7). Using this244

approach in a realistic primary care setting would have resulted in the following key results: In245

total 872 patients out of 1519 patients (57.41%) would have been reviewed automatically while246

42.59% would have had to be reviewed manually. This agrees with the simulated, expected247

value (fig. 5) of workload reduction given the prevalence (7.8%) of BE in this external validation248

cohort. Six additional patients would have been diagnosed with BE while being missed by the249

pathologist at the cost of 19 additional endoscopies when compared to fully manual review.250

One patient would have received an automated negative diagnosis even though the pathologist251

scored it as positive with BE finding at endoscopy.252
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Discussion253

We have presented a triage-driven approach that analyses samples of the Cytosponge-TFF3 test254

using deep learning for the early detection of esophageal cancer. Our approach combines quality255

control and diagnostic metrics of pathology slides to stratify patients into 8 triage classes which256

determine whether a patient sample requires manual or if automated review would suffice.257

For the analysis of Cytosponge-TFF3 samples, our triaging approach has several benefits:258

We are able to substantially reduce workload and match the sensitivity and specificity of expert259

pathologists. In our internal validation cohort, fully manual review by a pathologist achieves260

81.7% sensitivity and 92.7% specificity. In a fully automated approach, we observed a sensitiv-261

ity of 72.6% and a specificity of 93.1%. With our triage-driven approach, we demonstrate that262

up to 66% of cases can be reviewed automatically while achieving a sensitivity of 82.5% and263

specificity of 92.7%, a performance marginally superior to fully manual review by pathologists.264

Further, in an external validation cohort from a large randomised controlled trial we observed265

a PPV of 53.37% and NPV of 99.39%. For comparison, pathologist review resulted in very266

similar values with a PPV of 56.08% and NPV of 99.02%. While a small number of additional267

endoscopies would have been triggered, they would have also yielded more positive diagnoses.268

In this more realistic cohort, 57.41% workload for the pathologists would have been reduced.269

These results (Figure 5) have several implications: First, a fully automated review would re-270

duce sensitivity (at fixed specificity) and therefore suffer from a loss of clinical utility. Second,271

while a triage-driven approach is not able to reduce workload as much as a fully automated ap-272

proach, the described triage classes provide a logical way for stage-wise clinical adoption and273

performance testing in routine practice.274

Another benefit of our approach is that we were able to directly adopt heuristics applied275

by pathologists familiar with Cytosponge-TFF3 samples in our algorithmic design process. As276
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a result, our approach demonstrates traceability and interpretability (8): First, we mimicked277

the screening process of samples observed by expert pathologists by replicating their decision-278

making scheme (Figure 1c). Second, the saliency maps we generated from deep learning mod-279

els to visualize learned features in the pathology images show strong agreement with manual280

landmarks placed by pathologists (Figure S2).281

As a further benefit, our triage approach achieves strong performance from only 287 sam-282

ples for training and calibration by incorporating informative prior knowledge about biological283

and clinical test characteristics, followed by rigorous testing in independent cohorts. This per-284

formance compares favorably to previous fully automated approaches reporting expert-level285

performance that relied on very large datasets with training set sizes ranging from 10,000 to286

more than 100,000 examples (34, 35) - dataset sizes that cannot be expected for most applica-287

tions.288

Finally, a quantitative analysis of workload reduction across varying disease prevalences and289

sample confidences shows that our approach is expected to generalize well to a real-world pop-290

ulation. A more general population would have a lower disease prevalence than a case-control291

study, which would cause a larger workload due to the distribution of BE/non-BE patients within292

the individual triage classes. We were further able to confirm this simulation with an external293

validation cohort. These findings provide realistic expectations of how clinical decision-making294

systems are affected by bias in cohort composition.295

Our approach has several limitations: First, while samples used in this work were gen-296

erated at multiple centres they were processed at only a single site (Addenbrookes Hospital,297

Cambridge, UK). Thus, our data might not fully reflect the variation in histology sectioning298

and staining across different laboratories (36). We compensated for this limitation through299

data augmentation by spatial and color profile distortion. Additionally, our data are not too300

far from future real-world applications, because for large-scale rollout of the Cytosponge test a301

18

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.16.20154732doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20154732
http://creativecommons.org/licenses/by-nc/4.0/


centralised laboratory is envisaged to ensure processing as well as analysis with proper quality302

assurance. In future work, we plan to test whether the superiority of the triage-driven approach303

over fully manual pathologist review will generalize by incorporating multi-centre data from304

ongoing and future Cytosponge-TFF3 studies to evaluate this effect more extensively.305

Second, the underlying machine learning model could be further optimized. For example,306

instead of using a transfer learning model based on pre-training with a primary dataset, we could307

train a model from scratch, which has proven to improve results in some CNN applications (37).308

In addition, the tile size needs further investigation because it determines the receptive field in309

which the CNNs build feature representations of images. Our tile size was chosen by expert310

pathologists to capture relevant structures like columnar epithelium and goblet cells. Although311

good performance was observed, a refined multi-scale classification with several magnifications312

might be necessary to achieve better classification of tissue types. Further improvements might313

be realised from using attention-based models to reduce the laborious annotation steps required314

for expanding the training data (38) or aggregating tiles to patient level with more sophisticated315

approaches based on sequence models (34).316

Third, a major determinant of workload reduction is the quality and therefore diagnostic317

confidence attributed to a sample. However, what determines the amount of columnar mate-318

rial sampled is unknown. One hypothesis is that the strength of esophageal peristalsis, which319

can be influenced by variations in device ingestion, may be associated with the likelihood of320

the Cytosponge reaching the stomach. We plan to investigate determinants of sample quality321

by comparing the data generated by the trained deep learning models with patient and device322

administrator profiles.323

In summary, our triage approach differs from previous applications of deep learning to medi-324

cal images (7,34) which used fully automated approaches on extremely large datasets. We show325

that for a modest dataset size, leveraging existing heuristics of pathologist decision-making in a326
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triage-based approach is a powerful alternative to fully automated classification models, which327

generalises well to an independent validation cohort. These results lay the foundation for tai-328

lored, semi-automated decision support systems embedded in clinical workflows.329
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Methods330

Study design and dataset331

The multicentre Barrett’s Esophagus Screening Trial 2 (BEST2) (18) case-control study (study332

registration: ISRCTN12730505) investigates the automated analysis of Cytosponge-TFF3 sam-333

ples as a secondary objective. Ethics approval was obtained from the East of England - Cam-334

bridge Central Research Ethics Committee (number 10/H0308/71) and registered in the UK335

Clinical Research Network Study Portfolio (9461). Patients enrolled underwent a Cytosponge336

procedure followed by an endoscopy with biopsies where required. The objective of this work337

was the comparison of: fully manual review of Cytosponge-TFF3 pathology slides by human338

experts, fully automated review of Cytosponge-TFF3 pathology slides by a deep learning-based339

method, and triage-driven, semi-automated review of Cytosponge-TFF3 pathology by a hybrid340

method relying on deep learning methods and human experts.341

812 patients were randomly selected from the entire BEST2 cohort (from 11 hospitals in the342

UK) for digitisation of their respective H&E and TFF3 pathology slides (1624 in total) on an343

Aperio AT2 digital whole-slide scanner (Leica Biosystems Nussloch GmbH, Germany) at 40x344

magnification.345

BEST2 patients were randomly partitioned into three distinct subsets: 100 patients for train-346

ing/development (labels unblinded for training purposes), 187 patients for calibration (labels347

unblinded for calibration), and 525 patients as an internal validation set (labels unblinded af-348

ter validation). The distribution of patients with or without Barrett’s Esophagus (BE) for each349

partition is shown in Figure 1d.350

For independent external validation we used data from the Barrett’s Esophagus Screen-351

ing Trial 3 (BEST3) REF randomised controlled trial (study registration: ISRCTN68382401).352

Ethics approval was obtained from the East of England - Cambridge Central Research Ethics353
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Committee (number 16/EE/0546). Patients enrolled either were invited to a Cytosponge proce-354

dure or received standard of care. Both arms were followed up after 8 to 18 months (weighted355

overall average of approx. 12 months). Only patients who underwent a Cytosponge procedures356

or were referred as part of usual care received an endoscopy. A patient was considered as pos-357

itive for Barrett’s Oesophagus if they either had a diagnosis at endoscopy or as a result of a358

coded search in records from the primary care site.359

1519 patients were randomly selected from the entire BEST3 cohort (from 109 primary care360

sites in the UK) for digitisation of their respective H&E and TFF3 pathology slides (1638 in361

total) on Hamamatsu S60 and S210 whole-slide scanners (Hamamatsu, Japan) at 40x magnifi-362

cation. For each patient, the repeat test was used if one as performed due to inadquace of the363

baseline test.364

All BEST3 patients were processed using the fully automated and triage-driven, semi-365

automated approach presented in this work. Labels were unblinded after validation.366

Confidence intervals in this work were defined as the 2.5th and 97.5th percentiles on distri-367

butions of 500 samples (with replacement) of the respective dataset size.368

Cytosponge-TFF3 procedure369

The Cytosponge-TFF3 is a non-endoscopic diagnostic modality for BE. It is a cell collection370

device, consisting of a mesh sphere on a string inside a gelatine capsule, coupled with an im-371

munohistochemical biomarker called Trefoil Factor 3 (TFF3).372

The capsule is swallowed by the patient, and passes to the stomach, where the gelatine dis-373

solves allowing the mesh sphere to expand to a diameter of 3 cm. After 5 to 7.5 minutes, the374

sponge is withdrawn from the stomach by the attached string, sampling superficial epithelial375

cells from the top of the stomach, the esophagus, and the oropharynx. The removed device376

is placed in a container with preservative solution (SurePath Preservative Fluid, BD) and pro-377
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cessed in a laboratory for histochemical (Hematoxylin & Eosin) and immunohistochemical378

(TFF3) staining. The stained pathology slides are then screened by a pathologist. The primary379

objective of the Cytosponge-TFF3 test is the detection of columnar epithelium of intestinal type380

(with TFF3-positive goblet cells) in the squamous oesophagus which is indicative of the patient381

having Barrett’s Esophagus (BE). These TFF3-positive patients can then be referred for an up-382

per gastrointestinal endoscopy to confirm the diagnosis. Previous studies (17–19) have shown a383

consistent sensitivity (73.3% and 79.9%) and specificity (93.8% and 92.4%) for the diagnosis384

of BE using the Cytosponge coupled with TFF3.385

Endoscopy procedure386

Esophago-gastroduodenoscopies were carried out by an endoscopist after the Cytosponge test.387

BE was defined as endoscopically visible columnar-lined esophagus that measured at least 1 cm388

circumferentially or at least 3 cm in non-circumferential tongues according to the Prague criteria389

(≥C1 or≥M3 (39)). An additional criterion for BE was histopathological evidence of intestinal390

metaplasia (IM) on at least one endoscopy biopsy. For cases with suspected BE, diagnostic391

biopsies were collected following the recommended Seattle surveillance protocol (40). When392

reviewing the biopsy data, all of the pathologists were blinded to the result of the Cytosponge-393

TFF3 test.394

Whole-slide image annotation for training395

One H&E- and one TFF3-stained slide for each of the 100 BEST2 patients from the training396

set were manually annotated and reviewed by an expert pathologist (MO) using the ASAP soft-397

ware (41). Regions of interest (ROIs) were selected in the digitised pathology slides at a mag-398

nification of 40x. Each of these ROIs was labeled with a class for training. For the H&E-based399

quality control model, four different classes were identified: gastric-type columnar epithelium,400
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respiratory-type columnar epithelium, intestinal metaplasia, and background (including other401

cellular material such as squamous cells and slide artefacts). Gastric-type columnar epithelial402

cells were considered as the marker for quality control, as their presence confirms that the Cy-403

tosponge has reached the stomach. For the TFF3-based diagnostic model, three classes were404

identified: TFF3-positive regions (darkly stained goblet cells), TFF3-equivocal regions (regions405

of ambiguous staining that may be goblet cells), and background. TFF3-positive cells were con-406

sidered as the marker for the presence of IM, as they indicate that the patient might have BE.407

All slides were annotated using the existing patient-level ground truth data for comparison. We408

aimed for a representative fraction of available material on each slide to be labelled.409

Tesselation of whole-slide images for training410

Tesselation, or tiling, of whole-slide images was performed in order to prepare data prior to411

model training. A custom tiling method was developed to optimise the yield and coverage of412

annotated cellular material in the images. Whereas packing problems of squares in polygons413

can be neglected for large annotations, optimal coverage for tiles in combination with small414

annotation sizes is not straightforward and requires a tailored solution. Annotations with an415

area of 1.5 ∗ tile area or larger were cropped into tiles by taking the top-left coordinate of416

the enveloping bounding box and iterating tiles along the x- and y-axis of the image. Tiles417

with an intersection of less than 0.33 (for H&E) or 0.66 (for TFF3) with their corresponding418

annotation were rejected. Annotations with an area smaller than 1.5 ∗ tile area were treated as419

single examples and a tile was placed in the center-of-mass of the respective annotation. Tiles420

with sufficient annotation coverage (determined by intersection) were extracted and labelled421

according to the class of their parent annotation. For this work, a tile size of 400-by-400 pixels422

(corresponding to 200-by-200 µm at a magnification of 40x) was selected in accordance with423

sizes of relevant tissue features. Tiles were extracted from whole-slide images as JPEG images424
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with minimal compression.425

Model training using deep learning426

We implemented two different deep learning frameworks: one for performing quality control on427

H&E-stained slides, and a second one for performing automated BE diagnosis from the TFF3-428

stained slide images. Both deep learning frameworks for quality control and diagnosis were429

created by comparative transfer learning of multiple convolutional neural network architectures:430

AlexNet (23), DenseNet (24), Inception v3 (25), ResNet-18 (26), SqueezeNet (27), and VGG-431

16 (28). All architectures were initialised with the best parameter set that was achieved on432

the ImageNet competition. Training tile images were resized as required for the individual433

architectures, resulting in a change of effective magnification from 22x to 30x. We then unfroze434

all layers to enable fine-tuning of the entire network. For all models, training continued on two435

NVIDIA GTX 1080Ti graphics cards for 25 epochs with an architecture-specific batch size436

(ResNet-18: 128, VGG-16: 48, Inception v3: 48, AlexNet: 64, SqueezeNet: 256, DenseNet:437

84) and a learning rate that decayed by a factor of 0.1 every 7 epochs. All models used cross-438

entropy loss. To account for slight variations in the training data, random vertical/horizontal flip,439

random rotation, and random color jitter (variation in hue, contrast, brightness, and saturation)440

were introduced for data augmentation. Differences in tile class sizes were accounted for by441

using a modified imbalanced dataset sampler, a function which oversamples from minority442

classes and undersamples from majority classes. The parameter set of epoch with the highest443

accuracy on the development subset was selected for further use. All models were trained using444

the PyTorch deep learning framework (42). Final model versions used a split of 85:15 patients445

for training and development subset. We further investigated the effect of increased training set446

sizes by incrementally increasing the training subset while fixing the development subset size447

(Figure S1).448
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Evaluation of tile-level performance449

In order to compare the performance of all six deep learning architectures, we calculated class-450

specific performance in the quality control and diagnosis frameworks (Table S1). To obtain451

these numbers, we selected the epochs with the best weighted accuracy score on the develop-452

ment subset for each training run. We then calculated precision and recall of all four classes in453

the H&E-based model and all three classes in the TFF3-based model in the selected epoch. For454

visual comparison, we also created 2D inference maps of samples which where classified as455

positive or negative by a pathologist for quality control and diagnosis, respectively. Tile-level456

results were not used to select architectures for the fully automated or semi-automated, triage-457

driven approach. The best performing architectures according to relevant class precision and458

recall on tile level for quality control and diagnosis were selected for saliency map generation.459

Generation of saliency maps using Grad-CAM460

Gradient-weighted Class Activation Mapping (Grad-CAM) class localisation maps are created461

by visualising the gradients flowing into the final convolutional layer of the network, just before462

the fully-connected layers (29). Since convolutional layers contain class-specific spatial infor-463

mation from the input image which is lost in the fully connected layers, this is the optimal point464

for map generation. Unlike conventional class-activation maps (CAMs), Grad-CAM has the465

benefit of not requiring any modifications to the existing model architecture, nor does it require466

any retraining of the model (29). In order to create the class-specific Grad-CAM localisation467

map for class c, Lc
Grad-CAM, it is first necessary to compute the gradient ∂yc

∂Ak of the score yc for468

class c with respect to the feature map Ak of the final convolutional layer (29). Once ∂yc

∂Ak has469

been computed for each feature map k, these backward-flowing gradients are global-average-470

pooled across the width and height of the network (indexed by i and j) to yield αc
k, the weights471

of neuron importance for each of the feature maps k (29):472
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αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

αc
k, the neuron-importance weights for each feature map k, therefore estimate the salience473

of each feature map to the prediction of class c (29). Finally, to get class c-specific Grad-CAM474

localisation map Lc
Grad-CAM, we take the ReLU of the weighted sum of the feature maps Ak,475

where each feature map k’s weight is αc
k (29):476

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k

)
(1)

Note that the ReLU operation is used to retain only the features which have a positive477

influence on the prediction of class c, and that the resulting localisation map will be the same478

size as the feature maps of the last convolutional layer (29).479

We generated saliency maps for both models trained on H&E and TFF3, respectively. The480

target layer from the VGG-16 architecture was the last feature layer (no. 30) before several481

stacked fully connected layers. Tiles were randomly selected from the development subset.482

For qualitative comparison between saliency maps and manual landmarks, we asked one expert483

pathologist (MO) to highlight important areas. Areas highlighted by the pathologist provide484

a representation of features which a human observer uses for classification of tile images. To485

investigate qualitative agreement of landmarks by the pathologist with generated saliency maps,486

a side-by-side comparison of tile images and respective saliency maps was prepared (Figure S2).487

Model inference on calibration and validation cohort488

All six deep learning architectures trained separately for quality control and diagnosis tasks489

were applied to pathology slides randomised to calibration and validation cohort. Whole-slide490

images were tesselated on the fly as described above. Detection of tissue was achieved by491

luminance thresholding of tile values in the LAB colour space. Tiles were forward-passed492
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through the trained deep learning architectures and softmax probabilities were aggregated for493

each tile position.494

Aggregation of classifications on tile level to the patient level495

We explored two different aggregation approaches based on propagation of the individual tile-496

level classifications to patient-level classifications for quality control and diagnosis: a fully au-497

tomated approach which operates on the basis of a single operating point, and a semi-automated,498

triage-driven approach which leverages two operating points. For the former approach, perfor-499

mance was assessed using sensitivity and specificity; for the latter, performance was assessed500

using an incremental substitution scheme with simultaneous analysis of sensitivity and speci-501

ficity. For both approaches, tile-level probabilities had to be thresholded to obtain the number502

of positive tiles per slide for quality control and diagnosis. In the following section, we describe503

how tile-level probabilities were thresholded and how the operating points on the resulting num-504

bers of positive tiles (quality control and diagnosis) were then calibrated and evaluated as part505

of each approach.506

Determination of tile-level probability thresholds507

In order to generalise the tile-level probabilities to the number of positive tiles per patient,508

we determined thresholds for each model and endpoint (quality control and diagnosis). The509

probability threshold of individual tiles for quality control and diagnosis had to be determined,510

then, the resulting number of positive tiles per threshold was assessed against the best ROC-511

AUC on the calibration cohort (Figure S3, Table S2).512

To achieve the best-performing threshold for individual tile probabilities and subsequent513

aggregation, we iterated over a range of tile thresholds on a fine grid from 0 to 1 (in 0.005514

steps and inclusive of 0.999, 0.9999, and 0.99999). For the quality control model on H&E,515
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the relevant class was gastric-type columnar epithelium. For the diagnosis model on TFF3, the516

relevant class was TFF3-positive goblet cells.517

In order to determine the resulting number of positive tiles per threshold, probability thresh-518

olds for quality control were compared (ROC-AUC) to the pathologist ground truth of H&E519

slide analysis. Probability thresholds for diagnosis were compared (ROC-AUC) to endoscopy520

(confirmation of BE presence by endoscopist and IM on endoscopy biopsy by pathologist)521

ground truth. This step was required to determine the optimal threshold for individual tile clas-522

sification. This threshold was then used in the calibration and validation of the fully automated523

and semi-automated, triage-driven model as described in the next section.524

Calibration of fully automated model525

All six deep learning architectures trained for quality control and diagnosis were applied to the526

whole-slide images from the calibration cohort (see Model inference). The number of positive527

tiles per sample for quality control and diagnosis was determined as described above. To de-528

termine an adequate operating point for the fully automated patient-level model, ROC analysis529

was performed on the number of detected tiles (quality control and diagnosis) per patient. On530

the same set of patients, we calculated the performance by an expert pathologist. In order to531

determine the ideal cut-off for number of detected tiles, we fixed the specificity of each model to532

the performance of an expert pathologist on the calibration cohort. The resulting operating point533

was then chosen for validation of the fully automated model in the validation cohort (Table S2).534

Tile-level thresholds which yielded the best sensitivity on the calibration cohort were used for535

evaluating all approaches on the validation cohort. The best-performing architecture (assessed536

by sensitivity) on the calibration cohort was considered the representative model for application537

on the validation cohort. However, due to the simplicity of operating point determination, the538

performance of all other architectures on the validation cohort was also investigated.539
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Evaluation of fully automated model using ROC analysis540

All six deep learning architectures trained for quality control and diagnosis were applied to the541

whole-slide images from the validation cohort (see Model inference). The number of positive542

tiles per sample for quality control and diagnosis was determined as described above. Subse-543

quently, the previously determined operating point (calibration) for each of the deep learning544

architectures was applied. The binary results were then compared against ground truth of the545

quality control and diagnosis models. For quality control on H&E, the results were compared to546

the ground truth of the pathologist who was reading the H&E slide of the Cytosponge test. For547

diagnosis on TFF3, the results were compared with endoscopy ground truth (with confirmation548

of BE presence by endoscopist and IM on endoscopy biopsy by pathologist). Sensitivities and549

specificities on the validation cohort were calculated for all models with an additional presen-550

tation of ROCs for visualisation (Table S3, Figure S5). For comparison with other approaches,551

performance metrics of the architecture selected during calibration of the fully automated model552

were used.553

Calibration of triage-driven, semi-automated model554

All six deep learning architectures trained for quality control and diagnosis were applied to the555

whole-slide images from the calibration cohort (see Model inference). For calibration, only556

the best model (according to ROC-AUC) was presented to two expert observers to determine557

operating points. The number of positive tiles per sample for quality control and diagnosis was558

determined as described above (Figure S6). The objective of this approach was a more granular559

classification of patients into three classes for quality control and diagnosis and subsequent560

stratification by different class combinations. Therefore, two operating points were determined561

for each model, instead of one.562

Both observers were presented with the number of detected tiles and relevant ground truth563
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(Cytosponge pathology and endoscopy) for quality control and diagnosis models. They were in-564

structed to choose two operating points for each task: First, an operating point which optimises565

sensitivity with a low number of false positives. Second, an operating point which separates the566

intermediate region of the first and second operating point from samples with optimised speci-567

ficity and a low number of false negatives. The resulting operating points were then chosen for568

validation of the semi-automated, triage-driven model in the validation cohort (Table S5).569

The two operating points for quality control and diagnosis resulted in three tiers per frame-570

work and were labelled as follows: for quality control, samples above the first operating point571

were to be considered as high confidence, samples between the first and second operating point572

as low confidence, and samples below the second operating point as no confidence. For diagno-573

sis, samples above the first operating point were to be considered as high confidence positive,574

samples between the first and second operating points as low confidence equivocal, and samples575

below the second operating point as high confidence negative. Eight triage classes (number 1576

to 8) were composed by all possible combinations of quality control and diagnosis classes. The577

combination (no confidence in quality and high confidence in diagnosis) is likely artifactual and578

was therefore merged (with no confidence in quality and equivocal in diagnosis) to form triage579

class 4. Two expert observers then ranked all eight classes from lowest to highest likelihood for580

patients having BE. They further assigned a qualitative rank for priority of manual review based581

on the subjective difficulty to review samples that are part of specific triage classes.582

Evaluation of triage-driven model on internal validation cohort583

The triage-driven, semi-automated model was evaluated by applying a cumulative substitution584

scheme on the internal validation cohort. The base scenario for all cumulative substitutions585

was the performance of the pathologists on the entire validation cohort. At every substitution,586

the pathologists’ Cytosponge-TFF3 results were substituted with automated review in the re-587
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spective triage classes. Then, sensitivity, specificity, and proportion of patients substituted with588

automated review were calculated and compared against the previous substitution steps. The589

substitution scheme was applied starting from both ends of the triage class list. First, class 1590

was substituted with automated review, then classes 1 and 2, then classes 1, 2, and 3, and so on.591

Second, class 8 was substituted with automated review, then classes 8 and 7, then classes 8, 7,592

and 6, and so on. We then analysed the sensitivity and specificity curves for deviations from593

their previous values for each step in both applications of the scheme. Classes which caused a594

drop in sensitivity or specificity on substitution were considered as ‘difficult’ and we retained595

manual review by a pathologist for associated samples. For each of the difficult classes we then596

summed up the number of patients that fell into these classes and divided by the total number597

of patient in the validation cohort. This ratio was to be considered as the potential workload598

reduction which this substitution scheme could achieve without notable loss in performance.599

Simulation of cohort variation and impact on workload reduction600

In order to assess workload reduction in cohorts with different compositions, we simulated the601

distribution of patients within triage classes with varying BE prevalences and sample confi-602

dences. Let P be a set of all patients with two subsets: Q ⊆ P contains all patients with BE and603

its complement R = P \ Q contains all patients without BE. We count the proportions of pa-604

tients in each triage class in each of the sets P , Q, R as vectors cP , cQ and cR, respectively. Our605

simulation consists in re-weighting these vectors to reflect different BE prevalences and sample606

confidences. For each element of a range of BE prevalences (sprev = {0.00, 0.01, ..., 0.55}) we607

multiply cQ by s ∈ sprev and cR by 1− s. At the same time, for each element of a range of rel-608

ative sample confidences (tconf = {−0.25,−0.24, ..., 0.25}) we shift proportions of cP between609

triage classes {1, 3, 4, 5, 6, 7} and {2, 8} by adding t ∈ tconf to one set of classes and subtracting610

it from the other. Reduction of workload (W ) at every simulation step was defined as cP for611
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classes 4, 5, and 6 over classes 1, 2, 3, 7, and 8:612

W =
cP4 + cP5 + cP6

cP1 + cP2 + cP3 + cP7 + cP8

Evaluation of triage-driven model on external validation cohort613

The triage-driven, semi-automated model was further evaluated applying it with frozen model614

parameters on the external validation cohort. Processing of images was performed as described615

on the internal validation cohort above. The trial from the data originates was investigating616

real-world implementation of the Cytosponge device technology. Therefore, endoscopy data617

endoscopy data was only available for positive Cytosponge patients and those who had Barrett’s618

diagnosed at follow-up as a result of standard of care. This resulted in a difference of available619

data as the study was designed for PPV instead of sensitivity and specificity. The NPV was also620

calculated by using aggregated findings from the primary trial endpoint. An analysis according621

to the presented substitution scheme was additionally performed ()622

Code availability623

The source code of this work is freely available at a public repository:624

https://github.com/markowetzlab/cytosponge-triage.625

Data availability626

The dataset is governed by data usage policies specified by the data controller (University of627

Cambridge, Cancer Research UK). We are committed to complying with Cancer Research UK’s628

Data Sharing and Preservation Policy. Whole-slide images used in this study will be available629

for non-commercial research purposes upon approval by a Data Access Committee due to in-630

stitutional requirements. Applications for data access should be directed to rcf29@cam.ac.uk.631

Data derived from the raw images are freely available at a public repository:632
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https://github.com/markowetzlab/cytosponge-triage. The code and included633

data enable replication of the results and figures in this manuscript.634
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Figure S1: Differential increase of training partition size for ResNet-18. Training subset refers to
the relative proportion of the training partition used in the model training phase. Development subset
refers to the relative proportion of the training partition used in the model development phase. The peak
development weighted recall (a) and precision (b) correspond to the best performing cohort for each
training run. The size of the development set was fixed at 15 patients. For each patient, an average of
3,500 tiles was used. For both H&E and TFF3 no substantial increase in performance metrics could be
observed after a training subset size of 50 patients. H&E benefited more from an increased number of
patients than the TFF3 model. This difference is associated with the increased complexity of detecting
different tissue morphologies on H&E vs. brown goblet cells on TFF3.
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Figure S2: Comparison of pathologist landmarks with saliency maps extracted from VGG-16 ar-
chitectures. Additional examples of saliency maps for Hematoxylin & Eosin stain (squamous cells
and columnar epithelium) and Trefoil factor 3 (positive goblet cells). Landmarks selected by an expert
pathologist are shown as overlays with red borders on pathology tile images. For all classes, there was
visual agreement between highlighted areas by the pathologist and saliency map activations.

42

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.16.20154732doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20154732
http://creativecommons.org/licenses/by-nc/4.0/


ba

0.0 0.2 0.4 0.6 0.8 1.0
Probability threshold for determination

of number of tiles with columnar epithlium

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U
C
-R
O
C
fo
rC
yt
os
po
ng
e
Q
C
w
ith

th
re
sh
ol
de
d
nu
m
be
ro
ft
ile
s

AlexNet
Densenet
Inception v3
ResNet-18
SqueezeNet
VGG-16

0.0 0.2 0.4 0.6 0.8 1.0
Probability threshold for determination

of number of tiles with positive goblet cells

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U
C
-R
O
C
fo
rB
E
on
en
do
sc
op
y
(+
IM
)w
ith

th
re
sh
ol
de
d
nu
m
be
ro
ft
ile
s

AlexNet
Densenet
Inception v3
ResNet-18
SqueezeNet
VGG-16

Figure S3: Determination of probability thresholds in order to obtain number of tiles. Both plots
show the AUC-ROC for individual probability thresholds (after softmax) which are used to decide
whether a tile falls into the relevant class. (a) AUC-ROC for quality control (QC) ground truth de-
termined by the pathologist compared with number of tiles containing columnar epithelium at individual
probability thresholds. (b) AUC-ROC for diagnosis ground truth determined by the endoscopy (with
confirmed IM on pathology) compared with number of tiles containing positive goblet cells at individual
probability thresholds.
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Figure S4: Performance of all deep learning architectures on the calibration cohort. (a) ROC analy-
sis of number of tiles containing columnnar epithelium on H&E compared with pathologist ground truth
from Cytosponge (b) ROC analysis of number of tiles containing positive goblet cells on TFF3 com-
pared with pathologist ground truth from Cytosponge (c) ROC analysis of number of tiles containing
positive goblet cells on TFF3 compared with endoscopy (with confirmed IM) ground truth. A weak
AUC dependency on architecture complexity can be observed.

44

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.16.20154732doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.16.20154732
http://creativecommons.org/licenses/by-nc/4.0/


a

b c

Automated quality control
vs. pathologist

Automated diagnosis
vs. pathologist

Automated diagnosis
vs. endoscopy

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

P
os

iti
ve

R
at

e Pathologist
VGG-16 - AUC: 0.88 (CI: 0.85-0.91)
VGG-16 calibration point
SqueezeNet - AUC: 0.85 (CI: 0.82-0.88)
SqueezeNet calibration point
ResNet-18 - AUC: 0.88 (CI: 0.85-0.91)
ResNet-18 calibration point
Inception v3 - AUC: 0.88 (CI: 0.85-0.91)
Inception v3 calibration point
Densenet - AUC: 0.89 (CI: 0.86-0.92)
Densenet calibration point
AlexNet - AUC: 0.86 (CI: 0.83-0.89)
AlexNet calibration point

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

P
os

iti
ve

R
at

e

VGG-16 - AUC: 0.97 (CI: 0.96-0.98)
SqueezeNet - AUC: 0.94 (CI: 0.92-0.96)
ResNet-18 - AUC: 0.97 (CI: 0.95-0.98)
Inception v3 - AUC: 0.97 (CI: 0.96-0.99)
Densenet - AUC: 0.97 (CI: 0.96-0.99)
AlexNet - AUC: 0.96 (CI: 0.94-0.98)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

P
os

iti
ve

R
at

e

VGG-16 - AUC: 0.99 (CI: 0.98-0.99)
SqueezeNet - AUC: 0.97 (CI: 0.95-0.98)
ResNet-18 - AUC: 0.97 (CI: 0.96-0.99)
Inception v3 - AUC: 0.98 (CI: 0.97-0.99)
Densenet - AUC: 0.98 (CI: 0.97-0.99)
AlexNet - AUC: 0.98 (CI: 0.97-0.99)

Figure S5: Performance of all deep learning architectures on the validation cohort. (a) ROC analysis
of number of tiles containing columnnar epithelium on H&E compared with pathologist ground truth
from Cytosponge (b) ROC analysis of number of tiles containing positive goblet cells on TFF3 compared
with pathologist ground truth from Cytosponge (c) ROC analysis of number of tiles containing positive
goblet cells on TFF3 compared with endoscopy (with confirmed IM) ground truth. As in the calibration
cohort, a weak AUC dependency on architecture complexity can be observed.
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Figure S6: Application of quality control and diagnostic confidence class scheme to calibration
cohort. a Quality ground truth by pathologist from Cytosponge (top) compared with number of detected
columnar epithelium (CE) tiles on H&E detected by VGG-16 (bottom). b Diagnosis ground truth by
pathologist from Cytosponge (top), Endoscopy (with confirmed IM on biopsy) ground truth (middle)
compared with number of detected TFF3-positive tiles on TFF3 detected by ResNet-18 (bottom) / eqv.
= equivocal.
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Figure S7: Performance of semi-automated, triage-driven model on external validation cohort a
Cumulative substitution scheme starting with fully manual review, followed by substitution with auto-
mated review of class no. 1, then 1 and 2, etc. b Cumulative substitution scheme starting with fully
manual review, followed by substitution with automated review of class no. 8, then 8 and 7, etc.
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Tables768

AlexNet DenseNet Inception ResNet SqueezeNet VGG
H&E

Overall accuracy 0.977 0.990 0.989 0.984 0.959 0.988
Precision

Background 0.999 0.999 0.999 0.999 0.999 0.999
CE (gastric type) 0.791 0.865 0.857 0.807 0.763 0.843

CE (respiratory type) 0.389 0.750 0.895 0.667 0.241 0.741
Intestinal Metaplasia 0.393 0.688 0.609 0.518 0.215 0.640

Recall
Background 0.984 0.995 0.996 0.991 0.963 0.995

CE (gastric type) 0.893 0.947 0.940 0.921 0.935 0.950
CE (respiratory type) 0.802 0.779 0.588 0.794 0.832 0.634
Intestinal Metaplasia 0.606 0.610 0.629 0.606 0.643 0.568
TFF3

Overall accuracy 0.996 0.999 0.998 0.998 0.999 0.998
Precision

Positive 0.752 0.903 0.856 0.827 0.589 0.856
Equivocal 0.233 0.513 0.533 0.385 0.133 0.404
Negative 1.000 1.000 1.000 1.000 1.000 1.000

Recall
Positive 0.912 0.890 0.919 0.912 0.897 0.919

Equivocal 0.465 0.465 0.372 0.465 0.767 0.442
Negative 0.997 1.000 1.000 0.999 0.991 0.999

Table S1: Tile-level precision and recall for all classes from H&E and TFF3 models. This
data is derived from the tiles in the development set. (DenseNet = DenseNet-121, Inception
= Inception v3, ResNet = ResNet-18, VGG = VGG-16). The highest value(s) per row is/are
highlighted in bold.
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AlexNet DenseNet Inception ResNet SqueezeNet VGG
Quality control
Probability threshold 0.97 0.96 0.995 0.96 0.85 0.99

AUC 0.985 0.984 0.986 0.986 0.980 0.988
Diagnosis
Probability threshold 0.9999 0.87 0.655 0.93 0.99999 0.93

AUC 0.80 0.82 0.83 0.83 0.80 0.83
Sensitivity at fixed

specificity (91.57%) 63.4% 62.5% 61.5% 63.5% 60.6% 64.4%

Tile number threshold 3 8 10 9 4 6

Table S2: Individual probability threshold calibration with associated performance based
on differential ROC analysis for quality control and diagnosis. The AUC for quality con-
trol relates to the performance on the calibration cohort at the given probability threshold for
individual tiles containing columnar epithelium on H&E. The AUC for diagnosis relates to the
performance on the calibration cohort at the given probability threshold for individual tiles con-
taining positive goblet cells on TFF3. Sensitivity is based on a fixed value of specificity derived
from the pathologist performance on the calibration cohort. The tile number threshold is the
resulting cutoff from the fixed specificity.
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AUC (CI 95%)
vs. pathologist

AUC (CI 95%)
vs. endoscopy

Sensitivity
(CI 95%)

Specificity

(CI 95%)
Quality control

AlexNet 0.98 (0.97-0.99) n/a n/a n/a
DenseNet 0.98 (0.97-0.99) n/a n/a n/a

Inception v3 0.98 (0.97-0.99) n/a n/a n/a
ResNet-18 0.97 (0.96-0.99) n/a n/a n/a

SqueezeNet 0.97 (0.95-0.98) n/a n/a n/a
VGG-16 0.99 (0.98-0.99) n/a n/a n/a

Diagnosis

Pathologist n/a n/a
81.75%

(76.67%-85.92%)
92.75%

(89.37%-95.51%)

AlexNet 0.96 (0.94-0.98) 0.86 (0.83-0.89)
72.24%

(66.98%-77.37%)
89.70%

(85.80%-92.97%)

DenseNet 0.97 (0.96-0.99) 0.89 (0.86-0.91)
70.34%

(64.84%-76.24%)
92.75%

(89.84%-95.85%)

Inception v3 0.97 (0.96-0.99) 0.88 (0.85-0.91)
69.96%

(64.71%-75.65%)
93.13%

(89.74%-96.03%)

ResNet-18 0.97 (0.95-0.98) 0.88 (0.85-0.91)
72.24%

(66.67%-77.18%)
91.22%

(87.72%-94.64%)

SqueezeNet 0.94 (0.92-0.96) 0.85 (0.82-0.88)
69.58%

(63.59%-74.54%)
92.37%

(88.85%-95.42%)

VGG-16 0.97 (0.96-0.99) 0.88 (0.85-0.91) 72.62%
(66.72%-77.64%)

93.13%
(89.75%-96.05%)

Table S3: Performance of all architectures after application on the validation cohort. Qual-
ity control models relied on pathologist calls on sample quality. Sensitivities or specificities
were not determined due to irrelevance in the fully automated model approach. Diagnosis mod-
els relied on thresholds determined on the calibration cohort.
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Quality classes No confidence Low confidence High confidence
No. of patients 22 27 138

Proportion 11.8% 14.4% 73.8%
QC positive (path) 0 9 137
QC negative (path) 22 18 1

Diagnostic classes High conf. negative Low conf. equivocal High conf. positive
No. of patients 56 59 72

Proportion 30.0% 31.5% 38.5%
TFF3 positive (path) 1 10 71
TFF3 negative (path) 55 49 1

Barrett’s esophagus 12 26 66
No Barrett’s esophagus 44 33 6

Table S4: Characteristics of patients in quality control and diagnosis classes from calibra-
tion cohort. For each of the three quality control and diagnosis classes, the number of patients
within the class and the paired ground truth is shown.

Quality classes No confidence Low confidence High confidence
No. of patients 55 116 354

Proportion 10.5% 22.1% 67.4
QC positive (path) 0 35 350
QC negative (path) 55 81 4

Diagnostic classes High conf. negative Low conf. equivocal High conf. positive
No. of patients 145 177 203

Proportion 27.6% 33.7% 38.7%
TFF3 positive (path) 4 33 197
TFF3 negative (path) 141 144 6

Barrett’s esophagus 18 61 184
No Barrett’s esophagus 127 116 19

Table S5: Characteristics of patients in quality control and diagnosis classes from valida-
tion cohort. For each of the three quality control and diagnosis classes, the number of patients
within the class and the paired ground truth is shown.
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Quality classes No confidence Low confidence High confidence
No. of patients 107 912 500

Proportion 7.1% 60.0% 32.9
QC positive (path) 38 733 350
QC negative (path) 69 179 4

Diagnostic classes High conf. negative Low conf. equivocal High conf. positive
No. of patients 747 646 126
Proportion 49.2% 42.5% 8.3%
TFF3 positive (path) 1 83 105
TFF3 negative (path) 746 563 21
Barrett’s esophagus 5 38 76
No Barrett’s esophagus 742 608 50

Table S6: Characteristics of patients in quality control and diagnosis classes from external
validation cohort. For each of the three quality control and diagnosis classes, the number of
patients within the class and the paired ground truth is shown.
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