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Abstract

Mitigating transmission of SARS-CoV-2 has been complicated by the inaccessibility and, in some
cases, inadequacy of testing options to detect present or past infection. Immunochromatographic
lateral flow assays (LFAs) are a cheap and scalable modality for tracking viral transmission by
testing for serological immunity, though systematic evaluations have revealed the low performance
of some SARS-CoV-2 LFAs. Here, we re-analyzed existing data to present a proof-of-principle
machine learning framework that may be used to inform the pairing of LFAs to achieve superior
classification performance while enabling tunable False Positive Rates optimized for the estimated
seroprevalence of the population being tested.
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Introduction

The SARS Coronavirus-2 (SARS-CoV-2) has emerged rapidly and precipitated the Coronavirus
Disease 2019 (COVID-19) pandemic that continues to threaten vulnerable populations and disrupt
daily life [5]. Although definitive evidence of antibody-mediated protective immunity against SARS-
CoV-2 infection is still needed [10, 14], promising early results from trials of convalescent plasma
therapy [4] and animal re-infection models [2] raise hopes that antibodies can confer some degree of
protection. Because infected individuals nearly uniformly mount detectable serological responses
against SARS-CoV-2 [9], sensitive and specific measurement of anti-SARS-CoV-2 serostatus is
critical for obtaining accurate estimates of natural immunity (prevalence), as well as infection rates
(incidence). Thus, reliable serology tests may provide important epidemiological information to
model viral spread and inform non-pharmaceutical interventions including physical distancing and
contact tracing.

A number of immunochromatographic lateral flow assays (LFAs) and enzyme-linked immunosor-
bence assays (ELISAs) were developed swiftly to detect antibodies against SARS-CoV-2 antigens.
Recent work by our group and others has revealed potentially inadequate sensitivity and specificity
of some of these LFAs [1, 6, 16], suggesting that uninformed usage of these tests could result in
inaccurate estimates of seroprevalence or release of misleading information to tested individuals.
Although select LFAs perform relatively well, no single LFA is both perfectly sensitive and spe-
cific. ELISAs tend to perform better, but they require specialized laboratory equipment that limit
their widespread adoption. Because LFAs remain accessible and can be deployed in point-of-care
settings, rational LFA deployment may improve diagnostic performance while retaining scalability
and ease of use.

Clinical testing methods incorporating multiple laboratory assays achieve superior performance
by leveraging the unique strengths of different assays, as is standard practice for HIV testing [8].
Because LFAs utilize a range of antigens and chemistries, we hypothesize that testing with pairs
of SARS-CoV-2 LFAs may classify specimen serostatus better than single LFAs. To test our
hypothesis, we compare the performance of single LFAs with that of LFA pairs using a simple
strategy requiring positive results from both LFAs (AND logic). Although the AND logic strategy
is able to reduce the false positive rate (FPR), it is accompanied by a substantial reduction in true
positive rate (TPR) (i.e., sensitivity or power), in some cases to levels below the performance of
individual LFAs.

To overcome the limitations of the simple AND logic strategy, we demonstrate a proof-of-concept
machine-learning classifier that combines the information of semi-quantitative readouts from both
IgM and IgG tests to control the FPR at a targeted level while achieving higher TPRs than
individual LFAs. Importantly, our classifier obtained the largest TPR gains when low-performing
LFAs are combined, thus significantly expanding their utility. The ability to tune the FPR could
enable the deployment of LFA pairs across a range of prior probabilities of seropositivity, and
facilitate sound statistical comparisons of different tests. We offer a principled framework that
may be used to identify well-performing LFA pairs for studies of individual- and population-level
immunity, effectively expanding the SARS-CoV-2 immunity testing options to increase testing
scalability and distribute supply demands across multiple vendors.

Results

We re-analyzed recently generated data [16] that examined the performance of SARS-CoV-2 LFAs
from 10 vendors (19 tests based on separate IgM and IgG detection for 9/10 assays) scored by
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Figure 1: Comparative performance of LFA combination strategies. a. Schematic describing data
reported in b, including baseline performance characteristics for IgM (“IgM only”, n = 9) and IgG
(“IgG only”, n = 9) tests for each LFA. For single (“Single LFA”, n = 10) and paired (“LFA Pair”,
n = 45) LFAs, specimens were classified as positive if either IgM or IgG test was positive for each
LFA. Machine learning (XGBoost) classifier receives both IgM and IgG test information for either
single (“Single LFA + ML”, n = 10) or paired (“LFA Pair + ML”, n = 45) LFAs. b. Balanced F-
score (or F1 score) for each experiment outlined in A. One “IgM only” outlier (F1 = 0.49) is cut off
for visualization purposes. The Wondfo LFA was excluded from “IgM only” and “IgG only” because
a single band reports signal from both IgM and IgG isotypes. The vertical black bars indicate the
range from first to third quartiles, white points indicate mean values, and horizontal bars indicate
median values. c. Pairwise vendor (V1-V10) TPR performance for XGBoost classifier at α = 0.015,
binned as low (light grey bar), medium (grey bar), or high (dark grey bar) TPR performance. The
diagonal (black outline) specifies TPR results for single LFAs, whereas off-diagonal results reflect
TPR of LFA pairs. The reported TPRs were averaged over 100 different random splits of data into
50% training and 50% test sets (see Supplemental Methods).
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two independent readers (Table S1) using a validated semi-quantitative scoring scale [15] with the
positivity threshold of ≥1 (Figure 1a-b: “IgM only” & “IgG only”). Here, we use the term “test”
to indicate individual IgM or IgG results, and the terms “LFA” and “vendor” to reference the
integrated result of IgM and IgG when interpreted together.

First, we determined whether a simple LFA pairing strategy improves specimen classification
performance as measured by the F1 score, a well-used evaluation metric in machine learning (see
Supplemental Methods). For each LFA, we combined the IgM and IgG results, calling the specimen
“positive” if either the IgM or IgG test result is above the positivity threshold (≥1) used in the
source publication [16] (Figure 1a-b: “Single LFA”). We find that combining IgM and IgG results
for each LFA improves the F1 score relative to IgM or IgG alone (mean: 88% vs. 81% & 84%,
respectively, Figure 1b) by primarily improving TPR (mean: 84% vs. 76% & 77%, respectively,
Figure S1). Subsequently, we examined all possible LFA pairs to determine whether requiring
concordant positivity of two LFAs (AND logic) would improve sample classification. This strategy
resulted in no improvements in F1 scores compared to single LFAs (mean: 88%, Figure 1b) but
lowered the TPR (mean: 80%, Figure S1).

This decrease in TPR revealed a vulnerability of the AND logic pairing approach to unforeseen
negative combination effects, thus motivating us to explore more sophisticated pairing strategies.
We evaluated several machine learning classifiers (including random forest, logistic regression, and
gradient boosting) using semi-quantitative readouts of LFA test intensities rather than binarized
data. We found gradient boosted decision trees (implemented in XGBoost [3], see Supplemental
Methods) worked particularly well, so we focused on this approach. Our XGBoost classifier inte-
grates the IgM and IgG test results for each LFA and outputs a probability of positivity for each
specimen. Thus, the trade-off between TPR and FPR can be tuned by applying a different proba-
bility threshold in accordance with the needs of the user and the prior probability of seropositivity
in the test population [16]. Whereas the heterogeneous FPRs reported across different single and
AND logic-paired LFAs complicates TPR comparisons (Figure S1), controlling the FPR at a de-
sired significance level α using a machine-learning classifier enables direct TPR comparisons and,
thus, identification of high-performing single and paired LFAs.

We first assessed the overall performance (F1 score) of the XGBoost classifier at a fixed probabil-
ity threshold of 0.5. We find that processing single LFAs with XGBoost (mean: 89%, Figure 1a-b:
“Single LFA + ML”) outperforms simple single IgM or IgG tests, single LFAs, and AND logic
LFA pairs mentioned previously. Further, combining LFAs with XGBoost further improves F1

scores (mean: 90%, Figure 1a-b: “LFA Pair + ML”). Leveraging the aforementioned ability to
tune the FPR, we next examined the TPR performance for individual LFAs at fixed significance
levels α = 1.5% (Figure 1c: diagonal, see Supplemental Methods), 3% (Figure S2a), and 4.5%
(Figure S2b). At α = 1.5%, we found that XGBoost roughly segregates LFAs from different ven-
dors into three TPR ranges: low (< 70%, light grey bar), mid (70–80%, grey), and high (> 80%,
dark grey). Pairing different LFAs with XGBoost (mean: 81%, Figure 1c: off-diagonal) achieves
higher TPRs than single vendor XGBoost classifiers (mean: 71%, Figure 1c: diagonal) at the same
FPR threshold. We found that vendors that perform well individually (e.g., Vendors 7 & 8) per-
form marginally better in combination (82% combined vs. 79% & 79% individually). Importantly,
LFAs that are lower performers alone (e.g., Vendors 2 & 3) can be paired to achieve significant
performance gains over each individual LFA (78% combined vs. 61% & 61% individually) and/or
confer modest gains on already mid-performing LFAs (e.g., Vendor 8: 79% individually vs. 83%
with Vendor 2 and 84% with Vendor 3). Similarly, two mid-performing LFAs (e.g., Vendors 5
& 8) could be paired to achieve performance in the range of single high-performing LFAs (85%
vs. 73% & 79% individually). These effects are not merely additive. For example, certain LFAs
enhance the performance of Vendor 10 more than others despite mid-level performance alone; e.g.,

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.20154773doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.15.20154773
http://creativecommons.org/licenses/by-nc-nd/4.0/


at significance level α = 1.5%, Vendor 9 (80%) performs better than Vendor 6 (77%) individually,
but combining Vendors 6 and 10 (91%) is better than Vendors 9 and 10 (89%). These results
demonstrate a proof-of-concept implementation of a machine-learning classifier that can effectively
identify specific LFA pairs with better classification performance overall and increased sensitivity
at a tuned False Positive Rate.

Discussion

Here, we have demonstrated the utility of machine learning to enhance performance and inform
deployment of lateral flow assays (LFAs) for anti-SARS-CoV-2 antibodies. LFAs will likely be
integral for accurate estimation of population seroprevalence to inform public health directives,
especially in settings where specialized equipment is unavailable [13]. We found that training an
optimized gradient boosted decision tree algorithm on LFA pairs has higher classification perfor-
mance (F1 score) than single LFA tests and a more naive LFA pairing strategy. Though LFAs for
anti-SARS-CoV-2 antibody detection are likely to improve with time, our framework provides an
alternative LFA deployment strategy until a “perfect” SARS-CoV-2 immunoassay is widely avail-
able. This computational approach will likely improve the performance of other immunoassays,
including SARS-CoV-2 rapid antigen tests and serological assays for other conditions, though the
method should be thoroughly validated on a case-by-case basis.

In addition to its superior performance, one of the primary advantages of using a machine learn-
ing classifier is the ability to tune the target False Positive Rates in accordance to the population in
which the LFAs are being deployed. Given the geographic variability of SARS-CoV-2 prevalence [5],
a more stringent FPR may be implemented in low prevalence settings where the pre-test probabil-
ity is exceedingly low. Conversely, high prevalence populations may be more effectively screened
by implementing a classifier that prioritizes higher TPR at the cost of specificity. Such threshold
tuning is dependent upon the use of a (semi)quantitative LFA scoring strategy [16], as categorical
input data (e.g., “Positive” or “Negative”) cannot be effectively optimized by the classifier. Objec-
tive LFA scoring in the form of automated densitometry or an image processing algorithm would
be ideal to provide continuous scoring data on which a machine learning classifier can be trained,
but, in the absence of this technology, we advocate for use of a validated semi-continuous scoring
system to be used by trained readers for optimal results.

Our calculations likely underestimate True Positive Rate given the absence of a gold-standard
SARS-CoV-2 immunoassay to identify seroconverted patient specimens. As discussed in our previ-
ous work [16], the use of SARS-CoV-2 RT-PCR to classify positive and negative specimens (with
the exception of historical, pre-SARS-CoV-2 negative samples) almost certainly includes specimens
that have not yet seroconverted. Here, we enrich for seropositive specimens by subsetting to spec-
imens collected 10 or more days after symptom onset [6] (see Supplemental Methods), but we do
not have sufficient late timepoint data to more stringently select for seropositivity [7, 9].

LFA batch variability, ongoing assay development, and small sample size preclude our ability
to nominate specific LFA combinations for real-world implementation. Rather, we propose here
a conceptual framework by which healthcare systems and governmental organizations performing
independent LFA evaluations can improve the performance of SARS-CoV-2 immunoassays using
machine learning. We demonstrate the approach using a popular machine learning classifier trained
on a rather small data set. Although this small sample size limits our ability to explore FPRs lower
than 1.5% (see Supplemental Methods), our results demonstrate increased TPR gains with com-
bination testing as the targeted FPR level decreases (Figure 1c, S2). We anticipate that using a
model trained on larger data should lead to improved performance and further aid researchers in
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selecting high-utility LFAs from a collection of evaluated vendors. Additional assay information,
including the SARS-CoV-2 antigen bait and secondary antibody detection reagents used in each
cartridge, will likely further improve performance by identifying co-linearity and, thus, more effec-
tively identify useful LFA combinations by de-prioritizing those unlikely to enhance one another.

Informed combination LFA testing could help to minimize supply chain limitations by spreading
the burden of meeting the world’s SARS-CoV-2 testing demand across multiple manufacturers and
LFA vendors. In doing so, our work could effectively expand the number of acceptable SARS-
CoV-2 immunoassay testing options, serving as a proof of principle demonstrating the utility of
combination LFA testing for more accurate determination of anti-SARS-CoV-2 antibody status.
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Supplement

Methods

True Positive Rate (TPR) is reported with respect to 79 specimens collected from SARS-CoV-2
RT-PCR-positive patients 10 days or more after patient-reported symptom onset. False Positive
Rate (FPR) is estimated against 31 specimens from SARS-CoV-2 RT-PCR-negative patients and
108 specimens from pre-July 2018 historical negative controls.

LFAs were scored using a validated 0-6 LFA scoring strategy [15], and a positivity threshold
of ≥ 1 [16] was used for non-machine learning results (Figure 1a-b: “IgM only”, “IgG only”,
“Single LFA”, and “LFA Pair”). Missing LFA scores for each vendor (0–15.3% of all specimens,
mean: 3.4%, SD: 4.6%) from two independent readers were imputed using a k-nearest neighbors
algorithm [12], and for each sample the average of the two scores was used for downstream analyses.
Pre-processing with imputation and score averaging does not significantly improve baseline TPR
(p = 0.27, Mann–Whitney U test) or FPR (p = 0.60, Mann–Whitney U test) performance metrics
of tests with missing data (Table S1).

We employed balanced F-score (F1 score), a widely-used measure of classification performance
in machine learning, to compare the performance of different experiments at divergent false positive
rates. It is defined as

F1 =
2

1
precision + 1

recall

or the harmonic mean of precision (the fraction of true positives among all instances called as
positive, or Positive Predictive Value) and recall (TPR, sensitivity, or power).

We implemented an ensemble machine learning classifier using the eXtreme Gradient Boost-
ing (XGBoost) package [3] with ‘gbtree’ booster and ‘binary:logistic’ objective. This method
uses both IgM and IgG test results for each LFA and iteratively generates, evaluates, and re-
fines decision trees to optimize for accurate “positive” or “negative” specimen classification. We
trained the XGBoost classifier on 50% of data, used 3-fold cross validation to tune its hyperpa-
rameters (max_depth, min_child_weight, lambda, subsample, colsample_bytree), and then
tested the trained model on the remaining 50% of data. We repeated this experiment 100 times
each with different random splits of data into training and test sets, and computed average TPRs
at fixed significance levels α = 1.5% (Figures 1c), 3%, and 4.5% (Figure S2). Given this train-test
split, the lowest possible non-zero FPR that could be considered when testing 50% of the 139
negative specimens is 1/(0.5 × 139) ≈ 0.015.

All analyses were performed in Python using the scikit-learn library [11] (except where otherwise
specified).
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Supplementary Table and Figures

 False Positive Rate (FPR) True Positive Rate (TPR) 
IgM IgG IgM IgG 

Vendor Reader2 Mean Imputed Reader2 Mean Imputed Reader2 Mean Imputed Reader2 Mean Imputed 
Bioperfectus 0.062 0.039 0.036 0.047 0.047 0.043 0.872 0.846 0.848 0.821 0.808 0.810 
Sure 0.000 0.000 0.000 0.000 0.000 0.000 0.671 0.658 0.658 0.760 0.747 0.747 
UCP 0.029 0.029 0.029 0.022 0.022 0.022 0.810 0.810 0.810 0.747 0.747 0.747 
DeepBlue 0.180 0.151 0.151 0.036 0.029 0.029 0.861 0.848 0.848 0.696 0.684 0.684 
DecomBio 0.101 0.094 0.093 0.073 0.065 0.065 0.870 0.870 0.873 0.870 0.857 0.861 
Innovita 0.033 0.008 0.007 0.000 0.000 0.000 0.369 0.369 0.329 0.742 0.742 0.760 
Premier 0.022 0.022 0.022 0.014 0.014 0.014 0.861 0.848 0.848 0.709 0.709 0.709 
BioMedomics 0.130 0.087 0.086 0.044 0.044 0.043 0.795 0.756 0.747 0.744 0.744 0.747 
VivaChek 0.062 0.062 0.058 0.039 0.039 0.036 0.851 0.851 0.861 0.824 0.811 0.823 

Mean 0.069 0.055 0.054 0.030 0.029 0.028 0.773 0.762 0.758 0.768 0.761 0.765 
SD 0.058 0.049 0.049 0.024 0.022 0.021 0.155 0.152 0.165 0.055 0.051 0.053 

 IgM & IgG  IgM & IgG  
Vendor Reader2 Mean Imputed Reader2 Mean Imputed 

Wondfo 0.008 0.008 0.007 0.870 0.870 0.873 
 

Table S1: Comparative LFA performance using scores from a single reader (“Reader2”), averaged
scores from two independent readers (“Mean”), or averaged scores from two independent readers
after imputation (“Imputed”).
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Figure S1: LFA performance with respect to True (TPR) and False Positive Rates (FPR) after
integrating IgM and IgG test results for each “Single LFA” (n = 10, black). Subsequently, an AND
logic was applied to require concordant positivity for each “LFA Pair” (n = 45, grey) in order to
classify a specimen as positive.
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Figure S2: Pairwise LFA performance for XGBoost classifier at significance level α = 0.03 (A) and
α = 0.045 (B). The diagonal (black outline) specifies results for single LFAs, whereas off-diagonal
results reflect TPR of LFA combinations. The reported TPRs were averaged over 100 different
random splits of data into 50% training and 50% test sets (see Supplemental Methods).
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