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Abstract
Initial COVID-19 containment in the United States focused on limiting mobility, including school
and workplace closures. However, these interventions have had enormous societal and economic
costs. Here we demonstrate the feasibility of an alternative control strategy, test-trace-quarantine:
routine testing of primarily symptomatic individuals, tracing and testing their known contacts, and
placing their contacts in quarantine. We performed this analysis using Covasim, an open-source
agent-based model, which was calibrated to detailed demographic, mobility, and epidemiological
data for the Seattle region from January through June 2020. With current levels of mask use and
schools remaining closed, we found that high but achievable levels of testing and tracing are
sufficient to maintain epidemic control even under a return to full workplace and community
mobility and with low vaccine coverage. The easing of mobility restrictions in June 2020 and
subsequent scale-up of testing and tracing programs through September provided real-world
validation of our predictions. Although we show that test-trace-quarantine can control the epidemic
in both theory and practice, its success is contingent on high testing and tracing rates, high
quarantine compliance, relatively short testing and tracing delays, and moderate to high mask use.
Thus, in order for test-trace-quarantine to control transmission with a return to high mobility, strong
performance in all aspects of the program is required.
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Introduction
Within 12 months of the world first becoming aware of COVID-19, the total number of diagnosed cases
exceeded 80 million (1), with the true number of infections likely much higher. As the pandemic has
evolved, so too have global public health responses. Many of the initial efforts to contain the spread
focused on border controls, but when these proved insufficient to prevent community transmission, the
focus turned to broad non-pharmaceutical interventions, such as lockdowns and other physical
distancing measures. Whilst effective in controlling infection rates (2), such measures have come at
enormous cost (3). Consequently, governments are increasingly relaxing lockdowns in favor of more
targeted "test-and-trace" strategies, whereby only those most likely to have COVID-19 – for example,
those who have symptoms, or who have been in contact with a confirmed case – are required to
quarantine. Such strategies have the potential to offer the epidemiological benefits of a large-scale
lockdown with smaller economic and societal costs.

Several studies have examined test-and-trace-based containment strategies of COVID-19 in different
contexts. Modeling studies have provided evidence that the success of such strategies depends on the
proportion of symptomatic cases, the speed and completeness of contact tracing, and adherence to
isolation and quarantine (4–8). Given an estimated basic reproduction number (R0) of 2.4–5.6 (9), the
number of effective contacts must be reduced by at least 60–80% to achieve epidemic control. Despite
this stringent requirement, China successfully demonstrated the feasibility of epidemic control through
mandatory home-based quarantine and isolation of those with confirmed infections. This strategy was
successfully followed by South Korea, Singapore, and other countries (10). However, success has not
been universal, and some countries have had to re-impose restrictions due to epidemic resurgence after
relaxing social distancing restrictions (11, 12).

These studies show that there are global precedents for the success of containment strategies based on
(a) high rates of routine testing (including both symptomatic and asymptomatic), (b) rapid return of test
results, (c) high rates of contact tracing, and (d) social support for people who have been diagnosed or
quarantined – a strategy we refer to as test-trace-quarantine (TTQ). However, the success of this
strategy depends on how effectively each component is implemented. To date, the COVID-19 response in
the United States (and other Western countries, such as the United Kingdom) has been marked by
insufficient quantities of test kits and associated supplies, along with challenges in implementing
contact tracing at scale and imperfect adherence to isolation guidelines (13). Increasing coverage of
infection-blocking vaccines will make control easier (14), but this effect is likely to be at least partially
countered by the higher transmissibility, and potential immune escape, of emerging SARS-CoV-2 variants
(15).

This study investigates what the requirements are for a high-income, urbanized setting to successfully
transition from a policy of mobility restrictions towards TTQ-based containment prior to high vaccine
coverage. To answer this question, used Covasim, a detailed, data-driven, agent-based model of
COVID-19, and applied it to the Seattle context (specifically King County, which includes Seattle and the
surrounding metropolitan area).
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Results

Mobility restrictions achieved initial epidemic control
The first case of SARS-CoV-2 in the USA was diagnosed on 20 January 2020 in the Seattle metropolitan
area (16); the first documented COVID-19 death in the USA was on 27 February, a resident of a long-term
care facility (LTCF) also in the Seattle area (17). Local and state governments began issuing a series of
measures to control the expanding epidemic, including school closures on 12 March and a
shelter-in-place order ("Stay Home, Stay Healthy") from 23 March until 31 May 2020 (18).

We fit the Covasim model to age-stratified data on COVID-19 diagnosed cases and deaths in Seattle
from January through June 2020 using Optuna, a parameter optimization library (19). Detailed
demographic information (including population age structure and contact patterns, school enrolment,
employment, and LTCF residency), mobility data (provided by SafeGraph; see http://safegraph.com), and
COVID-19 testing data were used as inputs. As shown in Fig. 1, Covasim was able to accurately
reproduce the detailed time trends of both diagnoses and deaths (Fig. 1A and B), including the age
distribution of each (insets). We estimate that approximately 100,000 SARS-CoV-2 infections (95%
confidence interval: 80,000–115,000 infections) occurred in Seattle between 27 January and 9 June
2020 (Fig. 1C), out of a total population of 2.25 million, for an attack rate (cumulative infections divided
by population size) of 3.5–5.1%. A total of 8,548 cases had been diagnosed by June 9, for an overall
diagnosis rate of 9% (95% CI: 7–11%). The effective reproduction number, Re, is estimated to have been
2.3 (95% CI: 2.0–2.6) prior to policy interventions, consistent with previous estimates (20), and to have
dropped below 1 as the shelter-in-place order took effect (Fig. 1D). This period also coincided with the
peak number of active infections, 16,000, with model projections validated by prevalence data from the
Seattle Coronavirus Assessment Network (Fig. 1C).

Calibrated model parameters, which provide estimates of transmission dynamics and intervention
effectiveness, are shown in Fig. 1E. The parameters used for calibration were: overall transmissibility β,
defined as the probability of transmission between an infectious and susceptible adult on a single day in
a typical household setting; transmission relative to baseline, which may change due to mask usage,
hygiene, physical distancing, and other measures; and the odds ratio for people with COVID-19
symptoms being tested versus people without symptoms (i.e., uninfected, asymptomatic, or
presymptomatic people). To determine the impact of mobility-related changes in transmission, we
calibrated the model both using reductions in the number of work and community contacts based on
SafeGraph weekly mobility data (M, blue), and using no mobility data (N, red). Including the mobility
trends, we found that relative transmissibility was reduced by 12±5% compared to its initial value,
reflecting the impact of other NPI, including interpersonal distancing, hygiene, and mask use; this drop is
consistent with increasing trends of protective health behaviors (21). To verify the calibration, we
excluded mobility data and recalibrated the model, finding that relative transmissibility dropped by
71±3% compared to its initial value. All other parameters had consistent values between the two
calibrations, including the change in transmission at LTCFs (estimated to have dropped by 80–92%) and
overall transmissibility (estimated at 4.3–4.5% per household contact per day). The symptomatic testing
odds ratio, reflecting the much higher rate at which people with COVID-like symptoms test, was
estimated to be 17–24. While the testing odds ratio remained constant, the routine testing yield (the
number of diagnoses divided by the number of tests) showed a decline from 10–15% in March to
1.5–2.5% in early June, due to the much lower number of active infections.
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Fig. 1: Calibration of the model to data from Seattle-King County, Washington, from 27 January to 9 June
2020. A–B: The cumulative number of diagnosed cases and deaths, over time and by age. C: Estimated
numbers of cumulative and active infections. Dashed lines show policy interventions; data are from the
Seattle Coronavirus Assessment Network. D: Effective reproduction number, showing a drop consistent with
policy interventions. E: Calibration of model parameters with SafeGraph mobility data (M, blue) and with no
mobility data (N, red); differences (Δ, green) are only significant for work/community transmission direction.
F: SafeGraph mobility data for workplaces and the community and for schools. LTCF, long-term care facility;
OR, odds ratio.

Since Covasim includes intra-host viral dynamics and a detailed demographic model, it can be used to
investigate mechanisms of transmission, as shown in Fig. 2. We find that infections were primarily driven
by transmission in workplace and community contact layers (accounting for approximately 58% of the
total) prior to interventions. Surprisingly, even though distancing interventions led to a roughly two-thirds
drop in workplace and community mobility (Fig. 1F), the total proportion of infections due to workplace
and community transmission reduced only slightly, to 52% (Fig. 2A). This is in part due to the high
overdispersion of SARS-CoV-2 infections (Fig. 2B): a majority of people infected do not transmit, while
50% of infections are caused by just 10% of people infected; these 10% infect, on average, 6.3 other
people (Fig. 2C). Thus, a relatively small proportion of highly infectious individuals are likely responsible
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for a majority of ongoing COVID-19 spread. Preliminary data from the contact tracing program in Seattle
provides further evidence for this: of the 44% of household contacts who received a COVID-19 test, 43%
of them tested positive (i.e., 19% of traced household contacts were positive); of the 31% of
non-household contacts who were tested, 28% tested positive (i.e., 9% of traced workplace contacts
were positive). High-risk index cases and contacts were preferentially both traced and tested, so these
estimates represent an upper bound on the attack rate, and international estimates on household
secondary attack rate have been even lower, ranging from 5% (22) to 19% (23). To be consistent with our
estimated value of Re, these relatively low household attack rates require high dispersion and significant
non-household transmission. We also find that 54% of transmissions are from symptomatic individuals,
similar to previous estimates (24, 25).

Fig. 2: Modeled transmission dynamics. A: Infections over time by contact layer. B: Overdispersion of
infections (up until school closures on 12 March), with roughly equal numbers of infections attributable to
individuals who transmit to 1–2 others, 3–4 others, 5–7 others, or more than 7 others. C: Due to
overdispersion, 10% of primary infections are responsible for 50% of secondary infections, while 53% of all
primary infections do not cause any secondary infections. Annotations show the number of transmissions
per primary infection, corresponding to each bar of panel B. D: Infections as a function of symptom onset,
showing that slightly over half of infections are transmitted by symptomatic individuals.
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Idealized test-trace-quarantine results in self-limiting epidemic dynamics
Before investigating TTQ in the Seattle context, we first consider how TTQ impacts SARS-CoV-2
transmission in a hypothetical population. Consider an idealized TTQ scenario, where all contacts are
traced, all traced contacts are tested and enter into 14-day quarantine (regardless of test result), and
combined testing and tracing delays are less than the duration of infectiousness (which is also assumed
to be the time period when a person would test positive). In this idealized scenario, epidemic control can
be achieved even for high values of R0, regardless of the stage of the epidemic at which the intervention
begins. This is because as a branch from a cluster of infections grows, the probability increases that
someone from that branch will be diagnosed. When this occurs, idealized contact tracing would identify
that branch via a series of steps, including both backwards ("upstream") and forwards ("downstream")
infections (26), hence removing that branch from the infectious pool.

Since each traced contact who tests positive results in additional traced contacts, contact tracing can be
thought of as an "infectious" process on the network. Specifically, if (a) the sum of the testing and tracing
delays is less than the average serial interval of SARS-CoV-2; and if (b) the majority of secondary
transmissions are successfully traced, diagnosed, and isolated, then the number of traced and
diagnosed contacts will spread locally on the network faster than SARS-CoV-2 infections, extinguishing
that branch. The number of backwards steps that can be taken is approximately the duration for which
someone returns a positive test following infection divided by the sum of testing and tracing delays.
Assuming the former is approximately 10–14 days and the latter is approximately 2–4 days, roughly 2–5
backward steps should be achievable, though in practice false negative tests would likely break the chain
sooner. However, even with just forward tracing, epidemic control is still theoretically achievable. Several
recent studies have produced similar findings (26–28).

Figure 3 shows an illustrative example of idealized TTQ resulting in epidemic control. In a hypothetical
population of 100 people without interventions, infections continue until herd immunity prevents further
spread (Fig. 3A). If a high level of testing and isolation is introduced (15% probability of testing per day
for people with symptoms, coupled with 80% effective isolation), the number of infections is only
modestly decreased despite nearly half of cases being diagnosed, since a large proportion of
transmission occurs before cases are diagnosed. Adding a moderate level of tracing (70% of household
contacts, 10% of workplace and school contacts) significantly reduces the number of infections (Fig.
3C), due to the rapid diagnosis of traced contacts and the preventative effect of quarantine.

Crucially, we find that the effectiveness of contact tracing is proportional to incidence, thereby resulting
in self-limiting epidemic dynamics. Fig. 3D shows a hypothetical population of 30,000 people in a
medium transmission scenario (R0 = 2.5), where borderline epidemic control (Re ≈ 1) can be achieved
through either moderate physical distancing alone (i.e., 60% reduction in β), high levels of routine testing
and isolation alone (75% daily probability of people with symptoms testing and isolating), or TTQ (8%
daily probability of people with symptoms testing, 90% of contacts of diagnosed individuals being traced
and quarantined, and 75% probability of testing on entering quarantine). In a low transmission setting
(Fig. 3E, R0 = 2.0), both physical distancing and testing lead to rapid epidemic extinction, while TTQ
maintains Re ≈ 1. Conversely, in a high transmission setting (Fig. 3F, R0 = 3.0), TTQ again maintains Re ≈ 1,
while physical distancing and testing do not achieve epidemic control. This is because distancing and
routine testing act like constant multipliers on transmission; they will achieve epidemic control if and
only if they bring Re < 1. In contrast, in a TTQ scenario with no capacity constraints, more infections will
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result in more diagnoses, more contacts being traced, more people placed in quarantine, and more
people tested in quarantine. This mechanism limits the size of individual clusters of infections in a TTQ
setting, as well as placing an upper bound on epidemic growth even with extremely high transmission
scenarios (e.g., R0 = 5). However, this phenomenon only occurs with sufficient levels of contact tracing:
analogous to Re, self-limiting dynamics only occur if at least one new case is detected on average for
each new index case whose contacts are traced. Whether or not this occurs is determined by the
probability of contact tracing, the probability of testing in quarantine, the population network structure,
and the rate of transmission.

Fig. 3: Epidemic dynamics differ depending on the intervention. A–C: Transmission trees for a cluster of 100
people under three scenarios: (A) no interventions, (B) testing and isolation only (starting on day 20), and (C)
test-trace-quarantine. D–F: Comparison of interventions for different levels of transmissibility. For medium
baseline transmission (D), moderate distancing, high testing, or high tracing each result in Re ≈ 1. For low
transmission (E), the same distancing and testing interventions both result in Re < 1, while the same tracing
intervention maintains Re ≈ 1. For high transmission (F), the same distancing and testing interventions both
result in Re > 1, while the same tracing intervention continues to maintain Re ≈ 1.

Realistic test-trace-quarantine scenarios allow high mobility
Implementing a successful TTQ strategy requires solving a challenging prioritization problem: whom to
test, whom to trace, how to ensure people safely isolate and quarantine, how to quickly return test
results, and how to quickly trace contacts. Barriers to high performance in each of these areas are varied,
including limited budgets, shortages of equipment and staff, behavioral compliance, and racial and
economic inequalities.
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Fig. 4: Impact of testing, tracing, and quarantine. A: Relative importance of different aspects of the TTQ
strategy for a scenario of high mobility (full return to baseline workplace and community movement patterns),
high testing, and high tracing in Seattle (dashed green lines). Each dot shows a simulation, with other
parameters held constant. Isolation/quarantine effectiveness has the greatest impact, with 2.2 infections
averted for each person fully isolated, although all parameters have a significant impact on epidemic
outcomes. B: Countering the effects of increased mobility via testing, tracing, and quarantine. Current
interventions (black diamonds) were estimated to keep Re < 1 for 60% of baseline mobility level (left).
Subsequently, increased transmission rates exceeded intervention scale-up, leading to Re > 1 temporarily
(center). For a return to full mobility (right), high levels of both testing and tracing are required to maintain
epidemic control (green diamond, corresponding to the dashed lines in panel A). Dots show individual
simulations.

Figure 4A shows how six aspects of the TTQ strategy affect the estimated numbers of infections in
Seattle: (1) effectiveness of isolation and quarantine (i.e., relative reduction in transmission during the
14-day isolation/quarantine period), (2) the number of routine tests per 1,000 people per day, (3) the
probability of a person's household and workplace contacts being traced following diagnosis, (4) the
proportion of contacts who are tested after they are traced, (5) the delay between when a person is
tested and when they receive their test result, and (6) the delay between when a person receives a
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positive test result and when their contacts are traced. Using the model calibrated to the Seattle region
up until June 1 and projecting forward for a 90-day period, we consider a hypothetical baseline scenario
of high mobility (100%), high testing (~6,000 routine tests per day, or 2.7 per 1,000 people per day,
compared to ~1,800 routine tests per day as of June 1 and ~3,500 routine tests per day as of July 15),
and high tracing (70% of all household and workplace contacts traced within 2 days, compared to
roughly 30% of household contacts and close to 0% of workplace contacts as of June 1). This scenario
was chosen as the most realistic means of achieving an Re value of below 1 given a return to 100%
mobility (Fig. 4B, green diamond). We then vary individual aspects of the response relative to this
baseline.

All six aspects of the TTQ strategy had a significant impact on epidemic outcomes. The most important
aspects, in terms of their impact on overall attack rate, were isolation/quarantine effectiveness and
routine testing probability. Each diagnosed or quarantined person who fully isolates is estimated to avert
1.2 subsequent infections over the 90-day period, while each routine test conducted is estimated to avert
0.2 infections. However, speed also matters: an additional one-day delay in returning test results is
estimated to result in nearly 4 additional infections per person who tests positive, while a one-day delay
in tracing contacts is estimated to result in nearly 2 additional infections for every index case whose
contacts are traced. While quarantine testing had the smallest overall impact on the attack rate, an
additional 0.4 infections are still estimated to be averted for every index case whose contacts are tested.
This is because quarantine testing is highly efficient at identifying infections: while the test positivity rate
for routine testing in early June was roughly 1.5%, traced contacts had a test positivity rate of 34%.

To explore the practical implications of these results for Seattle, we simulated three reopening scenarios
(Fig. 4B): 60%, 80%, and 100% mobility in the workplace and community contact layers, relative to
baseline, across a range of testing and contact tracing rates. We assume these mobility changes occur
in the context of continued use of masks and other non-mobility-related NPI, which we estimate have
together reduced transmission by roughly 10–15% (see Fig. 1E), which is consistent with roughly 40%
efficacy (29) coupled with 25–40% compliance. Unsurprisingly, a return to 100% workplace and
community mobility in the absence of other interventions would increase Re to well above 1, leading to a
large second wave of infections. High testing and high tracing are both required to maintain epidemic
control with full reopening. For example, even a four-fold increase in testing rates would fail to control
the epidemic without an increasing in contact tracing.

After the stay-at-home order was lifted on June 1, there was a large increase in transmission rates,
especially among younger age groups, which was followed by a large scale-up of both testing and
tracing programs. Figure 5 shows that the model calibrated until June 1 was able to replicate observed
epidemic trends over this period, providing validation that it is capturing the underlying transmission
dynamics in Seattle, as well as the impact of the testing and tracing interventions on the epidemic.
Figure 5 also illustrates what would have been achieved had a "high testing and tracing" scenario, as
described above, been implemented instead: while the peak numbers of people tested (Fig. 5A) and
contacts traced (Fig. 5B) would have been much higher (5,000 vs. 3,500 tests per day and 900 vs. 200
contacts traced per day), active infections would have declined much more rapidly Fig. 5C). By Aug. 31,
due to the low number of new infections, we estimate that the number of contacts traced (Fig. 5B) and
people diagnosed (Fig. 5D) in the "high testing and tracing" scenario would be comparable to or lower
than the true number.
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Fig. 5: Comparison between observed epidemic trends and projected scenarios from June 1 to August 31.
A: Numbers of tests conducted per day, with modeled values for the status quo (using the data as an input)
and a counterfactual scenario with high testing and high tracing. Lines show medians; shaded regions show
80% confidence intervals. B: Number of contacts traced per day. C: Estimated numbers of new infections,
with a significant rise in infections observed shortly after the stay-at-home order was lifted. D: Number of
diagnoses per day, showing consistency between the model and the data both for the calibrated period (Jan.
27 – May 31) and the projected period (Jun. 1 – Aug. 31).

Discussion
Seattle achieved epidemic control between mid March and early June as a result of (a) greatly reduced
mobility; (b) adoption of additional NPI, including interpersonal distancing, hand washing, and face
masks; and (c) moderate rates of routine testing, plus low but increasing rates of contact tracing. We
separated the effects of the first two components using detailed mobility data, and were therefore able
to assess the impact of reopening whilst assuming that distancing, hand washing, and face mask use
will continue. We found that with mobility at 60% of its pre-COVID levels, epidemic control could be
attained despite relatively low testing and tracing. Returning to full mobility would require identifying and
isolating many more cases, by significantly increasing both the number of routine tests conducted and
the proportion of contacts traced. From June through September, both mobility and interventions
increased, and data from this period were used to validate these findings.

The handful of countries that achieved control of their COVID-19 epidemics without relying on extensive
lockdowns have done so using a diversity of approaches, but those that have used a broader set of
interventions have achieved more stable epidemic control. Taiwan and South Korea used high rates of
testing, contact tracing, mask compliance, and other interventions to quickly bring their epidemics under
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control (30). Japan has had high mask compliance and a relatively high rate of contact tracing, but
relatively low testing rates; after early control, reported new cases increased from late May through early
July (31). Australia and New Zealand achieved early epidemic control via strong travel restrictions and
high rates of testing and contact tracing. However, mask use was low, and a rapid increase in cases in
the state of Victoria, Australia, began in late June, and was only brought under control after reimposed
mobility restrictions, mandated mask use, and high testing rates. In contrast, the neighboring state of
New South Wales was able to maintain epidemic control without reimposing lockdowns by combining
high testing rates (2.9 tests per 1,000 people per day, similar to the high testing and tracing scenario
presented here) with near-perfect tracing of close contacts (32). This observational evidence for a
diverse range of interventions being required for epidemic control is consistent with our finding that each
aspect of the response is roughly equally important: shortfalls in one area (e.g., low rates of testing or
mask usage) may be partly offset by high performance in another (e.g., high rates of contact tracing).
However, these examples suggest that epidemic control may be only fleeting unless performance is high
in all three areas (testing, tracing, and either mask usage or mobility restrictions).

As shown in Fig. 3, control via TTQ produces strong positive feedback dynamics. This means that it is an
especially effective control strategy when case numbers are low; however, even relatively small spikes in
cases can cause the system to be overwhelmed, a result that has been seen both in theory (33) and in
practice (11, 12). If this occurs, then a return to mobility restrictions remains the only consistently
effective strategy for regaining control.

There are several limitations of this study. First, we do not consider geographical clustering or
day-of-the-week changes in mobility, so cannot model hotspots or outbreaks in specific areas or on
specific days. Although this may not be crucial given that interventions were set at a county-wide level,
subsequent phases of the response may require more localized policy actions. Second, there is
continued debate around how susceptibility and transmissibility vary by age and with comorbidities; the
model parameters reflect the best available evidence to date (34), but new evidence is continually
coming to light. Third, there is considerable uncertainty around other crucial characteristics of both
SARS-CoV-2 transmission (including the extent to which it is seasonal, and the proportion of
asymptomatic and presymptomatic transmission) and the impact of interventions (such as mask
efficacy). We have handled these uncertainties by calibrating extensively to data (Fig. 1A-C), and by
propagating remaining uncertainties in parameters (Fig. 1E) through all scenarios. However, additional
data on transmission characteristics would nonetheless help refine our understanding of the most
important transmission pathways, as well as how to disrupt them.

In summary, we have shown that (a) agent-based models can be fit to detailed epidemic time trends and
age distributions (Fig. 1), as well as make accurate forecasts (Fig. 5); (b) an idealized
test-trace-quarantine program with no capacity constraints can control an epidemic even at high rates of
transmission (Fig. 3); and (c) high rates of testing and tracing, short delays, and high quarantine
compliance are all important for maintaining epidemic control (Fig. 4A), but the levels required for each
are likely to be achievable even under a return to full mobility (Fig. 4B). Thus, we believe the example of
Seattle provides strong evidence for test-trace-quarantine as a feasible control strategy – a strategy that
other jurisdictions may wish to invest in more heavily.
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Methods

Model
We performed modeling using Covasim, an agent-based model of COVID-19 transmission and
interventions. Covasim's methodology is described in detail in (35). Briefly, the Covasim model is
designed to capture the nuances of realistic COVID-19 transmission, including: age and population
structure, including relative susceptibility and mortality rates; transmission networks in different social
layers, including households, schools, workplaces, communities, and long-term care facilities; and viral
dynamics reflecting variable infectivity within and between hosts. Covasim also supports an extensive
set of interventions: non-pharmaceutical interventions (NPI), such as distancing and masks; testing
interventions, such as symptomatic and asymptomatic testing, contact tracing, isolation, and quarantine;
and pharmaceutical interventions, such as therapeutics and vaccines. While Covasim was originally
developed to inform policy decisions in Washington State, it has since been adapted for use in more than
a dozen countries, including Australia (36) and the United Kingdom (37). The code is fully open source
(available at http://github.com/institutefordiseasemodeling/covasim), and includes extensive
documentation (available at http://docs.covasim.org), tutorials, and software tests. Analyses were
performed with Covasim version 2.0.0. The following sections describe the customizations to Covasim
that were used in this study.

Data and sources
As an agent-based model, Covasim can make use of rich data sources. Mechanistic representations of
individuals, contacts, and infections enables physical parameter values to be input directly or used as
priors during model fitting. Default values for most inputs come from publicly available data and
literature, and are described in Tables 1 and 2 of (35).

To model the Seattle-King County region for this analysis, we used epidemiological data provided by the
Washington State Department of Health (WA-DoH) under a use agreement. (Note that "Seattle" and "King
County" are used interchangeably, i.e. the analysis is not restricted to the city of Seattle, nor does it
include counties in the greater Seattle metropolitan area such as Snohomish and Pierce counties.)
WA-DoH maintains all COVID-19 data as a line-list in the Washington Disease Reporting System (WDRS),
and has provided weekly exports to the study team for the purpose of conducting this and other
analyses in support of model-based decision making. We aggregated line-list entries to daily totals by
10-year age bins to produce target data for model calibration. The resulting dataset includes the number
of positive and negative tests (by date of sample collection) as well as the number of deaths (by date of
death) in King County. The WDRS records also enabled us to characterize the distribution of delays
between symptom onset on diagnostic swab; we used these data to validate the implementation of the
testing intervention (Fig. S11).
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Fig. 6: Comparison of empirical (orange), statistically modeled (green), and simulated (blue)
symptom-to-swab delay distributions.

Using data on the number of tests and number of diagnoses, we were able to calibrate the model to
testing yield. By combining this with estimated numbers of infections, which we know from both data on
deaths as well as independent seroprevalence surveys (as shown in Fig. 1C), we were able to estimate
the testing rates of people both with and without COVID-19. According to the most recent data available
at the time the analyses were performed (June 9), roughly 1,800 tests per day were being conducted in
King County; using this method, we found that a roughly 8% probability per day of testing for people
experiencing symptoms, and 0.1% probability per day of testing for people who without symptoms
(uninfected, asymptomatic, and presymptomatic), allowed us to match observed values for (a) the
overall number of tests, (b) the test positivity rate, and (c) the symptom-to-swab delay.

The partnership with Public Health Seattle & King County (PHSKC) has provided additional context to
ensure the model captures transmission, testing, care, and contact tracing in this setting. Public health
co-authors and other county officials have provided data, under use agreement, and insights on testing
campaigns, focal outbreaks, schools, hospitalization, and congregate settings such as long-term care
facilities (LTCF). Most of these data are available publicly on daily summary and LTCF dashboards.
Insights on how the testing program has evolved over the course of the epidemic has been used to set
change points for testing parameters, which are identified during the calibration process.

Washington is a home-rule state, meaning that laws can be set at the local level, and as such the contact
tracing programs are led by each local health jurisdiction. Seattle-King County was one of the first
jurisdictions in the state to pilot contact tracing using local health resources. Today, the county has
sufficient human resources to trace approximately half of the cases, while the other half are handled by
the Washington State contact tracing program. Data for this analysis were provided by PHSKC.

We used data on weekly foot traffic patterns obtained through SafeGraph to model the degree of mobility
in the workplace and community layers of the model. This publicly available dataset is based on
anonymized cell phone data, which connects foot traffic counts with points of interest visits for over 5
million unique locations in the United States. This rich dataset enables a detailed view of hourly visits to
specific locations. Using an aggregation of visits in King County across all industries starting at the end
of January, we classified visits with a dwell-time less than four hours as community-associated mobility,
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and those visits with a dwell-time of more than four hours as workplace-associated mobility. Using the
last week of January as a baseline value for “pre-COVID mobility”, we assigned a weekly mobility level for
community and work relative to the baseline value.

Population and network model
To model King County with detailed information on the demographics and network structures of the King
County population, we used SynthPops, an open-source data-driven model for generating realistic
synthetic contact networks for populations. Further details are provided below. For the population of
King County, we used a combination of data sources at the county, state, and country resolution with the
SynthPops model (version 0.7.2). Specifically, data from the 2018 American Community Survey (ACS) at
the county resolution (38) was used to estimate age and household size distributions. The US Census
Bureau (39) provided data for the age of reference individuals by household size at the country
resolution, and age mixing contact matrices for the US are drawn from (40). For the network layer of
schools, we used 2018 ACS 1-year estimates for county enrollment rates by age (38), municipal records
on school enrollment numbers (41), student-teacher ratios, and the average class size for schools (42).
For the network layer of workplaces, we used 2018 ACS 1-year estimates for county employment rates
by age (43) and 2015 county estimates for workplace sizes (44).

In King County, a significant percent of COVID-19 cases and deaths have occurred to date within the
LTCF population. However, most COVID models to date have not explicitly included LTCFs, which has
been identified as a major limitation (45). To capture the dynamics of transmission in this setting, the
SynthPops model was extended to include the contact layer of those living and working in long term care
facilities to reflect the initial outbreaks that occurred in these facilities (46). Data on the demographics of
LTCF residents for Washington state (47) was used to estimate the number of residents and their ages
for Seattle area facilities. From these data, we estimate approximately 15,000 individuals aged 60 and
older are residents of long term care facilities within the Seattle area. Additional King County data on the
number of residents per facility and resident-to-staff ratios were used to sample facility sizes and
populate the facilities with both residents and staff members. There were an average of 123 residents
per facility and 132 staff per facility, but there is wide variation in both total numbers of residents and
staff and in the resident-to-staff ratios during any shift. For the purposes of this model, residents
considered to be living in these facilities were not assigned any additional outside contacts (household,
school, workplace, or community). Staff members were drawn from the labor force of the population
under 60 years of age. With large facility sizes, we modeled close contacts in facilities by sampling for
each resident and staff member a subset of 20 contacts, ensuring that each resident is in contact with at
least one staff member.

Five synthetic populations of 225,000 modeled agents (representing 10% of King County's population)
were generated using SynthPops, with dynamic scaling used to rescale this population to represent the
full 2.25 million population of King County (see Section 2.6.2 of (35)). These synthetic populations had
roughly 500,000 household contacts, 1 million school contacts, 1.9 million workplace contacts, 4.5
million community contacts, and 31,000 LTCF contacts. To reflect the relative amount of time spent with
each contact across different layers, averaged across a typical week, relative transmission weights per
layer were set to be 100% for households (as a reference value), 50% for LTCFs, 20% for schools and
workplaces, and 10% for community contacts. These values were chosen for consistency with both
time-use surveys (48) and studies of infections with known contact types (32). A subset of simulations
were also run with 2.25 million agents to verify that results were consistent with and without rescaling.
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Calibration methodology
We calibrated model parameters using Optuna, a Python-based optimization library (19), using the
tree-structured Parzen estimator (TPE) sampler (49). This sampler trains models of p(θ|y) and p(y),
where θ is a set of parameters and y is a (scalar) output of a loss (objective) function, to find the region
of the parameter space that minimizes y. We defined the loss function to be the sum of the absolute
differences between observed data and the corresponding model predictions for seven different target
outputs, namely: (a) cumulative diagnoses per day, (b) cumulative deaths per day, (c) 7-day rolling
average diagnoses, (d) 7-day rolling average deaths, (e) total diagnoses by age (using 10-year age bins),
(f) average test positivity rate by age, and (g) total deaths by age. To equalize the weight given to each
point in each of these five different data types, each data type was normalized by the maximum value in
the data. In addition, cumulative vs. rolling average data were weighted in the ratio 4:1, which was found
to most efficiently optimize the tradeoff between accurate fitting of long-term trends (driven by fits to
cumulative data) and short-term trends (driven by fits to rolling average data). Deaths and diagnoses by
age were given a relative weighting of 2, while test positivity by age was given a weight of 0.4 (since it
was highly correlated with diagnoses by age, given that the total number of tests was fixed). These
weights were chosen through an iterative process to determine algorithm convergence; final results are
not sensitive to them, since the final simulations used for the analysis were good fits to all seven target
outputs, and since they do not represent independent degrees of freedom (e.g. a good fit to rolling
average diagnoses is necessarily at least a reasonable fit to cumulative diagnoses). Similarly, excluding a
given target (e.g., diagnoses by age) did not always result in a significantly worse fit to that target, as
long as at least one comparable target was included in the calibration (e.g., cumulative diagnoses).

We used 104,000 simulation runs during the calibration process to ensure broad exploration of
parameter space. To determine parametric uncertainty, we used a cutoff value for the loss function of
30, which corresponded to no more than roughly 2% average relative error per point in the diagnoses and
deaths time series, and roughly 10% average relative error for diagnoses, yield, and deaths age
distributions; this cutoff was also roughly a factor of 2 larger than the single best-fitting simulations
(which had total losses of 15.6 and 15.9 for calibrations with and without mobility data, respectively).
Using this cutoff, the posterior distribution consisted of the 15,092 best-fitting parameter sets for the
calibrations that used SafeGraph mobility data, and the 8,821 best-fitting parameter sets for calibrations
that did not. Median values and 95% confidence intervals for epidemic projections and parameter
distributions (Fig. 1) were produced using these parameter sets (based on a uniform sample of 200
simulations). Detailed transmission characteristics (Fig. 2) were based on the single best fit with mobility
data. For scenario analyses (Figs. 4 and 5), the top 10 best-fitting parameter sets for the calibrations that
included mobility data were used.

Calibrating using four parameters was found to be sufficient to allow sufficient flexibility to capture
observed epidemic trends, both with and without using mobility data as input. These parameters are
shown in Table 1; uniform priors were used. Simulations were initialized with 300 seed infections,
distributed at random throughout the population, on January 27. This initialization was chosen by
calibrating the number of seed infections and overall transmission rate (β) to the subset of data prior to
major policy or mobility changes (i.e., February 27), and for consistency with other estimates of the initial
reproduction number in King County. In the calibration, larger numbers of seed infections were
compensated for by smaller transmission rates; 300 seed infections was the fewest that could be used
(reflecting the highest baseline transmission rate) that provided a reasonable match to the data. We
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used SafeGraph data to determine the proportion of network edges in workplace and community layers
that should be removed or restored over time based on observed changes in the mobility. Other model
parameters were set to use Covasim defaults, as described below. The model was calibrated to data
from January 27 until June 9. Scenarios began on June 1; we used the 9-day period of overlap to ensure
consistency between calibrated and projected estimates of new infections, tests, diagnoses, and deaths.

Table 1. Model parameters and calibrated values determined via fitting model outputs to King County data.

Parameter Primarily constrained by Calibrated value
with SafeGraph

data: median
(95% CI)

Calibrated value
without SafeGraph

data: median (95% CI)

Search
interval

Probability of transmission
per contact per day (β, %)

Initial rate of epidemic growth in
observed diagnoses and deaths

4.4 (4.2, 4.6) 4.3 (4.2, 4.5) [3.3, 4.8]

Relative reduction in
transmission rate in work and
community layers from March
23 onwards (%)

Numbers of diagnoses and
deaths

12.3 (2.9,  23.5) 71.7 (65.0,  79.9) [0, 90]

Relative reduction in
transmission rate in LTCFs
from March 23 onwards (%)

Age distribution of deaths and
diagnoses; ratio of deaths to
diagnoses; time trend of deaths

86.1 (70.6,  94.2) 87.1 (71.0,  94.3) [60, 95]

Odds ratio of people with
symptoms testing

Test positivity rate; number of
diagnoses

20.9 (15.2,  27.7) 20.2 (14.8,  27.7) [10, 60]

Idealized test-trace-quarantine scenarios
For the illustrative transmission trees shown in Fig. 3A–C, we used a hypothetical population of 100
people with a single seed infection simulated for 100 days. Population demographics were based on
Seattle, Washington, USA, but contact networks were generated using the "hybrid" algorithm rather than
SynthPops; this algorithm is described in Section 2.4.3 of (35). Testing and tracing interventions began
on day 20 of the simulation. The testing intervention used 15% daily probabilities of testing for people
with symptoms; people without symptoms were not tested, and all people were tested upon entering
quarantine. After consulting with Public Health Seattle & King County on estimated behavioral norms,
contact tracing probabilities for the household, school, work, and community layers were 70%, 10%, 10%,
and 0%, respectively (note that long-term care facilities are not included in these scenarios). People who
were diagnosed and isolated were assumed to reduce their transmission rates by 70% for household
contacts, and 90% for school, workplace, and community contacts. People who were contact traced and
quarantined were assumed to reduce their transmission rates by 40% for household contacts, and 80%
for school, workplace, and community contacts.

To explore the theoretical properties of test-trace-quarantine (Fig. 3D–F), we used a hypothetical
population of 30,000 people with 100 seed infections simulated for 150 days. As above, a hybrid network
was used. Simulations were run with 10 different random seeds, for three different transmission levels:
medium transmission (β = 4.2% per household contact per day, consistent with estimated β for Seattle),
low transmission (β = 3.3%), and high transmission (β = 5.1%).

Parameters for each of the three intervention scenarios (physical distancing, testing, and testing plus
tracing) were chosen to bring Re ≈ 1 for the medium transmission scenario. These intervention
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parameters were held constant for the low and high transmission scenarios. The interventions that
began on day 15 of the simulation for each of the three scenarios were:

● Physical distancing scenario: 60% reduction in β, no testing or contact tracing;
● Testing scenario: no reduction in β; daily probability of testing of 75% and 7.5% for people with

and without symptoms, respectively, with no testing delay (test results returned same day); no
contact tracing;

● Test-and-trace scenario: no reduction in β; daily probability of testing of 8%, 0.8%, and 75% for
people with symptoms, without symptoms, and in quarantine, respectively, with no testing delay;
tracing probability of 90% across all layers with no tracing delay.

While zero delays were used here, we also ran a sensitivity analysis with nonzero delays (1 day for
testing and 1-2 days for contact tracing). Note that even with zero delays, there is a minimum one-day
delay per step in the contact tracing process (since people who are placed into quarantine cannot test
until the next timestep, i.e. the following day). In the model we assume that the duration of
infectiousness is equivalent to the period during which a person would test positive. For idealized TTQ to
succeed for high rates of transmission, the average delay for a single step of contact tracing must be
less than the average serial interval, i.e. the average delay between a primary infection and a secondary
infection. However, it is not necessary for the delays to be less than the shortest serial interval; if a
secondary infection occurs prior to contact tracing, the cluster can still be contained as long as the
average tracing delay is less than the average serial interval. An example of this is shown in Fig. 3C:
person 71 is not diagnosed until after they have infected person 74 (day 37), and person 74 is not traced
until after they have infected person 75 (day 40). However, person 75 is quarantined before they transmit
further (day 42), and the cluster is contained.

Realistic test-trace-quarantine scenarios
We used the 10 parameter configurations with the best fit to the data over the period February 1 to June
10 as the basis for the test-trace-quarantine (TTQ) scenarios shown in Fig. 4A. Scenarios were also run
with other sets of calibrations (including the top 100, and using the same goodness-of-fit threshold used
for the distributions shown in Fig. 1E). These results did not differ qualitatively and only modest
quantitative differences were observed; the top 10 calibrations were chosen to ensure the best fit to data
while still capturing both parametric and stochastic uncertainty. To explore the relative importance of
different intervention parameters, we ran a sweep of 50 points for each of the six parameters (described
below), for each of the 10 parameter configurations, for a total of 3,000 simulations. Each scenario
began on June 10 and ended on August 30, which was chosen as the period prior to the potential
reopening of schools. Scenarios began with an immediate return to 100% mobility in work and
community (from a baseline value of 43% from the last reported SafeGraph data on June 1) as well as
immediate implementation of the testing and contact tracing interventions with the parameter values
described below. Relative β (compared to baseline), reflecting mask use and other non-pharmaceutical
interventions, remained constant throughout the scenarios at its last calibrated value, which varied from
73% to 82%.

For each scenario, only one parameter at a time was varied. Note that the parameters interact
nonlinearly; for example, the impact of the contact tracing delay depends on the amount of contact
tracing. Additionally, the impact of interventions is dependent on the epidemic dynamics: with very low
mobility and hence baseline transmission, the impact of interventions will be reduced. Thus, the baseline
scenario was chosen to reflect (a) a situation where Re ≈ 1, which is the point most sensitive to small
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differences in intervention effectiveness; and (b) a balance between testing and contact tracing that is
intended to reflect a realistic scale-up of both current programs. While other baseline points would be
possible, this scenario aims to reflect a potentially achievable point by which Seattle-King County could
maintain Re ≈ 1 with full reopening.

The six intervention parameters are defined as follows:
1. Isolation/quarantine effectiveness: The relative change in transmission following either

diagnosis (isolation) or after being notified as a known contact (quarantine). While in practice
(and for the assumptions used during the calibration period) the effectiveness would differ
between isolation and quarantine (with isolation expected to have higher effectiveness), as well
as between contact layers (with a greater reduction in workplace and community transmission
compared to household), here we used a single weighted average value to ensure that the slope
has meaningful units (i.e., infections averted per person fully isolated or quarantined). The default
value chosen was 80% efficacy, which is a weighted average between workplace and community
contacts (where isolation efficacy is likely to be higher, e.g. 90–95% effectiveness) and
household contacts (where isolation efficacy is likely to be lower, e.g. 40–70% effectiveness).
This parameter was varied from 0% (no impact of isolation/quarantine) to 100% (zero
transmission during isolation/quarantine).

2. Contact tracing probability: The proportion of household, workplace, and LTCF contacts of a
person who has been diagnosed who are reached by contact tracers. (The proportion of
community contacts reached is assumed to be zero for this analysis; schools are closed for the
scenario period so there are no school contacts to trace.) The default value chosen was 50%,
which again reflects a weighted average between household and LTCF contact tracing (where
probabilities well above 80% are achievable) and workplace contact tracing (where probabilities
in Seattle-King County are currently low). This parameter was varied from 0% (no contacts traced)
to 100% (all household and workplace contacts traced).

3. Quarantine testing probability: The probability that a known contact, once traced, will be tested
for COVID-19. The default value used was 90%, regardless of symptoms. This parameter was
varied from 0% (no testing of people in quarantine) to 100% (including uninfected, asymptomatic,
and presymptomatic contacts). Upon testing negative, contacts were not released from
quarantine, due to the possibility that they would become infected due to continued contact with
the index case (as is often the case for household contacts), or in case they were exposed but
had not yet started shedding at detectable levels.

4. Routine testing probability: The probability per person per day of a person receiving a test for
COVID-19. The default values chosen were 16% per day for a person with active symptoms, and
0.16% for people who are uninfected or who do not have symptoms. These values correspond to
an approximate doubling of the number of daily tests relative to June 10; the ratio of probabilities
for people with and without symptoms was set to be 100, which was chosen to be consistent
with the observed testing yield in the data (approximately 1.5–2.5%). This parameter was varied
from 0% (no routine testing) to 50% daily symptomatic testing and 0.5% daily non-symptomatic
testing, corresponding to a roughly 4-fold increase in testing rates compared to June 10.

5. Swab-to-result delay: The average number of days between when a person receives a COVID-19
swab to when they are notified of their result. The default value chosen was 1 day, reflecting a
slight improvement on practice in Seattle-King County as of June 10 (approximately 1.5 days).
This parameter was varied from 0 days (immediate return of test results) to 7 days.

6. Contact tracing delay: The average number of days between when a person receives a positive
result from a COVID-19 test and when their contacts are traced and notified. The default value
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chosen was 2 days, which is somewhat shorter than estimates as of June 10 (3-5 days). This
parameter was varied from 0 days (immediate notification of all contacts, although the
swab-to-result delay is still present) to 7 days.

Because epidemic growth is an exponential process, the attack rate varied widely between scenarios,
from less than 0.1% to nearly 50%. The attack rate had nonlinear dependence on all intervention
parameters. Thus, the attack rate was log-transformed prior to fitting. The ordinary least squares method
from the Python package statsmodels was used for the fit. The uncertainty interval shown is the 95%
confidence interval from the ordinary least squares fit. Because of the log transform, the slope of the line
depends on the point of evaluation; in all cases, it was evaluated at the default value for each parameter.
Since the dependent variable in the regression is attack rate, the slope is also dependent on the period of
integration (here, 91 days); a longer integration period, for example, would lead to a higher cumulative
attack rate and thus larger slopes.

For the reopening sweeps (Fig. 4B), all parameters except for routine testing probability and contact
tracing probability were fixed at the default values described above. We simulated eight different
reopening levels (60% to 100%, in 5% increments), and show 60%, 80%, and 100% to represent low,
medium, and high transmission scenarios. Each sweep consists of 12,000 simulations, with each
simulation drawn from a uniform random distribution for (a) routine testing probability and (b) contact
tracing probability, with each simulation also drawing from one of the 10 best calibrations as described
above.

For reopening scenarios (Fig. 5), the status quo model was implemented using the baseline calibration
to data until June 1, using input data on observed numbers of tests performed and contacts traced. In
addition, mobility rates were increased to 80% on June 1, representing the lifting of the "Stay Home, Stay
Healthy" measure; a subsequent β reduction of 25% was applied on July 1, reflecting the statewide mask
requirements that were mandated on June 23 and July 7, as described in the August 13 Situation Report.
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