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Abstract  
Initial  COVID-19  containment  in  the  United  States  focused  on  limiting  mobility,  including  school                          
and  workplace  closures.  However,  these  interventions  have  had  enormous  societal  and  economic                        
costs.  Here  we  explore  the  feasibility  of  an  alternative  control  strategy,  test-trace-quarantine:                        
routine  testing  of  primarily  symptomatic  individuals,  tracing  and  testing  their  known  contacts,  and                          
placing  their  contacts  in  quarantine.  We  performed  this  analysis  using  Covasim,  an  open-source                          
agent-based  model,  which  was  calibrated  to  detailed  demographic,  mobility,  and  epidemiological                      
data  for  the  Seattle  region  from  January  through  May.  With  current  levels  of  mask  use  and  schools                                  
remaining  closed,  we  predict  that  high  but  achievable  levels  of  testing  and  tracing  are  sufficient  to                                
maintain  epidemic  control  even  under  a  return  to  full  workplace  and  community  mobility.  The                            
easing  of  mobility  restrictions  in  June  and  subsequent  scale-up  of  testing  and  tracing  programs                            
provided  real-world  validation  of  our  predictions.  Although  we  show  that  test-trace-quarantine  can                        
control  the  epidemic  in  both  theory  and  practice,  its  success  is  contingent  on  high  testing  and                                
tracing  rates,  high  quarantine  compliance,  relatively  short  testing  and  tracing  delays,  and  moderate                          
to  high  mask  use.  Thus,  in  order  to  control  transmission  with  a  return  to  high  mobility,  strong                                  
performance   in   all   aspects   of   the   program   is   required.  

 
Within  nine  months  of  the  world  first  becoming  aware  of  COVID-19,  the  total  number  of  confirmed  cases                                  
exceeded  30  million,  with  the  true  number  of  infections  likely  much  higher.  As  the  pandemic  has  evolved,                                  
so  too  have  global  public  health  responses.  Many  of  the  initial  efforts  to  contain  the  spread  focused  on                                    
border  controls,  but  when  these  proved  insufficient  to  prevent  community  transmission,  the  focus  turned                            
to  broad-based  lockdowns  and  physical  distancing  measures.  Whilst  effective ( 1 ) ,  such  measures  have                          
come  at  enormous  cost ( 2 ) .  Consequently,  governments  are  increasingly  relaxing  lockdowns  in  favor  of                            
more  targeted  "test-and-trace"  strategies,  whereby  only  those  most  likely  to  have  COVID-19  –  for                            
example,  those  who  have  symptoms,  or  who  have  been  in  contact  with  a  confirmed  case  –  are  required                                    
to  quarantine.  Such  strategies  have  the  potential  to  offer  the  epidemiological  benefits  of  a  large-scale                              
lockdown   with   smaller   economic   and   societal   costs.   
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Several  studies  have  examined  test-and-trace-based  containment  strategies  of  COVID-19  in  different                      
contexts.  Modeling  studies  have  provided  evidence  that  the  success  of  such  strategies  depends  on  the                              
proportion  of  symptomatic  cases  as  well  as  the  speed  and  completeness  of  contact  tracing ( 3 – 7 ) .  Given                                
an  estimated R 0  of  2.0–3.5,  the  number  of  effective  contacts  must  be  reduced  by  at  least  50–70%  to                                    
achieve  epidemic  control.  Despite  this  stringent  requirement,  China  successfully  demonstrated  the                      
feasibility  of  epidemic  control  through  mandatory  home-based  quarantine  and  isolation  of  those  with                          
confirmed  infections.  This  strategy  was  successfully  followed  by  South  Korea,  Singapore,  and  other                          
countries ( 8 ) .  However,  success  has  not  been  universal,  and  some  countries  have  had  to  re-impose                              
restrictions   due   to   epidemic   resurgence    ( 9 ) .  
 
Thus,  there  are  global  precedents  demonstrating  the  success  of  containment  strategies  based  on  (a)                            
high  rates  of  routine  testing,  (b)  rapid  return  of  test  results,  (c)  high  rates  of  contact  tracing,  and  (d)                                      
social  support  for  people  who  have  been  diagnosed  or  quarantined  –  a  strategy  we  refer  to  as                                  
test-trace-quarantine  (TTQ).  However,  the  success  of  this  strategy  depends  on  how  effectively  each                          
component  is  implemented.  To  date,  the  COVID-19  response  in  the  United  States  (and  other  Western                              
countries,  such  as  the  United  Kingdom)  has  been  marked  by  insufficient  quantities  of  test  kits  and                                
associated   supplies,   along   with   challenges   in   implementing   contact   tracing   at   scale    ( 10 ) .  
 
This  study  investigates  what  the  minimum  requirements  would  be  for  a  high-income,  urbanized  setting                            
to  successfully  transition  from  a  policy  of  mobility  restrictions  towards  TTQ-based  containment.  To                          
answer  this  question,  we  developed  Covasim,  a  detailed,  data-driven,  agent-based  model  of  COVID-19,                          
and  applied  it  to  the  Seattle  context  (specifically  King  County,  which  includes  Seattle  and  the  surrounding                                
metropolitan  area).  Covasim  is  designed  to  capture  the  nuances  of  realistic  COVID-19  transmission,                          
including:  age  and  population  structure,  including  relative  susceptibility  and  mortality  rates;  transmission                        
networks  in  different  social  layers,  including  households,  schools,  workplaces,  communities,  and                      
long-term  care  facilities;  and  viral  dynamics  reflecting  variable  infectivity  within  and  between  hosts.                          
Covasim  also  supports  an  extensive  set  of  interventions:  non-pharmaceutical  interventions  (NPI),  such                        
as  distancing  and  masks;  testing  interventions,  such  as  symptomatic  and  asymptomatic  testing,  contact                          
tracing,  isolation,  and  quarantine;  and  pharmaceutical  interventions,  such  as  therapeutics  and  vaccines.                        
While  Covasim  was  originally  developed  to  inform  policy  decisions  in  Washington  State,  it  has  since                              
been  adapted  for  use  in  more  than  10  countries,  including  Australia ( 11 )  and  the  United  Kingdom ( 12 ) .                                  
The   Covasim   model   (available   at    http://covasim.org )   is   described   in   detail   in   the   Materials   and   Methods.  

Mobility   restrictions   achieved   initial   epidemic   control  
The  first  case  of  SARS-CoV-2  in  the  USA  was  diagnosed  on  January  20  in  the  Seattle  metropolitan  area                                    
( 13 ) ;  the  first  documented  COVID-19  death  in  the  USA  was  on  February  27,  a  resident  of  a  long-term  care                                      
facility  (LTCF)  also  in  the  Seattle  area ( 14 ) .  Local  and  state  governments  began  issuing  a  series  of                                  
measures  to  control  the  expanding  epidemic,  including  school  closures  on  March  12  and  a                            
shelter-in-place   order   ("Stay   Home,   Stay   Healthy")   from   March   23   until   May   31    ( 15 ) .  
 
We  fit  the  Covasim  model  to  data  on  COVID-19  deaths  and  diagnoses  in  Seattle  using  Optuna,  a                                  
parameter  optimization  library ( 16 ) .  Detailed  demographic  information  (including  population  age                    
structure  and  contact  patterns,  school  enrolment,  employment,  and  LTCF  residency),  mobility  data                        
(provided  by  SafeGraph;  see http://safegraph.com ),  and  COVID-19  testing  data  were  used  as  inputs.  As                            
shown  in  Fig.  1,  Covasim  was  able  to  accurately  reproduce  the  detailed  time  trends  of  both  diagnoses                                  
and  deaths  (Fig.  1A  and  B),  including  the  age  distribution  of  each  (insets).  We  estimate  that                                
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approximately  100,000  SARS-CoV-2  infections  (95%  confidence  interval:  80,000–115,000  infections)                  
occurred  in  Seattle  between  January  27  and  June  9  (Fig.  1C),  out  of  a  total  population  of  2.25  million,  for                                        
an  attack  rate  (cumulative  infections  divided  by  population  size)  of  3.5–5.1%.  A  total  of  8,548  cases  had                                  
been  diagnosed  by  June  9,  for  an  overall  diagnosis  rate  of  9%  (95%  CI:  7–11%).  The  effective                                  
reproduction  number, R e ,  is  estimated  to  have  been  2.3  (95%  CI:  2.0–2.6)  prior  to  policy  interventions,                                
consistent  with  previous  estimates ( 17 ) ,  and  to  have  dropped  below  1  as  the  shelter-in-place  order  took                                
effect  (Fig.  1D).  This  period  also  coincided  with  the  peak  number  of  active  infections,  16,000,  with  model                                  
projections   validated   by   prevalence   data   from   the   Seattle   Coronavirus   Assessment   Network   (Fig.   1C).  
 

 
Fig.  1.  Calibration  of  the  model  to  data  from  Seattle-King  County,  Washington,  from  February  1  to  June  9.                                    
A–B:  The  cumulative  number  of  diagnosed  cases  and  deaths,  over  time  and  by  age. C:  Estimated  numbers  of                                    
cumulative  and  active  infections.  Dashed  lines  show  policy  interventions;  data  are  from  the  Seattle                            
Coronavirus  Assessment  Network. D:  Effective  reproduction  number,  showing  a  drop  consistent  with  policy                          
interventions. E:  Calibration  of  model  parameters  with  SafeGraph  mobility  data  (M,  blue)  and  with  no  mobility                                
data  (N,  red);  differences  (Δ,  green)  are  only  significant  for  work/community  transmission  direction. F:                            
SafeGraph  mobility  data  for  workplaces  and  the  community  and  for  schools.  LTCF,  long-term  care  facility;  OR,                                
odds   ratio.  
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Calibrated  model  parameters,  which  provide  estimates  of  transmission  dynamics  and  intervention                      
effectiveness,  are  shown  in  Fig.  1E.  The  parameters  used  for  calibration  were:  overall  transmissibility β ,                              
defined  as  the  probability  of  transmission  between  an  infectious  and  susceptible  adult  on  a  single  day  in                                  
a  typical  household  setting;  transmission  relative  to  baseline,  which  may  change  due  to  mask  usage,                              
hygiene,  physical  distancing,  and  other  measures;  and  the  odds  ratio  for  people  with  COVID-19                            
symptoms  being  tested  versus  people  without  symptoms  (i.e.,  uninfected,  asymptomatic,  or                      
presymptomatic  people).  To  determine  the  impact  of  mobility-related  changes  in  transmission,  we                        
calibrated  the  model  both  using  reductions  in  the  number  of  work  and  community  contacts  based  on                                
SafeGraph  mobility  data  (M,  blue),  and  using  no  mobility  data  (N,  red).  Including  the  mobility  trends,  we                                  
found  that  relative  transmissibility  was  reduced  by  12±5%  compared  to  its  initial  value,  reflecting  the                              
impact  of  other  NPI,  including  interpersonal  distancing,  hygiene,  and  mask  use;  this  drop  is  consistent                              
with  increasing  trends  of  protective  health  behaviors ( 18 ) .  To  verify  the  calibration,  we  excluded  mobility                              
data  and  recalibrated  the  model,  finding  that  relative  transmissibility  dropped  by  71±3%  compared  to  its                              
initial  value.  All  other  parameters  had  consistent  values  between  the  two  calibrations,  including  the                            
change  in  transmission  at  LTCFs  (estimated  to  have  dropped  by  80–92%)  and  overall  transmissibility                            
(estimated  at  4.3–4.5%  per  household  contact  per  day).  The  symptomatic  testing  odds  ratio,  reflecting                            
the  much  higher  rate  at  which  people  with  COVID-like  symptoms  test,  was  estimated  to  be  17–24.  While                                  
the  testing  odds  ratio  remained  constant,  the  routine  testing  yield  (the  number  of  diagnoses  divided  by                                
the  number  of  tests)  showed  a  decline  from  10–15%  in  March  to  1.5–2.5%  in  early  June,  due  to  the                                      
much   lower   number   of   active   infections.  
 
Since  Covasim  includes  intra-host  viral  dynamics  and  a  detailed  demographic  model,  it  can  be  used  to                                
investigate  mechanisms  of  transmission,  as  shown  in  Fig.  2.  We  find  that  infections  were  primarily                              
driven  by  transmission  in  workplace  and  community  contact  layers  (accounting  for  approximately  58%                          
of  the  total)  prior  to  interventions.  Surprisingly,  even  though  distancing  interventions  led  to  a  roughly                              
two-thirds  drop  in  workplace  and  community  mobility  (Fig.  1F),  the  total  proportion  of  infections  due  to                                
workplace  and  community  transmission  reduced  only  slightly,  to  52%  (Fig.  2A).  This  is  in  part  due  to  the                                    
high  overdispersion  of  SARS-CoV-2  infections  (Fig.  2B):  a  majority  of  people  infected  do  not  transmit,                              
while  50%  of  infections  are  caused  by  just  9%  of  people  infected  (Fig.  2C).  These  results  hold  even                                    
though  "superspreading"  events  (>20  infections  per  index  case)  appear  to  be  rare  and  are  unlikely  to  be                                  
major  epidemic  drivers.  Nonetheless,  a  relatively  small  proportion  of  highly  infectious  individuals  are                          
likely  responsible  for  a  majority  of  ongoing  COVID-19  spread.  Preliminary  data  from  the  contact  tracing                              
program  in  Seattle  provides  further  evidence  for  this:  of  the  44%  of  household  contacts  who  received  a                                  
COVID-19  test,  43%  of  them  tested  positive  (i.e.,  19%  of  traced  household  contacts  were  positive);  of  the                                  
31%  of  non-household  contacts  who  were  tested,  28%  tested  positive  (i.e.,  9%  of  traced  workplace                              
contacts  were  positive).  High-risk  index  cases  and  contacts  were  preferentially  both  traced  and  tested,                            
so  these  estimates  represent  an  upper  bound  on  the  attack  rate,  and  international  estimates  on                              
household  secondary  attack  rate  have  been  even  lower,  ranging  from  5% ( 19 )  to  19% ( 20 ) .  To  be                                  
consistent  with  our  estimated  value  of R e ,  these  relatively  low  household  attack  rates  requires  high                              
dispersion  and  significant  non-household  transmission.  We  also  find  that  56%  of  transmissions  are  from                            
symptomatic   individuals,   similar   to   previous   estimates    ( 21 ,    22 ) .   
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Fig.  2.  Modeled  transmission  dynamics.  A:  Infections  over  time  by  contact  layer. B:  Overdispersion  of                              
infections,  with  roughly  equal  numbers  of  infections  attributable  to  individuals  who  transmit  to  1–2  others,                              
3–5  others,  or  more  than  5  others. C:  Due  to  overdispersion,  9%  of  primary  infections  are  responsible  for  50%                                      
of  secondary  infections,  while  59%  of  all  primary  infections  do  not  cause  any  secondary  infections. D:                                
Infections  as  a  function  of  symptom  onset,  showing  that  slightly  over  half  of  infections  are  transmitted  by                                  
symptomatic   individuals.   

Idealized   test-trace-quarantine   results   in   self-limiting   epidemic   dynamics  
Before  investigating  TTQ  in  the  Seattle  context,  we  first  consider  how  TTQ  impacts  SARS-CoV-2                            
transmission  in  a  hypothetical  population.  In  an  idealized  TTQ  scenario,  where  all  contacts  are  traced,  all                                
traced  contacts  are  tested  and  enter  into  quarantine,  and  delays  are  less  than  the  duration  of                                
infectiousness,  epidemic  control  can  be  achieved  even  for  high  values  of R 0 ,  regardless  of  the  stage  of                                  
the  epidemic  at  which  the  intervention  begins.  This  is  because  as  a  cluster  of  infections  grows,  the                                  
probability  increases  that  someone  from  that  cluster  will  be  diagnosed,  and  when  this  occurs,  idealized                              
contact  tracing  would  identify  everyone  in  the  cluster  via  a  series  of  steps,  including  both  "upstream"  and                                  
"downstream"  infections,  hence  removing  that  cluster  from  the  infectious  pool.  Since  each  traced                          
contact  who  tests  positive  results  in  additional  traced  contacts,  contact  tracing  can  be  thought  of  as  an                                  
"infectious"  process  on  the  network.  Specifically,  if  (a)  the  sum  of  the  testing  and  tracing  delays  is  less                                    
than  the  serial  interval  of  SARS-CoV-2,  and  if  (b)  the  majority  of  secondary  transmissions  are                              
successfully  traced  and  diagnosed,  then  the  number  of  traced  and  diagnosed  contacts  will  spread  locally                              
on   the   network   faster   than   SARS-CoV-2   infections,   extinguishing   that   cluster.  
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Figure  3  shows  an  illustrative  example  of  idealized  TTQ  resulting  in  epidemic  control.  In  a  hypothetical                                
population  of  100  people  without  interventions,  infections  continue  until  herd  immunity  prevents  further                          
spread  (Fig.  3A).  If  a  high  level  of  testing  and  isolation  is  introduced  (15%  probability  of  testing  per  day                                      
for  people  with  symptoms,  coupled  with  80%  effective  isolation),  the  number  of  infections  is  only                              
modestly  decreased  despite  nearly  half  of  cases  being  diagnosed,  since  a  large  proportion  of                            
transmission  occurs  before  cases  are  diagnosed.  Adding  a  moderate  level  of  tracing  (70%  of  household                              
contacts,  10%  of  workplace  and  school  contacts)  significantly  reduces  the  number  of  infections  (Fig.                            
3C),   due   to   the   rapid   diagnosis   of   traced   contacts   and   the   preventative   effect   of   quarantine.  
 

 

Fig.  3.  Epidemic  dynamics  differ  depending  on  the  intervention. A–C:  Transmission  trees  for  a  cluster  of                                
100  people  under  three  scenarios:  ( A )  no  interventions,  ( B )  testing  and  isolation  only  (starting  on  day  20),  and                                    
( C )  test-trace-quarantine. D–F:  Comparison  of  interventions  for  different  levels  of  transmissibility.  For                        
medium  baseline  transmission  ( D ),  moderate  distancing,  high  testing,  or  high  tracing  each  result  in R e  ≈  1.  For                                    
low  transmission  ( E ),  the  same  distancing  and  testing  interventions  both  result  in R e  <  1,  while  the  same                                    
tracing  intervention  maintains R e  ≈  1.  For  high  transmission  ( F ),  the  same  distancing  and  testing  interventions                                
both   result   in    R e    >   1,   while   the   same   tracing   intervention   continues   to   maintain    R e    ≈   1.  

Crucially,  the  effectiveness  of  contact  tracing  is  proportional  to  incidence,  and  thus  it  results  in                              
self-limiting  epidemic  dynamics.  Fig.  3D  shows  a  hypothetical  population  of  30,000  people  in  a  medium                              
transmission  scenario  ( R 0  =  2.5),  where  borderline  epidemic  control  ( R e  ≈  1)  can  be  achieved  through                                
either  moderate  physical  distancing  alone  (i.e.,  60%  reduction  in β ),  high  levels  of  routine  testing  and                                
isolation  alone  (75%  daily  probability  of  people  with  symptoms  testing  and  isolating),  or  TTQ  (8%  daily                                
probability  of  people  with  symptoms  testing,  90%  of  contacts  of  diagnosed  individuals  being  traced  and                              
quarantined,  and  75%  probability  of  testing  on  entering  quarantine).  In  a  low  transmission  setting  (Fig.                              
3E, R 0  =  2.0),  both  physical  distancing  and  testing  lead  to  rapid  epidemic  extinction,  while  TTQ  maintains                                  
R e  ≈  1.  Conversely,  in  a  high  transmission  setting  (Fig.  3F, R 0  =  3.0),  TTQ  again  maintains R e  ≈  1,  while                                          
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physical  distancing  and  testing  do  not  achieve  epidemic  control.  This  is  because  distancing  and  routine                              
testing  act  like  constant  multipliers  on  transmission;  they  will  achieve  epidemic  control  if  and  only  if  they                                  
bring R e  <  1.  In  contrast,  in  a  TTQ  scenario  with  no  program  capacity  constraints,  an  increase  in  the                                      
number  of  infections  will  result  in  more  diagnoses,  more  contacts  being  traced,  more  people  placed  in                                
quarantine,  and  more  people  tested  in  quarantine  (assuming  no  program  capacity  constraints).  This                          
mechanism  limits  the  size  of  individual  clusters  of  infections  in  a  TTQ  setting,  as  well  as  placing  an                                    
upper  bound  on  epidemic  growth  even  with  extremely  high  transmission  scenarios  (e.g., R 0  =  5).                              
However,  this  phenomenon  only  occurs  with  sufficient  levels  of  contact  tracing:  analogous  to R e ,                            
self-limiting  dynamics  only  occur  if  at  least  one  new  case  is  detected  on  average  for  each  new  index                                    
case  whose  contacts  are  traced.  Whether  or  not  this  occurs  is  determined  by  the  probability  of  contact                                  
tracing,  the  probability  of  testing  in  quarantine,  the  population  network  structure,  and  the  rate  of                              
transmission.  

Realistic   test-trace-quarantine   scenarios   allow   high   mobility  
Implementing  a  successful  TTQ  strategy  requires  solving  a  challenging  prioritization  problem:  whom  to                          
test,  whom  to  trace,  how  to  ensure  people  safely  isolate  and  quarantine,  how  to  quickly  return  test                                  
results,  and  how  to  quickly  trace  contacts.  Barriers  to  high  performance  in  each  of  these  areas  are                                  
varied,  including  limited  budgets,  shortages  of  equipment  and  staff,  behavioral  compliance,  and  racial                          
and   economic   inequalities.  
 
Figure  4A  shows  how  six  aspects  of  the  TTQ  strategy  affect  the  estimated  numbers  of  infections  in                                  
Seattle:  (1)  effectiveness  of  isolation  and  quarantine  (i.e.,  relative  reduction  in  transmission),  (2)  the                            
number  of  routine  tests  per  1,000  people  per  day,  (3)  the  probability  of  a  person's  household  and                                  
workplace  contacts  being  traced  following  diagnosis,  (4)  the  proportion  of  contacts  who  are  tested  after                              
they  are  traced,  (5)  the  delay  between  when  a  person  is  tested  and  when  they  receive  their  test  result,                                      
and  (6)  the  delay  between  when  a  person  receives  a  positive  test  result  and  when  their  contacts  are                                    
traced.  Using  the  model  calibrated  to  the  Seattle  region  up  until  June  1  and  projecting  forward  for  a                                    
90-day  period,  we  consider  a  hypothetical  baseline  scenario  of  high  mobility  (100%),  high  testing  (~6,000                              
routine  tests  per  day,  or  2.7  per  1,000  people  per  day,  compared  to  ~1,800  routine  tests  per  day  as  of                                        
June  1  and  ~3,500  routine  tests  per  day  as  of  July  15),  and  high  tracing  (70%  of  all  household  and                                        
workplace  contacts  traced  within  2  days,  compared  to  roughly  30%  of  household  contacts  and  close  to                                
0%  of  workplace  contacts  as  of  June  1).  This  scenario  was  chosen  as  the  most  realistic  means  of                                    
achieving  an R e  value  of  below  1  given  a  return  to  100%  mobility  (Fig.  4B,  green  diamond).  We  then  vary                                        
individual   aspects   of   the   response   relative   to   this   baseline.  
 
All  six  aspects  of  the  TTQ  strategy  had  a  significant  impact  on  epidemic  outcomes.  The  most  important                                  
aspects,  in  terms  of  their  impact  on  overall  attack  rate,  were  isolation/quarantine  effectiveness  and                            
routine  testing  probability.  Each  diagnosed  or  quarantined  person  who  fully  isolates  is  estimated  to  avert                              
1.2  subsequent  infections  over  the  90-day  period,  while  each  routine  test  conducted  is  estimated  to  avert                                
0.2  infections.  However,  speed  also  matters:  an  additional  one-day  delay  in  returning  test  results  is                              
estimated  to  result  in  nearly  4  additional  infections  per  person  who  tests  positive,  while  a  one-day  delay                                  
in  tracing  contacts  is  estimated  to  result  in  nearly  2  additional  infections  for  every  index  case  whose                                  
contacts  are  traced.  While  quarantine  testing  had  the  smallest  overall  impact  on  the  attack  rate,  an                                
additional  0.4  infections  are  still  estimated  to  be  averted  for  every  index  case  whose  contacts  are  tested.                                  
This  is  because  quarantine  testing  is  highly  efficient  at  identifying  infections:  while  the  test  positivity  rate                                
for   routine   testing   in   early   June   was   roughly   1.5%,   traced   contacts   had   a   test   positivity   rate   of   34%.  
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Fig.  4.  Impact  of  testing,  tracing,  and  quarantine. A:  Relative  importance  of  different  aspects  of  the  TTQ                                  
strategy  for  a  scenario  of  high  mobility  (full  return  to  baseline  workplace  and  community  movement  patterns),                                
high  testing,  and  high  tracing  in  Seattle  (dashed  green  lines).  Each  dot  shows  a  simulation,  with  other                                  
parameters  held  constant.  Isolation/quarantine  effectiveness  has  the  greatest  impact,  with  2.2  infections                        
averted  for  each  person  fully  isolated,  although  all  parameters  have  a  significant  impact  on  epidemic                              
outcomes. B:  Countering  the  effects  of  increased  mobility  via  testing,  tracing,  and  quarantine.  Current                            
interventions  (black  diamonds)  were  estimated  to  keep R e  <  1  for  60%  of  baseline  mobility  level  (left).                                  
Subsequently,  increased  transmission  rates  exceeded  intervention  scale-up,  leading  to R e  >  1  temporarily                          
(center).  For  a  return  to  full  mobility  (right),  high  levels  of  both  testing  and  tracing  are  required  to  maintain                                      
epidemic  control  (green  diamond,  corresponding  to  the  dashed  lines  in  panel  A).  Dots  show  individual                              
simulations.  
 
To  explore  the  practical  implications  of  these  results  for  Seattle,  we  simulated  three  reopening  scenarios                              
(Fig.  4B):  60%,  80%,  and  100%  mobility  in  the  workplace  and  community  contact  layers,  relative  to                                
baseline,  across  a  range  of  testing  and  contact  tracing  rates.  We  assume  these  mobility  changes  occur                                
in  the  context  of  continued  use  of  masks,  physical  distancing,  and  other  NPI,  which  we  estimate  have                                  
together  reduced  transmission  by  roughly  10–15%  (see  Fig.  1E).  Unsurprisingly,  a  return  to  100%                            
workplace  and  community  mobility  in  the  absence  of  other  interventions  would  increase R e  to  well  above                                
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1,  leading  to  a  large  second  wave  of  infections.  High  testing  and  high  tracing  are  both  required  to                                    
maintain  epidemic  control  with  full  reopening.  For  example,  even  a  four-fold  increase  in  testing  rates                              
would   fail   to   control   the   epidemic   without   an   increasing   in   contact   tracing.  
 
After  the  stay-at-home  order  was  lifted  on  June  1,  there  was  a  large  increase  in  transmission  rates,                                  
especially  among  younger  age  groups,  which  was  followed  by  a  large  scale-up  of  both  testing  and                                
tracing  programs.  Figure  5  shows  that  the  model  calibrated  until  June  1  was  able  to  replicate  observed                                  
epidemic  trends  over  this  period,  providing  validation  that  it  is  capturing  the  underlying  transmission                            
dynamics  in  Seattle,  as  well  as  the  impact  of  the  testing  and  tracing  interventions  on  the  epidemic.                                  
Figure  5  also  illustrates  what  would  have  been  achieved  had  a  "high  testing  and  tracing"  scenario,  as                                  
described  above,  been  implemented  instead:  while  the  peak  numbers  of  people  tested  (Fig.  5A)  and                              
contacts  traced  (Fig.  5B)  would  have  been  much  higher  (5,000  vs.  3,500  tests  per  day  and  900  vs.  200                                      
contacts  traced  per  day),  active  infections  would  have  declined  much  more  rapidly  Fig.  5C).  By  Aug.  31,                                  
due  to  the  low  number  of  new  infections,  we  estimate  that  the  number  of  contacts  traced  (Fig.  5B)  and                                      
people  diagnosed  (Fig.  5D)  in  the  "high  testing  and  tracing"  scenario  would  be  comparable  to  or  lower                                  
than   the   true   number.  
 

 
Fig.  5.  Comparison  between  observed  epidemic  trends  and  projected  scenarios  from  June  1  to  August  31.                                
A:  Numbers  of  tests  conducted  per  day,  with  modeled  values  for  the  status  quo  (using  the  data  as  an  input)                                        
and  a  counterfactual  scenario  with  high  testing  and  high  tracing.  Lines  show  medians;  shaded  regions  show                                
80%  confidence  intervals. B:  Number  of  contacts  traced  per  day. C:  Estimated  numbers  of  new  infections,                                
with  a  significant  rise  in  infections  observed  shortly  after  the  stay-at-home  order  was  lifted. D: Number  of                                  
diagnoses  per  day,  showing  consistency  between  the  model  and  the  data  both  for  the  calibrated  period  (Jan.                                  
27   –   May   31)   and   the   projected   period   (Jun.   1   –   Aug.   31).  
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Discussion  
Seattle  achieved  epidemic  control  between  mid  March  and  early  June  as  a  result  of  (a)  greatly  reduced                                  
mobility;  (b)  adoption  of  additional  NPI,  including  interpersonal  distancing,  hand  washing,  and  face                          
masks;  and  (c)  moderate  rates  of  routine  testing,  plus  low  but  increasing  rates  of  contact  tracing.  We                                  
separated  the  effects  of  the  first  two  components  using  detailed  mobility  data,  and  were  therefore  able                                
to  assess  the  impact  of  reopening  whilst  assuming  that  distancing,  hand  washing,  and  face  mask  use                                
will  continue.  We  found  that  with  mobility  at  60%  of  its  pre-COVID  levels,  epidemic  control  could  be                                  
attained  despite  relatively  low  testing  and  tracing.  Returning  to  full  mobility  would  require  identifying  and                              
isolating  many  more  cases,  by  significantly  increasing  both  the  number  of  routine  tests  conducted  and                              
the  proportion  of  contacts  traced.  From  June  through  September,  both  mobility  and  interventions                          
increased,   and   data   from   this   period   were   used   to   validate   these   findings.  
 
The  handful  of  countries  that  achieved  control  of  their  COVID-19  epidemics  without  relying  on  extensive                              
lockdowns  have  done  so  using  a  diversity  of  approaches,  but  those  that  have  used  a  broader  set  of                                    
interventions  have  achieved  more  stable  epidemic  control.  Taiwan  and  South  Korea  used  high  rates  of                              
testing,  contact  tracing,  mask  compliance,  and  other  interventions  to  quickly  bring  their  epidemics  under                            
control ( 23 ) .  Japan  has  had  high  mask  compliance  and  a  relatively  high  rate  of  contact  tracing,  but                                  
relatively  low  testing  rates;  after  early  control,  reported  new  cases  increased  from  late  May  through  early                                
July ( 24 ) .  Australia  and  New  Zealand  achieved  early  epidemic  control  via  strong  travel  restrictions  and                              
high  rates  of  testing  and  contact  tracing.  However,  mask  use  was  low,  and  a  rapid  increase  in  cases  in                                      
the  state  of  Victoria,  Australia,  began  in  late  June,  and  was  only  brought  under  control  after  reimposed                                  
mobility  restrictions,  mandated  mask  use,  and  high  testing  rates.  In  contrast,  the  neighboring  state  of                              
New  South  Wales  was  able  to  maintain  epidemic  control  without  reimposing  lockdowns  by  combining                            
high  testing  rates  (2.9  tests  per  1,000  people  per  day,  similar  to  the  high  testing  and  tracing  scenario                                    
presented  here)  with  near-perfect  tracing  of  close  contacts ( 25 ) .  This  observational  evidence  for  a                            
diverse  range  of  interventions  being  required  for  epidemic  control  is  consistent  with  our  finding  that  each                                
aspect  of  the  response  is  roughly  equally  important:  shortfalls  in  one  area  (e.g.,  low  rates  of  testing  or                                    
mask  usage)  may  be  partly  offset  by  high  performance  in  another  (e.g.,  high  rates  of  contact  tracing).                                  
However,  these  examples  suggest  that  epidemic  control  may  be  only  fleeting  unless  performance  is  high                              
in   all   three   areas   (testing,   tracing,   and   either   mask   usage   or   mobility   restrictions).  
 
There  are  several  limitations  of  this  study.  First,  we  do  not  consider  geographical  clustering,  so  cannot                                
model  hotspots  or  outbreaks  in  specific  areas.  Although  this  may  not  be  crucial  given  that  interventions                                
were  set  at  a  county-wide  level,  subsequent  phases  of  the  response  may  require  more  localized  policy                                
actions.  Second,  there  is  continued  debate  around  how  susceptibility  and  transmissibility  vary  by  age                            
and  with  comorbidities;  the  model  parameters  reflect  the  best  available  evidence  to  date,  but  new                              
evidence  is  continually  coming  to  light.  Third,  there  is  considerable  uncertainty  around  other  crucial                            
characteristics  of  both  SARS-CoV-2  transmission  (including  the  extent  to  which  it  is  seasonal,  and  the                              
proportion  of  asymptomatic  and  presymptomatic  transmission)  and  the  impact  of  interventions  (such  as                          
mask  efficacy).  We  have  handled  these  uncertainties  by  calibrating  extensively  to  data,  and  by                            
propagating  remaining  uncertainties  in  parameters  through  all  scenarios.  However,  additional  data  on                        
transmission  characteristics  would  nonetheless  help  refine  our  understanding  of  the  most  important                        
transmission  pathways,  as  well  as  how  to  disrupt  them.  Despite  these  uncertainties,  we  believe  the                              
example  of  Seattle  provides  strong  evidence  for  test-trace-quarantine  as  a  feasible  control  strategy  –  a                              
strategy   that   other   jurisdictions   may   wish   to   invest   in   more   heavily.    
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Materials   and   Methods  
We  used Covasim ,  an  agent-based  model  of  COVID-19  transmission  and  interventions  developed  by  the                            
Institute  for  Disease  Modeling,  to  estimate  the  extent  to  which  testing,  tracing,  and  quarantine  would                              
enable  the  relaxation  of  physical  distancing  measures  as  part  of  reopening  of  the  economy.  The                              
Covasim  model  code  is  fully  open  source  and  available  online;  data  and  analysis  scripts  are  available                                
upon  request.  All  simulations  were  run  using  Covasim  version  1.7.2.  Full  details  of  the  model  are                                
provided  in  Sections  1-4  below;  Section  5  describes  the  data,  analyses,  and  customizations  specific  to                              
this   study.  

1   Background  
Models  for  examining  COVID-19  transmission  and  control  measures  can  be  broadly  divided  into  two                            
main  types:  compartmental  models  and  agent-based  (or  microsimulation)  models,  with  the  former                        
generally  being  simpler  and  faster,  while  the  latter  are  generally  more  complex,  detailed,  and                            
computationally  expensive.  Numerous  compartmental  models  have  been  developed  or  repurposed  for                      
COVID-19:  Walker  et  al. ( 26 )  used  an  age-structured  stochastic  "susceptible,  exposed,  infectious,                        
recovered"  (SEIR)  model  to  determine  the  global  impact  of  COVID-19  and  the  effect  of  various  social                                
distancing  interventions  to  control  transmission  and  reduce  health  system  burden;  Read  et  al. ( 27 )                            
developed  an  SEIR  model  to  estimate  the  basic  reproduction  number  in  Wuhan;  Keeling  et  al. ( 28 )  use                                  
one  to  look  at  the  efficacy  of  contact  tracing  as  a  containment  measure;  and  Dehning  et  al. ( 29 )  used  an                                        
SIR  model  to  quantify  the  impact  of  intervention  measures  in  Germany.  In  models  such  as  those  by                                  
Giordano  et  al. ( 30 )  and  Zhao  and  Chen ( 31 ) ,  compartments  are  further  divided  to  provide  more  nuance                                  
in  simulating  progression  through  different  disease  states,  and  have  been  deployed  to  study  the  effects                              
of  various  population-wide  interventions  such  as  social  distancing  and  testing  on  COVID-19                        
transmission.   
 
For  microsimulation  models,  several  agent-based  influenza  pandemic  models  have  been  repurposed  to                        
simulate  the  spread  of  COVID-19  transmission  and  the  impact  of  social  distancing  measures  in  Australia                              
( 32 ) ,  Singapore ( 33 ) ,  the  United  States ( 34 ) ,  and  the  United  Kingdom ( 35 ) .  Additionally,  agent-based                            
models  have  been  developed  to  evaluate  the  impact  of  social  distancing  and  contact  tracing ( 3 , 4 , 7 )  and                                    
superspreading ( 36 ) .  Features  of  these  models  include  accounting  for  the  number  of  household  and                            
non-household  contacts ( 3 , 4 , 34 ) ;  the  age  and  clustering  of  contacts  within  households ( 4 , 7 , 34 ) ;  and                                  
the  microstructure  in  schools  and  workplace  settings  informed  by  census  and  time-use  data ( 7 ) .                            
Branching  process  models  have  also  been  used  to  investigate  the  impact  of  non-pharmaceutical                          
intervention   strategies    ( 5 ,    37 ) .  
 
In  developing  Covasim,  our  aim  was  to  produce  a  tool  that  would  be  capable  of  informing  real-world                                  
policy  decisions  for  a  variety  of  national  and  subnational  settings.  We  wanted  to  capture  the  benefits  of                                  
agent-based  modeling  (in  particular,  the  ability  of  such  models  to  simulate  the  kinds  of  microscale                              
policies  being  used  to  respond  to  the  COVID-19  pandemic),  whilst  making  use  of  recent  advances  in                                
software  tools  and  computational  methods  to  minimize  the  complexity  and  computational  time  typically                          
associated  with  such  models.  In  this  regard,  Covasim  is  most  similar  to  the  OpenABM-COVID  model ( 38 ,                                
39 ) ,   which   has   also   been   developed   as   a   high-performance,   user-friendly,   general-purpose   COVID   model.  
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2   Covasim   methodology  

2.1   Overview  
Covasim  simulates  the  state  of  individual  people,  known  as  agents,  over  a  number  of  discrete  time                                
steps.  Conceptually,  the  model  is  largely  focused  on  a  single  type  of  calculation:  the  probability  that  a                                  
given  agent  on  a  given  time  step  will  change  from  one  state  to  another,  such  as  from  susceptible  to                                      
infected,  or  from  critically  ill  to  dead.  Once  these  probabilities  have  been  calculated,  a  pseudorandom                              
number  generator  with  a  user-specified  seed  is  used  to  determine  whether  the  transition  actually  takes                              
place   for   a   given   model   run.  
 
The  logical  flow  of  a  single  Covasim  run  is  as  follows.  First,  the  simulation  object  is  created,  then  the                                      
parameters  are  loaded  and  validated  for  internal  consistency,  and  any  specified  data  files  are  loaded                              
(described  in  Section  2.6.5).  Second,  a  population  is  created,  including  age,  sex,  and  comorbidities  for                              
each  agent,  drawing  from  location-specific  data  distributions  where  available.  Third,  agents  are                        
connected  into  contact  networks  based  on  their  age  and  other  statistical  properties  (Section  2.4).  Next,                              
the  integration  loop  begins.  On  each  timestep  (which  corresponds  to  a  single  day  by  default),  the  order                                  
of  operations  is:  dynamic  rescaling  (Section  2.6.3);  applying  health  system  constraints  (Section  2.6.1);                          
updating  the  state  of  each  agent,  including  disease  progression  (Section  2.2);  importation  events                          
(Section  2.6.2);  applying  interventions  (Section  2.5);  calculating  disease  transmission  events  across                      
each  infectious  agent's  contact  network  (Section  2.3);  and  the  collation  of  outputs  into  results  arrays                              
(Section   2.6.6).   The   following   sections   describe   each   step   in   more   detail.  

2.2   Disease   progression  
In  Covasim,  each  individual  is  characterized  as  either  susceptible,  exposed  (i.e.,  infected  but  not  yet                              
infectious),  infectious,  recovered,  or  dead,  with  infectious  individuals  additionally  categorized  according                      
to  their  symptoms:  asymptomatic,  presymptomatic,  mild,  severe,  or  critical.  A  schematic  diagram  of  the                            
model   structure   is   shown   in   Fig.   S1.  
 
The  length  of  time  after  exposure  before  an  individual  becomes  infectious  is  assumed  to  follow  a                                
log-normal  distribution  with  a  mean  of  4.6  days,  which  is  within  the  range  of  values  reported  across  the                                    
literature  (Table  S1).  The  length  of  time  between  the  start  of  viral  shedding  and  symptom  onset  is                                  
assumed  to  follow  a  log-normal  distribution  with  a  mean  of  1  day  (Table  S1).  Exposed  individuals  may                                  
develop  symptoms  or  may  remain  asymptomatic.  Individuals  with  symptoms  are  disaggregated  into                        
either  mild,  severe,  or  critical  cases,  with  the  probability  of  developing  a  more  acute  case  increasing  with                                  
age  (Table  S2).  Covasim  can  also  model  the  effect  of  comorbidities,  which  act  by  modifying  an                                
individual's  probability  of  developing  severe  symptoms  (and  hence  critical  symptoms  and  death).  By                          
default,  comorbidity  multipliers  are  set  to  1  since  they  are  already  factored  into  the  marginal                              
age-dependent   disease   progression   rates.  
 
Estimates  of  the  duration  of  COVID-19  symptoms  and  the  length  of  time  that  viral  shedding  occurs  are                                  
highly  variable,  but  durations  are  generally  reported  to  increase  according  to  acuity ( 40 , 41 ) .  We  reflect                                
this  in  our  model  with  different  recovery  times  for  asymptomatic  individuals,  those  with  mild  symptoms,                              
and  those  with  severe  symptoms,  as  summarized  in  Table  S1.  All  non-critical  cases  are  assumed  to                                
recover,  while  critical  cases  either  recover  or  die,  with  the  probability  of  death  increasing  with  age  (Table                                  
S2).   
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Fig.  S1 :  Covasim  model  structure,  including  infection  (exposure),  disease  progression,  and  final                        
outcomes.  Yellow  shading  indicates  that  an  individual  is  infectious  and  can  transmit  the  disease                            
to  other  susceptible  agents.  States  with  a  dashed  border  are  considered  symptomatic  with                          
respect   to   symptomatic   versus   asymptomatic   testing.  

 
 
 

Table   S1.    Default   duration   parameters,   in   days,   used   in   the   Covasim   model.  
Parameter   Description   Distribution    (mean,   std)   Source  

s   Length   of   time   after   exposure   before  
an   individual   is   infectious   (i.e.,   has  
begun   viral   shedding)  

s   ~   lognormal(4.6,4.8)   From Lauer  et  al. ( 42 ) ;  additional            
sources  Du  et  al.,  Nishiura  et  al.,              
and   Pung   et   al.    ( 43 – 45 ) .  

i   Length   of   time   after   viral   shedding   has  
begun   before   an   individual   has  
symptoms  

i   ~   lognormal(1,0.9)   Linton   et   al.    ( 46 ) report   the  
incubation   period   as   5.6   days   ( 95%  
CI:   5.0 – 6.3   days ).   Using   the   period  
of   exposure   before   becoming  
infectious,   we   infer   the   period   of  
viral   shedding   before   symptomatic.  
However,   other   studies   have  
estimated   longer   periods,   e.g.    ( 47 ) .  

r a   Recovery   time   for   asymptomatic   cases   r a ~   lognormal(8,   2)   Wölfel   et   al.    ( 48 )  

r m   Recovery   time   for   mild   cases   r m    ~   lognormal(8,   2)   Wölfel   et   al.    ( 48 )  

r s   Recovery   time   for   severe   cases   r s    ~   lognormal(14,   2.4)   Verity   et   al.    ( 49 )  

r c   Recovery   time   for   critical   cases   r c    ~   lognormal(14,   2.4)   Verity   et   al.    ( 49 )  
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Table  S2: Age-linked  disease  susceptibility,  progression,  and  mortality  probabilities.  Key: r sus :  relative                        
susceptibility  to  infection; p sym :  probability  of  developing  symptoms; p sev :  probability  of  developing  severe                          
symptoms  (i.e.,  sufficient  to  justify  hospitalization); p cri :  probability  of  developing  into  a  critical  case  (i.e.,                              
sufficient  to  require  ICU); p dea :  probability  of  death.  Relative  susceptibility  values  are  derived  from  odds                              
ratios  presented  in  Zhang  et  al. ( 50 ) ;  all  other  values  are  derived  from  Verity  et  al. ( 49 )  and  Ferguson  et                                        
al. ( 35 ) ,  with  validation  from  model  fits  to  data  on  numbers  of  cases,  numbers  of  people  hospitalized  and                                    
in  intensive  care,  and  numbers  of  deaths  from  Washington  state  and  Oregon.  *Overall  values  depend  on                                
the  age  structure  of  the  population  being  modeled.  For  a  population  like  the  US  or  UK,  the  symptomatic                                    
proportion  is  roughly  0.7,  while  for  populations  skewed  towards  younger  ages,  the  symptomatic                          
proportion   is   lower.   

  0-9   10-19   20-29   30-39   40-49   50-59   60-69   70-79   80+   Overall*  

r sus   0.34   0.67   1.00   1.00   1.00   1.00   1.00   1.24   1.47   1.00  

p sym   0.50   0.55   0.60   0.65   0.70   0.75   0.80   0.85   0.90   0.5–0.75  

p sev   0.00050   0.00165   0.00720   0.02080   0.03430   0.07650   0.13280   0.20655   0.24570   0.1–0.2  

p cri   0.00003   0.00008   0.00036   0.00104   0.00216   0.00933   0.03639   0.08923   0.17420   0.05–0.1  

p dea   0.00002   0.00006   0.00030   0.00080   0.00150   0.00600   0.02200   0.05100   0.09300   0.005–0.015  

 

2.3   Transmission   and   within-host   viral   dynamics  
Whenever  a  susceptible  individual  comes  into  contact  with  an  infectious  individual  on  a  given  day,                              
transmission  of  the  virus  occurs  according  to  probability β .  For  a  well-mixed  population  where  each                              
individual  has  an  average  of  20  contacts  per  day,  a  value  of β  =  0.016  corresponds  to  a  doubling  time  of                                          
roughly  4–6  days  and  an R 0  of  approximately  2.2–2.7,  where  the  exact  values  depend  on  the  population                                  
size,  age  structure,  and  other  factors.  The  value  of β  =  0.016  is  used  as  the  default  in  Covasim;  however,                                        
this   value   is   typically   calibrated   by   the   user   to   best   match   local   epidemic   data.  
 
If  realistic  network  structure  (i.e.,  households,  schools,  workplaces,  and  community  contacts)  is                        
included,  the  value  of β  depends  on  the  contact  type.  Default  transmission  probabilities  are  roughly  0.05                                
per  contact  per  day  for  households,  0.025  for  workplaces  and  schools,  and  0.005  for  the  community.                                
These  values  correspond  to  relative  weightings  of  10:2:2:1,  with  a  weighted  mean  close  to  the  default β                                  
value  of  0.016  for  a  well-mixed  population  (i.e.,  if  different  network  layers  are  not  used).  When  combined                                  
with  the  default  number  of  contacts  in  each  layer,  age-based  susceptibility,  and  other  factors,  for  a                                
typical  (unmitigated)  transmission  scenario,  the  proportions  of  transmission  events  that  occur  in  each                          
contact  layer  are  approximately  25%  via  households,  35%  via  workplaces,  15%  via  schools,  and  25%  via                                
the  community.  The  value  of β  can  also  be  modified  by  interventions,  such  as  physical  distancing,  as                                  
described   below.  
 
In  addition  to  allowing  individuals  to  vary  across  disease  severity  and  time  spent  in  each  disease  state,                                  
we  allow  individual  infectiousness  to  vary  between  people  and  over  time.  We  use  individual  viral  load  to                                  
model  these  differences  in  infectivity.  Several  groups  have  found  that  viral  load  is  highest  around  or                                
slightly  before  symptom  onset,  and  then  falls  monotonically ( 51 – 54 ) .  As  a  simple  approximation  to  this                              
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viral  time  course,  we  model  two  stages  of  viral  load:  an  early  high  stage  followed  by  a  longer  low  stage.                                        
By  default,  we  set  the  viral  load  of  the  high  stage  to  be  twice  as  high  as  the  low  stage  and  to  last  for                                                
either  30%  of  the  infectious  duration  or  4  days,  whichever  is  shorter.  The  default  viral  load  for  each  agent                                      
is  drawn  from  a  negative  binomial  distribution  with  mean  1.0  and  shape  parameter  0.45,  which  was  the                                  
value  most  consistent  with  both  international  estimates ( 55 , 56 )  and  fits  to  data  in  Washington  state  and                                  
Oregon.  The  daily  viral  load  is  used  to  adjust  the  per-contact  transmission  probability  ( β )  for  an  agent  on                                    
a   given   day   (Fig.   S2).  
 
Evidence  is  mixed  as  to  whether  transmissibility  is  lower  if  the  infectious  individual  does  not  have                                
symptoms ( 51 ) .  We  take  a  default  assumption  that  it  is  not,  but  include  a  parameter  that  can  be  modified                                      
as  needed  depending  on  the  modeling  application  or  context,  noting  that  some  studies  have  used  much                                
lower   rates   of   infectiousness   for   asymptomatic   individuals    ( 22 ) .   
 

 
Fig.  S2 :  Example  of  within-host  viral  load  dynamics  in  Covasim.  Each  row  shows  a  different  agent                                
in  the  model.  Color  indicates  viral  load,  which  typically  peaks  the  day  before  or  the  day  of                                  
symptom   onset,   before   declining   slowly.  

2.4   Contact   network   models  
Covasim  is  capable  of  generating  and  using  three  alternative  types  of  contact  networks:  random                            
networks,  SynthPops  networks,  and  hybrid  networks.  Each  of  these  may  be  useful  in  different  settings,                              
and  in  addition  users  have  the  option  of  defining  their  own  networks.  A  comparison  of  the  main  features                                    
and  use  cases  of  each  of  Covasim’s  default  network  model  options  is  shown  in  Table  S4  and                                  
schematically  in  Fig.  S3;  details  on  each  are  provided  in  the  following  sections.  In  addition,  to  facilitate                                  
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easy  adaptation  to  different  contexts,  Covasim  comes  pre-loaded  with  data  on  country  age  distributions                            
and   household   sizes   as   reported   by   the   UN   Population   Division   2019   ( population.un.org ).   

2.4.1   Random   networks  
Covasim  generates  random  networks  by  assuming  that  each  person  in  the  modeled  population  can                            
come  into  contact  with  anyone  else  in  the  population.  Each  person  is  assigned  a  number  of  daily                                  
contacts,  which  is  drawn  from  a  Poisson  distribution  whose  mean  value  can  be  specified  by  the  user                                  
depending  on  the  modeling  context  (with  a  default  value  of  20).  The  user  can  also  decide  whether  these                                    
contacts  should  remain  the  same  throughout  the  simulation,  or  whether  they  should  be  sampled                            
randomly   from   the   population   each   day.   
 

 
Fig.   S3 :   Schematic   diagram   of   contact   networks   with   multiple   layers   in   Covasim.  

2.4.2   SynthPops   networks  
Covasim  is  integrated  with  SynthPops,  an  open-source  data-driven  model  capable  of  generating  realistic                          
synthetic  contact  networks  for  populations;  further  information,  including  documentation  and  source                      
code,  is  available  from synthpops.org .  Briefly,  the  method  draws  upon  previously  published  models  and                            
empirical  studies  to  infer  high-resolution  age-specific  contact  patterns  in  key  settings  (e.g.,  households,                          
schools,  workplaces,  and  the  general  community)  relevant  to  the  transmission  of  infectious  diseases                          
( 57 – 59 ) .  Census  and  municipal  data  are  used  by  SynthPops  to  inform  demographic  characteristics  (e.g.,                            
age,  household  size,  school  enrollment,  employment  rates).  Age-specific  contact  matrices  (such  as                        
those  in  Prem  et  al. ( 60 ) )  are  then  used  to  generate  individuals  and  their  expected  contacts  in  a                                    
multilayer  network  framework.  By  default,  SynthPops  generates  household,  school,  and  work  contact                        
networks;  community  connections  are  generated  using  the  random  approach  described  above.  An                        
example   synthetic   network   as   generated   by   SynthPops   is   shown   in   Fig.   S4.  

2.4.2.1   Households  
SynthPops  uses  data  on  the  distribution  of  ages,  household  sizes,  and  the  age  of  reference  individuals                                
conditional  on  household  size  for  a  given  population,  to  generate  individuals  within  households.  The                            
algorithm  first  generates  household  sizes  from  the  household  size  distribution,  and  then  assigns  a                            
reference  individual  (for  example,  the  head  of  the  household)  with  their  sampled  age  conditional  on  the                                
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household  size.  To  construct  the  other  household  members,  age  mixing  contact  matrices  are  used  to                              
infer  the  likely  ages  according  to  the  age  of  the  reference  person  and  the  population  age  distribution                                  
adjusted   for   non-reference   ages.  
 

 
Fig.  S4 :  Synthetic  population  networks  for  households  (top),  schools  (middle),  and  workplaces                        
(bottom).  Age-specific  contact  matrices  are  shown  on  the  left,  while  actual  connectivity  patterns                          
for  a  127-person  subsample  of  a  population  of  10,000  individuals  are  shown  on  the  right.  All                                
individuals  are  present  in  the  household  network,  including  some  with  no  household  connections.                          
A  subset  of  these  individuals,  including  teachers,  are  present  in  the  school  network  (circles);                            
another  subset  is  present  in  workplace  networks  (squares);  some  individuals  are  in  neither                          
school   nor   work   networks   (triangles).  
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2.4.2.2   Schools  
A  similar  approach  is  used  to  construct  schools.  Census  and  municipal  school  data,  or  survey  data  such                                  
as  from  Demographic  and  Health  Surveys ( 61 ) ,  can  be  used  to  inform  enrollment  rates  by  age,  school                                  
sizes,  and  student-teacher  ratios.  The  SynthPops  algorithm  first  chooses  a  reference  student  for  the                            
school  conditional  on  enrollment  rates  to  infer  the  school  type,  and  then  uses  the  age  mixing  contact                                  
matrix  in  the  school  setting  to  infer  the  likely  ages  of  the  other  students  in  the  school.  Students  are                                      
drawn  from  an  ordered  list  of  households,  such  that  they  reproduce  an  approximation  of  the                              
neighborhood  dynamics  of  children  attending  area  schools  together.  Teachers  are  drawn  from  the  adult                            
population  comprising  the  labor  force  and  assigned  to  schools  as  needed,  reflecting  average                          
student-teacher  ratio  data.  With  large  schools,  it  is  unlikely  for  each  student  and  teacher  to  be  in  close                                    
contact  with  all  other  individuals.  Instead,  for  each  individual  in  the  school  layer  we  model  their  close  and                                    
effective  contacts  as  a  subset  of  contacts  from  their  school  who  can  infect  them  by  sampling  a  random                                    
set  of n  other  individuals  in  their  school,  where n  is  drawn  from  a  Poisson  distribution  with  rate                                    
parameter    λ s    equal   to   the   average   class   size   (   λ s    =   20   as   a   default).   

2.4.2.3   Workplaces   and   community  
The  labor  force  is  drawn  using  employment  rates  by  age,  and  non-teachers  are  assigned  to  workplaces                                
using  data  on  establishment  sizes.  Workers  are  assigned  to  workplaces  using  a  similar  method  with  an                                
initial  reference  worker  sampled  from  the  labor  force  and  their  co-workers  inferred  from  age  mixing                              
patterns  within  the  workforce.  All  workers  (teachers  included)  are  drawn  at  random  from  the  population,                              
to  reflect  the  general  mixing  of  adults  from  different  neighborhoods  at  work.  Similar  to  the  school  layer,                                  
large  workplaces  are  unlikely  to  be  fully  connected  graphs  of  contacts.  Instead,  for  each  worker,  we                                
model  their  close  contacts  as  a  subset  of n  contacts  from  other  individuals  in  their  workplace,  where n  is                                      
drawn  from  a  Poisson  distribution  with  rate  parameter  λ w  equal  to  the  estimated  maximum  number  of                                
close   contacts   in   the   workplace   (λ w    =   20   as   a   default).  
 
For  contacts  in  the  general  community,  we  draw n  random  contacts  for  each  individual  from  other                                
individuals  in  the  population,  where n  is  drawn  from  a  Poisson  distribution  with  rate  parameter  λ c  equal                                  
to  the  expected  number  of  contacts  in  the  general  community  (with  λ c  =  20  as  a  default,  as  above).                                      
Connections  in  this  layer  reflect  the  nature  of  contacts  in  shared  public  spaces  like  parks  and                                
recreational  spaces,  shopping  centers,  community  centers,  and  public  transportation.  All  links  between                        
individuals  are  considered  undirected  to  reflect  the  ability  of  either  individual  in  the  pair  to  infect  each                                  
other.  
 
The  generated  multilayer  network  of  household,  school,  work,  and  general  community  network  layers                          
presents  a  population  with  realistic  microstructure.  This  framework  can  also  be  extended  to  consider                            
more  detailed  interactions  in  key  additional  settings,  such  as  hospitals,  encampments,  shelters  for  those                            
experiencing   homelessness,   and   long-term   care   facilities.  

2.4.3   Hybrid   networks  
Covasim  contains  a  third  option  for  generating  contact  networks,  which  captures  some  of  the  realism  of                                
the  SynthPops  approach  but  does  not  require  as  much  input  data,  and  is  more  readily  adaptable  to  other                                    
settings.  As  such,  it  is  a  "hybrid"  approach  between  a  fully  random  network  and  a  fully  data-derived                                  
network.  As  with  SynthPops,  each  person  in  the  population  has  contacts  in  their  household,  school  (for                                
children),  workplace  (for  adults),  and  community.  A  population  of  individuals  is  generated  according  to  a                              
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location-specific  age  distribution,  and  each  individual  is  randomly  assigned  to  a  household  using                          
location-specific   data   on   household   sizes.   
 
Unlike  SynthPops,  the  hybrid  algorithm  does  not  account  for  the  distribution  of  ages  within  a  household.                                
Children  are  assigned  to  schools  and  adults  to  workplaces,  each  with  a  user-specified  number  of  fixed                                
daily  contacts  (by  default,  Poisson-distributed  with  means  of  20  for  schools  and  16  for  workplaces,                              
chosen  to  match  the  mean  values  for  SynthPops  networks).  Individuals  additionally  have  contacts  with                            
others  in  the  community  (by  default,  Poisson  distributed  with  a  mean  of  20).  All  children  and  young                                  
adults  aged  between  6  and  22  are  assigned  to  schools  and  universities,  and  all  adults  between  22  and                                    
65  are  assigned  to  workplaces.  This  distinguishes  it  from  SynthPops  where  enrollment  or  employment                            
varies  depending  on  the  given  data.  A  comparison  of  the  different  population  structure  options  available                              
in   Covasim   is   listed   in   Table   S3.  
 
Table   S3 :   Comparison   of   population   options   in   Covasim.  

Population   type   Data   requirements   Best   suited   for   Not   well   suited   for  

Random   networks   None   Models   of   transmission   in  
special   settings   such   as  
prisons   or   cruise   ships  

Large   or   complex  
populations  

Hybrid   networks   Data   on   the   age   distribution  
and   household   sizes   for  
each   country   are   pre-loaded  
 
No   additional   data   is  
required,   but   users   can  
optionally   specify   the   daily  
number   of   school,  
workplace,   and   community  
contacts  

Population   network   models  
in   data-rich   settings;  
adaptable   and   suited   to  
most   modeling   contexts  

Populations   with   high  
heterogeneity   in   contact  
patterns   or   size   distributions   
 
 

SynthPops   networks   Household,   school,  
workplace,   and   community  
age   mixing   patterns  
 
School   size   distributions,  
enrollment   rates   by   age,  
student-teacher   ratios  
 
Workplace   size   distributions,  
employment   rates   by   age  
 
Number   of   households,   size  
distribution,   and   age/sex  
distribution  

Complex   populations   in  
data-rich   settings  

Settings   where   the   data  
requirements   cannot   be   met,  
or   where   other   social  
settings   are   critical   contexts  
for   disease   transmission   

 

2.5   Interventions  
A  core  function  of  Covasim  is  modeling  the  effect  of  interventions  on  disease  transmission  or  health                                
outcomes,  to  understand  the  impact  that  different  policy  options  may  have  in  a  specific  setting.  In                                
general,  interventions  are  modeled  as  changes  to  parameter  values.  Covasim  has  built-in                        
implementations  of  the  common  interventions  described  below,  as  well  as  the  ability  for  users  to  create                                
their   own   interventions.  
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2.5.1   Physical   distancing,   masks,   and   hygiene  
The  most  basic  intervention  in  Covasim  is  to  reduce  transmissibility  ( β )  starting  on  a  given  day.  This  can                                    
be  used  to  reflect  both  (a)  reductions  in  transmissibility  per  contact,  such  as  through  mask  wearing,                                
personal  protective  equipment,  hand-washing,  and  maintaining  physical  distance;  and  (b)  reductions  in                        
the  number  of  contacts  at  home,  school,  work,  or  in  the  community.  However,  Covasim  also  includes  an                                  
"edge-clipping"  intervention  (considering  a  contact  between  two  agents  as  a  weighted  "edge"  between                          
two  "nodes"),  where β  remains  unchanged  but  the  number  of  contacts  that  person  has  is  reduced.                                
Complete  school  and  workplace  closures,  for  example,  can  be  modeled  either  by  setting β  to  0,  or  by                                    
removing  all  edges  in  those  contact  layers;  partial  closures  can  be  modeled  by  smaller  reductions  in                                
either    β    or   the   number   of   contacts.  
 
In  general,  both  types  of  interventions  have  similar  impact  –  for  example,  halving  the  number  of  contacts                                  
and  keeping β  constant  will  produce  very  similar  epidemic  trajectories  as  halving β  and  keeping  the                                
number  of  contacts  constant.  However,  the  distinction  becomes  important  when  considering  the                        
interaction  between  physical  distancing  and  other  interventions.  For  example,  in  a  contact  tracing                          
scenario,  the  number  of  contacts  who  require  tracing,  number  of  tests  performed,  and  number  of  people                                
placed  in  quarantine  are  all  strongly  affected  by  whether  physical  distancing  is  implemented  as  a                              
reduction   in    β    of   a   specific   edge,   or   removing   that   edge   entirely.  

2.5.2   Testing   and   diagnosis  
Testing  can  be  modeled  in  two  different  ways  within  Covasim,  depending  on  the  format  of  testing  data                                  
and  purpose  of  the  analysis.  The  first  method  allows  the  user  to  specify  the  probabilities  that  people  with                                    
different  risk  factors  and  levels  of  symptoms  will  receive  a  test  on  each  day.  Separate  daily  testing                                  
probabilities  can  be  entered  for  those  with/without  symptoms,  and  those  in/out  of  quarantine.  The                            
model  will  then  estimate  the  number  of  tests  performed  on  each  day.  The  second  method  allows  the                                  
user  to  enter  the  number  of  tests  performed  on  each  day  directly,  including  multipliers  on  the  probability                                  
of  a  person  receiving  a  test  if  they  have  symptoms,  are  in  quarantine,  or  are  over  a  certain  age.  This                                        
method   will   then   allocate   the   tests   among   the   population.   
 

Once  a  person  is  tested,  the  model  contains  a  delay  parameter  that  indicates  how  long  people  need  to                                    
wait  for  their  results,  as  well  as  a  loss-to-follow-up  parameter  that  indicates  the  probability  that  people                                
will   not   receive   their   results.   Additional   parameters   control   the   sensitivity   and   specificity   of   the   tests.  

2.5.3   Contact   tracing  
Contact  tracing  corresponds  to  notifying  individuals  that  they  have  had  contact  with  a  confirmed  case,                              
so  that  they  can  be  quarantined,  tested,  or  otherwise  change  their  behavior.  Contact  tracing  in  Covasim                                
is  parameterized  by  the  probability  that  a  contact  can  be  traced,  and  by  the  time  taken  to  identify  and                                      
notify  contacts.  Both  parameters  can  vary  by  type  of  contact,  and  can  be  controlled  by  the  user.  For                                    
example,  it  may  be  reasonable  to  assume  that  people  can  trace  members  of  their  household                              
immediately  and  with  100%  probability,  while  tracing  work  colleagues  may  take  several  days  and  may  be                                
incomplete.  

2.5.4   Isolation   of   positives   and   contact   quarantine  
Isolation  (referring  to  behavior  changes  after  a  person  is  diagnosed  with  COVID-19)  and  quarantine                            
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(referring  to  behavior  changes  after  a  person  is  identified  as  a  known  contact  of  someone  with                                
confirmed  or  suspected  COVID-19)  are  the  primary  means  by  which  testing  interventions  reduce                          
transmission.  In  Covasim,  people  diagnosed  with  COVID-19  can  be  isolated.  Their  contacts  who  have                            
been  traced  can  be  placed  in  quarantine  with  a  specified  level  of  compliance;  people  in  quarantine  may                                  
also  have  an  increased  probability  of  being  tested.  People  in  isolation  or  quarantine  typically  have  a                                
lower  probability  of  infecting  others  (if  infectious)  or  of  acquiring  COVID-19  (if  quarantined  and                            
susceptible).  The  default  reductions  for  isolation  are  70%  in  the  household  and  90%  in  school,  work,  and                                  
community  layers,  while  quarantine  is  assumed  to  have  lower  compliance  (40%  reduction  in  the                            
household  and  80%  in  other  layers).  However,  if  psychosocial  support  is  not  provided  to  people  in  home                                  
isolation  or  quarantine,  there  may  be  an  increased  risk  of  passing  on  infection  to,  or  acquiring  infection                                  
from,   other   household   members.  

2.5.5   Pharmaceutical   and   user-defined   interventions  
Pharmaceutical  interventions,  including  antiviral  treatments  and  vaccines,  are  not  explicitly  implemented                      
in  Covasim  due  to  the  large  considerable  uncertainties  regarding  their  eventual  characteristics  and                          
availability.  However,  they  can  be  defined  by  adapting  existing  Covasim  interventions.  For  example,  each                            
agent  in  the  model  has  a  relative  susceptibility  parameter,  which  is  a  multiplicative  factor  on  their  risk  of                                    
infection  per  exposure  event.  A  vaccine  of  a  given  efficacy  (which  could  include  waning  efficacy  or                                
increased  efficacy  from  multiple  doses)  could  be  implemented  by  reducing  an  agent's  relative                          
susceptibility  after  receiving  the  vaccine.  Similarly,  antiviral  treatments  could  be  modeled  by  modifying                          
an  individual's  probabilities  of  progression  to  severe  disease,  critical  disease,  and  death,  and  by                            
modifying   their   relative   transmissibility.  
 
Each  intervention  has  full  access  to  the  simulation  object  at  each  timestep,  which  means  that                              
user-defined  interventions  can  dynamically  modulate  any  aspect  of  the  simulation.  This  can  be  used  to                              
create  interventions  more  specific  than  those  included  by  default  in  Covasim;  for  example,  age-specific                            
physical  distancing  or  quarantine.  In  addition,  the  same  framework  can  be  adapted  for  other  purposes:                              
for  example,  it  is  possible  to  define  an  "analyzer"  function  which,  at  each  timestep,  records  additional                                
details   about   the   internal   state   of   the   model   that   are   not   included   as   standard   outputs.  

2.6   Additional   features  

2.6.1   Health   system   capacity  
Individuals  in  the  model  who  have  severe  and  critical  symptoms  are  assumed  to  require  regular  and                                
intensive  care  unit  (ICU)  hospital  beds,  respectively,  including  ventilation  in  the  latter  case.  The  number                              
of  available  hospital  beds  (ICU  and  otherwise)  beds  are  input  parameters.  If  the  model  estimates  that  the                                  
number  of  severe/critical  cases  is  greater  than  the  number  of  available  non-ICU/ICU  beds,  then  the                              
health  system  capacity  is  exceeded.  This  means  that  severely  ill  individuals  have  an  increased                            
probability  of  progressing  to  critical,  and  critically  ill  individuals  who  are  unable  to  access  treatment  have                                
an   increased   mortality   rate   (by   default,   both   by   a   factor   of   2).  

2.6.2   Importations  
The  spatial  movement  of  agents  is  not  currently  modeled  explicitly  in  Covasim,  and  the  population  size                                
for  a  given  simulation  is  fixed.  Thus,  importations  are  implemented  as  spontaneous  infections  among                            
the  susceptible  population.  This  corresponds  to  agents  who  become  infected  elsewhere  and  then  return                            
to   the   population.  
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2.6.3   Dynamic   scaling  
One  of  the  major  challenges  with  agent-based  models  is  simulating  a  sufficient  number  of  agents  to                                
capture  an  epidemic  at  early,  middle,  and  late  stages,  without  requiring  cumbersome  levels  of  memory  or                                
processor  usage.  Whereas  compartmental  SEIR  models  require  the  same  amount  of  computation  time                          
regardless  of  the  population  size  being  modeled,  the  performance  of  agent-based  models  typically                          
scales  linearly  or  supralinearly  with  population  size  (see  Section  2.7.1).  As  a  consequence,  many                            
agent-based  models,  including  Covasim,  include  an  optional  "scaling  factor",  where  a  single  agent  in  the                              
model  is  assumed  to  represent  multiple  people  in  the  real  world.  A  scaling  factor  of  10,  for  example,                                    
corresponds  to  the  assumption  that  the  epidemic  dynamics  in  a  city  of  2  million  people  can  be                                  
considered   as   the   sum   of   the   epidemic   dynamics   of   10   identical   subregions   of   200,000   people   each.  
 
However,  the  limitation  of  this  approach  is  that  it  introduces  a  discretization  of  results:  model  outputs                                
can  only  be  produced  in  increments  of  the  scaling  factor,  so  relatively  rare  events,  such  as  deaths,  may                                    
not  have  sufficient  granularity  to  reflect  the  epidemic  behavior  at  a  small  scale.  In  addition,  using  too  few                                    
agents  in  the  model  introduces  stochastic  variability  patterns  that  do  not  reflect  real-world  processes  in                              
the   entire   population.  
 
To  circumvent  this,  Covasim  includes  an  option  for  dynamic  scaling.  Initially,  when  the  epidemic  is  small,                                
there  is  no  scaling  performed:  one  agent  corresponds  to  one  person.  Once  a  certain  threshold  is                                
reached,  however  (by  default,  5%  of  the  population  is  non-susceptible),  the  non-susceptible  agents  in  the                              
model  are  downsampled  and  a  corresponding  scaling  factor  is  introduced  (by  default,  a  factor  of  1.2  is                                  
used).  For  example,  in  a  simulation  of  100,000  agents  representing  a  true  population  of  1  million  with  a                                    
threshold  of  10%  and  a  rescaling  factor  of  2,  dynamic  scaling  would  be  triggered  when  cumulative                                
infections  surpass  10,000,  leaving  90,000  susceptible  agents;  dynamic  rescaling  would  resample  the                        
non-susceptible  population  to  5,000  (representing  10,000  people)  and  increase  the  number  of                        
susceptible  agents  to  95,000  (representing  190,000  people),  with  every  agent  now  counting  as  two.  If  the                                
epidemic  expands  further,  this  process  will  repeat  iteratively  until  the  scale  factor  reaches  its  upper  limit                                
(which  in  this  example  is  10,  and  which  would  be  reached  after  100,000  cumulative  infections).  Through                                
this  process,  arbitrarily  large  populations  can  be  modeled,  even  starting  from  a  single  infection,                            
maintaining   a   constant   level   of   precision   and   computation   time   throughout.  

2.6.4   Model   outputs  
By  default,  Covasim  outputs  three  main  types  of  result:  "stocks"  (e.g.,  the  number  of  people  with                                
currently  active  infections  on  a  given  day),  "flows"  (e.g.,  the  number  of  new  infections  on  a  given  day),                                    
and  "cumulative  flows"  (e.g.,  the  cumulative  number  of  infections  up  to  a  given  day).  For  states  that                                  
cannot  be  transitioned  out  of  (e.g.  death  or  recovery),  the  stock  is  equal  to  the  cumulative  flow.  Flows                                    
that  are  calculated  in  the  model  include:  the  number  of  new  infections  and  the  number  of  people  who                                    
become  infectious  on  that  timestep;  the  number  of  tests  performed,  new  positive  diagnoses,  and                            
number  of  people  placed  in  quarantine;  the  number  of  people  who  develop  mild,  severe,  and  critical                                
symptoms;  and  the  number  of  people  who  recover  or  die.  The  date  of  each  transition  (e.g.,  from  critically                                    
ill  to  dead)  is  also  recorded.  By  default,  these  results  are  summed  over  the  entire  population  on  each  day;                                      
results   for   subpopulations   can   be   obtained   by   defining   custom   analyzers,   as   described   in   Section   2.5.5.  
 
In  addition  to  these  core  outputs,  Covasim  includes  several  outputs  for  additional  analysis.  For  example,                              
several  methods  are  implemented  to  compute  the  effective  reproduction  number R e .  Numerous                        
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definitions   of    R e    exist;   in   standard   SIR   modeling,   the   most   common   definition   ("method   1")   is    ( 62 ) :  
 

 
 
where R 0  is  the  basic  reproduction  number, S  is  the  number  of  susceptibles,  and N  is  the  total  population                                      
size.  However,  with  respect  to  COVID-19,  many  authors  instead  define R e  to  include  the  effects  of                                
interventions,   due   to   the   implications   that    R e    =   1   has   for   epidemic   control.   
 
A  second  common  definition  of R e  ("method  2")  is  to  first  determine  the  total  number  of  people  who                                    
became  infectious  on  day t ,  then  count  the  total  number  of  people  these  people  went  on  to  infect,  and                                      
then  divide  the  latter  by  the  former.  "Method  3"  is  the  same  as  method  2,  except  it  counts  the  number  of                                          
people  who  stopped  being  infectious  on  day t  (i.e.,  recovered  or  died),  and  then  counts  the  number  of                                    
people  those  people  infected.  Unlike  in  a  compartmental  model,  where R e  can  only  be  estimated  by  using                                  
simplifying  assumptions,  in  an  agent-based  model,  methods  2  and  3  can  be  implemented  by  simply                              
counting  exactly  how  many  secondary  infections  are  caused  by  each  primary  infection.  By  doing  so,  all                                
details  of  the  epidemic  –  including  time-varying  viral  loads,  population-level  and  localized  immunity,                          
interventions,  network  factors,  and  other  effects  –  are  automatically  incorporated,  and  do  not  need  to  be                                
considered   separately.  
 
While  methods  2  and  3  are  implemented  in  Covasim,  they  have  the  disadvantage  that  they  introduce                                
significant  temporal  blurring,  due  to  the  potentially  long  infectious  period  (and,  for  method  3,  the  long                                
recovery  period).  To  avoid  this  limitation,  the  default  method  Covasim  uses  for  computing R e  is  to  divide                                  
the  number  of  new  infections  on  day t  by  the  number  of  actively  infectious  people  on  day t ,  multiplied  by                                        
the  average  duration  of  infectiousness  ("method  4").  This  definition  of R e  is  nearly  identical  to  the                                
definition  of  the  "instantaneous  reproductive  number"  in ( 63 ) ,  which  is  used  as  the  ground  truth  against                                
which   other    R e    estimators   are   compared.  
 
Covasim  also  includes  an  estimate  of  the  epidemic  doubling  time,  computed  using  the  "rule  of  70" ( 64 ) ,                                  
specifically:  

 
 
where T  is  the  doubling  time, w  is  the  window  length  over  which  to  compute  the  doubling  time  (3  days  by                                          
default),   and    n i (t)     is   the   cumulative   number   of   infections   at   time    t .  

2.6.5   Data   inputs  
In  addition  to  the  demographic  and  contact  network  data  available  via  SynthPops,  Covasim  includes                            
interfaces  to  automatically  load  COVID-19  epidemiology  data,  such  as  time  series  data  on  deaths  and                              
diagnosed  cases,  from  several  publicly  available  databases.  These  databases  include  the  Corona  Data                          
Scraper  ( coronadatascraper.com ),  the  European  Centre  for  Disease  Prevention  and  Control                    
( ecdc.europa.eu ),  and  the  COVID  Tracking  Project  ( covidtracking.com ).  At  the  time  of  writing,  these  data                            
are  available  for  over  4,000  unique  locations,  including  most  countries  in  the  world  (administrative  level                              
0),  all  US  states  and  many  administrative  level  1  (i.e.,  subnational)  regions  in  Europe,  and  some                                
administrative   level   2   regions   in   Europe   and   the   US   (i.e.,   US   counties).  
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2.6.6   Calibration  
The  process  of  calibration  involves  finding  parameter  values  that  minimize  the  difference  between                          
observed  data  (which  typically  includes  daily  confirmed  cases,  hospitalizations,  deaths,  and  number  of                          
tests  conducted)  and  the  model  predictions.  In  practice,  minimizing  the  difference  between  the  model                            
and  data  equates  to  maximizing  a  log-likelihood  function.  Since  most  data  being  calibrated  to  are  time                                
series   count   data,   this   function   is   defined   as:  
 

 
 
where  is  a  time  series  of  observations  (such  cumulative  confirmed  cases  or  number  of  deaths);  is   s                               t    
the  time  index;  is  the  weight  associated  with ; and  are  the  counts  from  the  data  and  model,       ws             s   cd

s,t   cm
s,t                  

respectively,  for  this  time  series  at  this  time  index;  and f  is  the  loss,  objective,  or  goodness-of-fit  function                                    
(e.g.,  normalized  absolute  error,  mean  absolute  error,  mean  squared  error,  or  the  Poisson  test  statistic).                              
By   default,   if   data   are   loaded   into   a   simulation,   Covasim   calculates   the   loss   using   this   method.  
 
Calibrating  any  model  to  the  COVID-19  epidemic  is  an  inherently  difficult  task:  not  only  is  there                                
significant  uncertainty  around  the  reported  data,  but  there  are  also  many  possible  combinations  of                            
parameter  values  that  could  give  rise  to  these  data.  Thus,  in  a  typical  calibration  workflow,  most                                
parameters  are  fixed  at  the  best  available  values  from  the  literature,  and  only  essential  parameters  (for                                
example,    β )   are   allowed   to   vary.  
 
Currently,  calibration  must  be  performed  externally  to  Covasim.  However,  since  a  single  model  run                            
returns  a  scalar  loss  value,  these  runs  can  be  easily  integrated  into  standardized  calibration  frameworks.                              
An  example  implementation  using  Weights  &  Biases  ( wandb.com )  is  included  in  the  codebase,  but  any                              
standard  optimization  library  –  such  as  the  optimization  module  of  SciPy  –  can  be  easily  adapted,  as                                  
can  more  advanced  methods  such  as  the  adaptive  stochastic  descend  method  of  the  Sciris  library ( 65 ) ,                                
or   Bayesian   approaches   such   as   history   matching    ( 66 )    or   Optuna    ( 16 ) .  

2.7   Software   architecture  
Covasim  was  developed  for  Python  3.7  using  the  SciPy  ( scipy.org )  ecosystem ( 67 ) .  It  uses  NumPy                              
( numpy.org ),  Pandas  ( pandas.pydata.org ),  and  Numba  ( numba.pydata.org )  for  fast  numerical                  
computing;  Matplotlib  ( matplotlib.org )  and  Plotly  ( plotly.com )  for  plotting;  and  Sciris  ( sciris.org )  for  data                          
structures,   parallelization,   and   other   utilities.   
 
The  source  code  for  Covasim  is  available  via  both  the  Python  Package  Index  (via pip  install  covasim )                                
and  GitHub  ( github.com/institutefordiseasemodeling/covasim ).  Covasim  is  fully  open-source,  released                
under  the  Creative  Commons  Attribution-ShareAlike  4.0  International  Public  License.  More  information  is                        
available   at    covasim.org ,   with   full   documentation   at    docs.covasim.org .   

2.7.1   Performance  
All  core  numerical  algorithms  in  the  Covasim  integration  loop  –  specifically,  calculating  intra-host  viral                            
load,  per-person  susceptibility  and  transmissibility,  and  which  contacts  of  an  infected  person  become                          
infected  themselves  –  are  implemented  as  highly  optimized  32-bit  array  operations  in  Numba.  For                            
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further  efficiency,  agents  are  not  represented  as  individual  objects,  but  rather  as  indices  of                            
one-dimensional  state  arrays  (Fig.  S5).  This  approach  avoids  the  need  to  use  an  explicit  for-loop  over                                
each  agent  on  every  integration  timestep.  Similarly,  contacts  between  all  agents  in  the  model  are  stored                                
as   a   single   array   of   "edges"   per   contact   layer.  
 
As  shown  in  Fig.  S6,  these  software  optimizations  allow  Covasim  to  achieve  high  levels  of  performance,                                
despite  being  implemented  purely  in  Python.  Performance  scales  linearly  with  population  size  over                          
multiple  orders  of  magnitude:  memory  scales  at  a  rate  of  roughly  1  KB  per  agent,  while  compute  time                                    
(benchmarked  on  an  Intel  i9-8950HK  laptop  processor)  scales  at  a  rate  of  roughly  2  million  simulated                                
person-days  per  second  of  CPU  time.  This  performance  is  roughly  2-4  times  faster  and  uses  2-5  times                                  
less  memory  than  OpenABM-COVID,  despite  the  latter  being  implemented  in  C++ ( 38 ) .  Thus,  it  is  feasible                                
to  run  realistic  scenarios,  such  as  tens  of  thousands  of  infections  among  a  susceptible  population  of                                
hundreds   of   thousands   of   people   for   a   duration   of   a   year,   in   under   a   minute   on   a   personal   laptop.  
 

 
Fig.  S5 :  Illustration  of  the  standard  object-oriented  approach  for  implementing  agent-based                      
models  (top),  where  each  agent  is  a  separate  object,  compared  with  the  approach  used  in                              
Covasim  (bottom),  where  agents  are  represented  as  slices  through  a  set  of  state  arrays.  Dots  (...)                                
represent  omitted  entries;  in  practice,  each  agent  has  39  states,  and  there  are  typically  tens  or                                
hundreds   of   thousands   of   agents.  

2.7.1   Deployment  
For  ease  of  use,  a  simple  webapp  for  Covasim  has  been  developed,  based  on  Vue.js  (for  the  frontend),                                    
ScirisWeb  (for  communicating  between  the  frontend  and  the  backend),  Flask  (for  running  the  backend),                            
and  Gunicorn/NGINX  (for  running  the  server);  this  webapp  is  available  at app.covasim.org .  A  screenshot                            
of  the  user  interface  is  shown  in  Fig.  S7.  A  pre-built  version  of  Covasim,  including  the  webapp,  is  also                                      
available   on   Docker   Hub   ( hub.docker.com ).  

2.7.2   Software   tests  
Covasim  includes  an  extensive  suite  of  both  integration  tests  and  unit  tests;  code  coverage  for  version                                
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1.0  is  94%  (including  compiled  Numba  functions),  with  much  of  the  remaining  6%  consisting  of                              
exceptions  that  are  not  raised  by  standard  usage.  In  addition,  outputs  from  the  default  simulations  for                                
each  version  are  compared  against  cached  values  in  the  repository;  since  random  seeds  are  stored,                              
results  are  exactly  reproducible  despite  the  stochasticity  in  the  model.  When  new  data  become  available                              
and  parameter  values  are  updated,  previous  parameters  are  stored,  ensuring  that  any  changes  affecting                            
the  model  outputs  are  intentional,  and  that  previous  versions  can  be  easily  retrieved  and  compared                              
against.  

 
Fig.  S6 :  Covasim  performance  in  terms  of  processor  usage  (top)  and  memory  usage  (bottom),                            
showing   linear   scaling   over   almost   three   orders   of   magnitude   of   population   size.  
 

 
Fig.   S7 :   Covasim   webapp   user   interface;   screenshot   taken   from    http://app.covasim.org .  
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3   Covasim   usage  
Several  of  Covasim's  standard  features  are  illustrated  in  Fig.  S8.  It  represents  a  "calibrated"  simulation  (in                                
terms  of  using  a  customized  value  of β )  of  200,000  people,  from  February  10th  until  June  29th,  starting                                    
with  75  seed  infections.  After  an  initial  45  days  of  uncontrolled  epidemic  spread,  the  following                              
interventions  are  applied:  March  26th,  close  schools  and  reduce  work  and  community  contacts  to  70%  of                                
their  original  values;  April  10th,  reduce  work  and  community  to  30%  of  their  original  values;  May  5th,                                  
reopen  work  and  community  to  80%  of  their  original  values;  May  20th,  begin  testing  10%  of  people  with                                    
COVID-like   illness   each   day,   and   trace   the   contacts   of   people   who   test   positive.   
 

 
Fig.  S8 :  Illustrative  example  of  a  single  run  of  a  Covasim  simulation.  Interventions  (described  in                              
the   text)   are   shown   as   dashed   vertical   lines.  
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Fig.  S9 :  Full  listing  of  the  code  used  to  produce  Fig.  S8,  including  defining  the  parameters  of  the                                    
simulation  (lines  4-11);  defining  the  interventions  (lines  14-23);  and  creating,  running,  and  plotting                          
the   simulation   (lines   26-28).  

 
By  default,  Covasim  shows  time  series  for  key  cumulative  counts,  daily  counts,  and  health  outcomes                              
(including  deaths).  All  plotting  outputs  are  configurable,  and  results  can  also  be  saved  in  Excel,  JSON,  or                                  
NumPy  formats  for  further  processing.  While  a  full  Covasim  application  would  likely  include  additional                            
complexity  regarding  calibration  and  plotting,  other  aspects  of  the  example  shown  in  Fig.  8  are                              
comparable  to  a  real-world  exploratory  policy  analysis.  Despite  this,  the  Python  script  used  to  generate                              
Fig.   S8   is   only   28   lines;   this   code   is   listed   in   Fig.   S9.  
 
In  addition  to  running  single  simulations,  Covasim  also  allows  the  user  to  run  multiple  simulations,  which                                
can  be  averaged  over  to  determine  forecast  intervals.  By  default,  the  forecast  intervals  used  correspond                              
to  the  10th  and  90th  percentiles  of  the  simulated  trajectories.  In  most  contexts,  these  forecast  intervals                                
can  be  treated  interchangeably  with  confidence  intervals;  however,  since  they  are  typically  produced                          
through  a  combination  of  stochastic  variability  and  parameter  uncertainty,  they  have  a  somewhat                          
different   statistical   interpretation.   
 
The  preceding  examples  illustrate  some  aspects  of  Covasim's  core  functionality  that  are  used  in  most                              
applications.  More  in-depth  analyses  are  also  possible,  leveraging  either  the  default  outputs,  or  the  fact                              
that   the   full   state   of   the   model   is   accessible   to   the   user   at   every   timestep   via   custom   analysis   functions.  
 
For  example,  detailed  information  about  the  transmission  tree  is  stored  for  each  simulation.  This                            
information  can  be  used  to  determine  the  detailed  microstructure  of  the  infection  patterns  in  a  given                                
simulation.  Complete  transmission  trees  for  a  small  network  under  three  different  intervention  scenarios                          
are  shown  in  Fig.  S10,  visualized  via  the  ETE  Toolkit ( 68 ) .  For  realistically  sized  networks,  it  is  not                                    
feasible  to  visualize  entire  transmission  trees.  However,  their  statistical  properties  can  be  analyzed  to                            
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determine  transmission  routes  and  potential  intervention  targets.  For  example,  such  information  can  be                          
used  to  determine  the  net  contribution  of  schools  (or  even  teachers  at  schools)  to  the  overall  epidemic                                  
trajectory.  
 
 

 
Fig.  S10 :  Example  transmission  trees  for  a  hypothetical  population  of  300  individuals  with  a                            
single  seed  infection  on  day  1,  with  (A)  no  interventions,  (B)  testing  only,  and  (C)  testing  plus                                  
contact  tracing.  Time  is  shown  on  the  horizontal  axis,  with  each  tree  representing  approximately                            
90   days.   The   vertical   size   of   each   tree   is   proportional   to   the   total   number   of   infections.  
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4   Limitations   of   Covasim  
Covasim  is  subject  to  the  usual  limitations  of  mathematical  models,  most  notably  constraints  around  the                              
degree  of  realism  that  can  be  captured.  For  example,  human  contact  patterns  are  intractably  complex,                              
and   the   algorithms   that   Covasim   uses   to   approximate   these   are   necessarily   quite   simplified.   
 
Like  all  models,  the  quality  of  the  outputs  depends  on  the  quality  of  the  inputs,  and  many  of  the                                      
parameters  on  which  Covasim  relies  are  still  subject  to  large  uncertainties.  Most  critically,  the  proportion                              
of  asymptomatics  and  their  relative  transmission  intensity,  and  the  proportion  of  presymptomatic                        
transmission,  strongly  affect  the  number  of  tests  required  in  order  to  achieve  workable  COVID-19                            
suppression   via   testing-based   interventions.  
 
Dynamical  models  are  commonly  validated  by  comparing  their  projections  against  data  on  what  actually                            
happened.  However,  there  are  several  challenges  in  using  this  approach  for  COVID-19,  including  (a)  data                              
quality  issues  (such  as  low  case  detection  rates  and  under-reporting  of  deaths),  (b)  the  difficulty  of                                
predicting  future  social  and  political  responses  that  would  significantly  impact  model  projections  (such                          
as  the  timing  of  school  and  workplace  reopening),  and  (c)  the  fact  that  model-based  projections                              
themselves  have  the  potential  to  influence  policy  decisions,  e.g.,  optimistic  model  projections  may  lead                            
to  relaxed  policies,  which  in  turn  will  lead  to  worse  outcomes  than  predicted;  pessimistic  model                              
projections   may   lead   to   stricter   policies,   which   in   turn   will   lead   to   better   outcomes   than   predicted.    
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5   Data   and   analyses  

5.1   Data   and   sources  
As  an  agent-based  model,  Covasim  can  make  use  of  rich  data  sources.  Mechanistic  representations  of                              
individuals,  contacts,  and  infections  enables  physical  parameter  values  to  be  input  directly  or  used  as                              
priors  during  model  fitting.  Default  values  for  most  inputs  come  from  publicly  available  data  and                              
literature,   as   provided   in   Tables   S1   and   S2.  
 
To  model  the  Seattle-King  County  region  for  this  analysis,  we  used  epidemiological  data  provided  by  the                                
Washington  State  Department  of  Health  (WA-DoH)  under  a  use  agreement.  (Note  that  "Seattle"  and  "King                              
County"  are  used  interchangeably,  i.e.  the  analysis  is  not  restricted  to  the  city  of  Seattle,  nor  does  it                                    
include  counties  in  the  greater  Seattle  metropolitan  area  such  as  Snohomish  and  Pierce  counties.)                            
WA-DoH  maintains  all  COVID-19  data  as  a  line-list  in  the Washington  Disease  Reporting  System  (WDRS),                              
and  has  provided  weekly  exports  to  the  study  team  for  the  purpose  of  conducting  this  and  other                                  
analyses  in  support  of  model-based  decision  making.  We  aggregated  line-list  entries  to  daily  totals  by                              
10-year  age  bins  to  produce  target  data  for  model  calibration.  The  resulting  dataset  includes  the  number                                
of  positive  and  negative  tests  (by  date  of  sample  collection)  as  well  as  the  number  of  deaths  (by  date  of                                        
death)  in  King  County.  The  WDRS  records  also  enabled  us  to  characterize  the  distribution  of  delays                                
between  symptom  onset  on  diagnostic  swab;  we  used  these  data  to  validate  the  implementation  of  the                                
testing   intervention   (Fig.   S11).  

 
Fig.  S11 :  Comparison  of  empirical  (orange),  statistically  modeled  (green),  and  simulated  (blue)                        
symptom-to-swab   delay   distributions.  

 
Using  data  on  the  number  of  tests  and  number  of  diagnoses,  we  were  able  to  calibrate  the  model  to                                      
testing  yield.  By  combining  this  with  estimated  numbers  of  infections,  which  we  know  from  both  data  on                                  
deaths  as  well  as  independent  seroprevalence  surveys  (as  shown  in  Fig.  1C),  we  were  able  to  estimate                                  
the  testing  rates  of  people  both  with  and  without  COVID-19.  According  to  the  most  recent  data  available                                  
at  the  time  the  analyses  were  performed  (June  9),  roughly  1,800  tests  per  day  were  being  conducted  in                                    
King  County;  using  this  method,  we  found  that  a  roughly  8%  probability  per  day  of  testing  for  people                                    
experiencing  symptoms,  and  0.1%  probability  per  day  of  testing  for  people  who  without  symptoms                            
(uninfected,  asymptomatic,  and  presymptomatic),  allowed  us  to  match  observed  values  for  (a)  the                          
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overall   number   of   tests,   (b)   the   test   positivity   rate,   and   (c)   the   symptom-to-swab   delay.  
 
The  partnership  with  Public  Health  Seattle-King  County  (PHSKC)  has  provided  additional  context  to                          
ensure  the  model  captures  transmission,  testing,  care,  and  contact  tracing  in  this  setting.  Public  health                              
co-authors  and  other  county  officials  have  provided  data,  under  use  agreement,  and  insights  on  testing                              
campaigns,  focal  outbreaks,  schools,  hospitalization,  and  congregate  settings  such  as  long-term  care                        
facilities  (LTCF).  Much  of  these  data  are  available  publicly  on daily  summary  and LTCF  dashboards.                              
Insights  on  how  the  testing  program  has  evolved  over  the  course  of  the  epidemic  has  been  used  to  set                                      
change   points   for   testing   parameters,   which   are   identified   during   the   calibration   process.  
 
Washington  is  a  home-rule  state,  meaning  that  laws  can  be  set  at  the  local  level,  and  as  such  the  contact                                        
tracing  programs  are  led  by  each  local  health  jurisdiction.  Seattle-King  County  was  one  of  the  first                                
jurisdictions  in  the  state  to  pilot  contact  tracing  using  local  health  resources.  Today,  the  county  has                                
sufficient  human  resources  to  trace  approximately  half  of  the  cases,  while  the  other  half  are  handled  by                                  
the   Washington   State    contact   tracing   program .   Data   for   this   analysis   were   provided   by   PHSKC.  
 
We  used  data  on  weekly  foot  traffic  patterns  obtained  through SafeGraph  to  model  the  degree  of                                
mobility  in  the  workplace  and  community  layers  of  the  model.  This  publicly  available  dataset  is  based  on                                  
anonymized  cell  phone  data,  which  connects  foot  traffic  counts  with  points  of  interest  visits  for  over  5                                  
million  unique  locations  in  the  United  States.  This  rich  dataset  enables  a  detailed  view  of  hourly  visits  to                                    
specific  locations.  Using  an  aggregation  of  visits  in  King  County  across  all  industries  starting  at  the  end                                  
of  January,  we  classified  visits  with  a  dwell-time  less  than  four  hours  as  community-associated  mobility,                              
and  those  visits  with  a  dwell-time  of  more  than  four  hours  as  workplace-associated  mobility.  Using  the                                
last  week  of  January  as  a  baseline  value  for  “pre-COVID  mobility”,  we  assigned  a  weekly  mobility  level  for                                    
community   and   work   relative   to   the   baseline   value.  

5.2   Population   and   network   model  
To  model  King  County  with  detailed  information  on  the  demographics  and  network  structures  of  the  King                                
County  population,  we  used  SynthPops,  an  open-source  data-driven  model  for  generating  realistic                        
synthetic  contact  networks  for  populations.  Further  details  are  provided  below.  For  the  population  of                            
King  County,  we  used  a  combination  of  data  sources  at  the  county,  state,  and  country  resolution  with  the                                    
SynthPops  model  (version  0.7.2).  Specifically,  data  from  the  2018  American  Community  Survey  (ACS)  at                            
the  county  resolution ( 69 )  was  used  to  estimate  age  and  household  size  distributions.  The  US  Census                                
Bureau ( 70 )  provided  data  for  the  age  of  reference  individuals  by  household  size  at  the  country                                
resolution,  and  age  mixing  contact  matrices  for  the  US  are  drawn  from ( 60 ) .  For  the  network  layer  of                                    
schools,  we  used  2018  ACS  1-year  estimates  for  county  enrollment  rates  by  age ( 69 ) ,  municipal  records                                
on  school  enrollment  numbers ( 71 ) ,  student-teacher  ratios,  and  the  average  class  size  for  schools ( 72 ) .                              
For  the  network  layer  of  workplaces,  we  used  2018  ACS  1-year  estimates  for  county  employment  rates                                
by   age    ( 73 )    and   2015   county   estimates   for   workplace   sizes    ( 74 ) .  
 
In  King  County,  a  significant  percent  of  COVID-19  cases  and  deaths  have  occurred  to  date  within  the                                  
LTCF  population.  However,  most  COVID  models  to  date  have  not  explicitly  included  LTCFs,  which  has                              
been  identified  as  a  major  limitation ( 75 ) .  To  capture  the  dynamics  of  transmission  in  this  setting,  the                                  
SynthPops  model  was  extended  to  include  the  contact  layer  of  those  living  and  working  in  long  term  care                                    
facilities  to  reflect  the  initial  outbreaks  that  occurred  in  these  facilities ( 76 ) .  Data  on  the  demographics  of                                  
LTCF  residents  for  Washington  state ( 77 )  was  used  to  estimate  the  number  of  residents  and  their  ages                                  
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for  Seattle  area  facilities.  From  these  data,  we  estimate  approximately  15,000  individuals  aged  60  and                              
older  are  residents  of  long  term  care  facilities  within  the  Seattle  area.  Additional  King  County  data  on  the                                    
number  of  residents  per  facility  and  resident-to-staff  ratios  were  used  to  sample  facility  sizes  and                              
populate  the  facilities  with  both  residents  and  staff  members. There  were  an  average  of  123  residents                          
per  facility  and  132  staff  per  facility,  but  there  is  wide  variation  in  both  total  numbers  of  residents  and                    
staff  and  in  the  resident-to-staff  ratios .  For  the  purposes  of  this  model,  residents  considered  to  be  living                             
in  these  facilities  were  not  assigned  any  additional  outside  contacts  (household,  school,  workplace,  or                            
community).  Staff  members  were  drawn  from  the  labor  force  of  the  population  under  60  years  of  age.                                  
With  large  facility  sizes,  we  modeled  close  contacts  in  facilities  by  sampling  for  each  resident  and  staff                                  
member  a  subset  of  20  contacts,  ensuring  that  each  resident  is  in  contact  with  at  least  one  staff                                    
member.  
 
Five  synthetic  populations  of  225,000  modeled  agents  (representing  10%  of  King  County's  population)                          
were  generated  using  SynthPops,  with  dynamic  scaling  used  to  rescale  this  population  to  represent  the                              
full  2.25  million  population  of  King  County  (see  Section  2.6.3).  A  typical  synthetic  population  had  roughly                                
500,000  household  contacts,  1  million  school  contacts,  1.9  million  workplace  contacts,  4.5  million                          
community  contacts,  and  31,000  LTCF  contacts.  To  reflect  the  relative  amount  of  time  spent  with  each                                
contact  across  different  layers,  relative  transmission  weights  per  layer  were  set  to  be  100%  for                              
households  (as  a  reference  value),  50%  for  LTCFs,  20%  for  schools  and  workplaces,  and  10%  for                                
community  contacts.  A  subset  of  the  simulations  were  also  run  with  2.25  million  agents  to  verify  that                                  
results   were   consistent   with   and   without   rescaling.  

5.3   Calibration   methodology  
We  calibrated  model  parameters  using Optuna ,  a  Python-based  optimization  library ( 16 ) ,  using  the                          
tree-structured  Parzen  estimator  (TPE)  sampler ( 78 ) .  This  sampler  trains  models  of p ( θ | y )  and p ( y ),                            
where θ  is  a  set  of  parameters  and y  is  a  (scalar)  output  of  a  loss  (objective)  function,  to  find  the  region                                            
of  the  parameter  space  that  minimizes y .  We  defined  the  loss  function  to  be  the  sum  of  the  absolute                                      
differences  between  observed  data  and  the  corresponding  model  predictions  for  seven  different  target                          
outputs,  namely:  (a)  cumulative  diagnoses  per  day,  (b)  cumulative  deaths  per  day,  (c)  7-day  rolling                              
average  diagnoses,  (d)  7-day  rolling  average  deaths,  (e)  total  diagnoses  by  age  (using  10-year  age  bins),                                
(f)  average  test  positivity  rate  by  age,  and  (g)  total  deaths  by  age.  To  equalize  the  weight  given  to  each                                        
point  in  each  of  these  five  different  data  types,  each  data  type  was  normalized  by  the  maximum  value  in                                      
the  data.  In  addition,  cumulative  vs.  rolling  average  data  were  weighted  in  the  ratio  4:1,  which  was  found                                    
to  most  efficiently  optimize  the  tradeoff  between  accurate  fitting  of  long-term  trends  (driven  by  fits  to                                
cumulative  data)  and  short-term  trends  (driven  by  fits  to  rolling  average  data).  Deaths  and  diagnoses  by                                
age  were  given  a  relative  weighting  of  2,  while  test  positivity  by  age  was  given  a  weight  of  0.4  (since  it                                          
was  highly  correlated  with  diagnoses  by  age,  given  that  the  total  number  of  tests  was  fixed).  These                                  
weights  were  chosen  through  an  iterative  process  to  determine  algorithm  convergence;  final  results  are                            
not  sensitive  to  them,  since  the  final  simulations  used  for  the  analysis  were  good  fits  to  all  seven  target                                      
outputs,  and  since  they  do  not  represent  independent  degrees  of  freedom  (e.g.  a  good  fit  to  rolling                                  
average   diagnoses   is   necessarily   at   least   a   reasonable   fit   to   cumulative   diagnoses).  
 
We  used  104,000  simulation  runs  during  the  calibration  process  to  ensure  broad  exploration  of                            
parameter  space.  To  determine  parametric  uncertainty,  we  used  a  cutoff  value  for  the  loss  function  of                                
30,  which  corresponded  to  no  more  than  roughly  2%  average  relative  error  per  point  in  the  diagnoses  and                                    
deaths  time  series,  and  roughly  10%  average  relative  error  for  diagnoses,  yield,  and  deaths  age                              
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distributions;  this  cutoff  was  also  roughly  a  factor  of  2  larger  than  the  single  best-fitting  simulations                                
(which  had  total  losses  of  15.6  and  15.9  for  calibrations  with  and  without  mobility  data,  respectively).                                
Using  this  cutoff,  the  posterior  distribution  consisted  of  the  15,092  best-fitting  parameter  sets  for  the                              
calibrations  that  used  SafeGraph  mobility  data,  and  the  8,821  best-fitting  parameter  sets  for  calibrations                            
that  did  not.  Median  values  and  95%  confidence  intervals  for  epidemic  projections  and  parameter                            
distributions  (Fig.  1)  were  produced  using  these  parameter  sets  (based  on  a  uniform  sample  of  200                                
simulations).  Detailed  transmission  characteristics  (Fig.  2)  were  based  on  the  single  best  fit  with  mobility                              
data.  For  scenario  analyses  (Figs.  4  and  5),  the  top  10  best-fitting  parameter  sets  for  the  calibrations  that                                    
included   mobility   data   were   used.  
 
Calibrating  using  four  parameters  was  found  to  be  sufficient  to  allow  sufficient  flexibility  to  capture                              
observed  epidemic  trends,  both  with  and  without  using  mobility  data  as  input.  These  parameters  are                              
shown  in  Table  S3;  uniform  priors  were  used.  Simulations  were  initialized  with  300  seed  infections,                              
distributed  at  random  throughout  the  population,  on  January  27.  This  initialization  was  chosen  by                            
calibrating  the  number  of  seed  infections  and  overall  transmission  rate  ( β )  to  the  subset  of  data  prior  to                                    
major  policy  or  mobility  changes  (i.e.,  February  27),  and  for  consistency  with  other  estimates  of  the  initial                                  
reproduction  number  in  King  County.  In  the  calibration,  larger  numbers  of  seed  infections  were                            
compensated  for  by  smaller  transmission  rates;  300  seed  infections  was  the  fewest  that  could  be  used                                
(reflecting  the  highest  baseline  transmission  rate)  that  provided  a  reasonable  match  to  the  data.  We                              
used  SafeGraph  data  to  determine  the  proportion  of  network  edges  in  workplace  and  community  layers                              
that  should  be  removed  or  restored  over  time  based  on  observed  changes  in  the  mobility.  Other  model                                  
parameters  were  set  to  use  Covasim  defaults,  as  described  below.  The  model  was  calibrated  to  data                                
from  January  27  until  June  9.  Scenarios  began  on  June  1;  we  used  the  9-day  period  of  overlap  to  ensure                                        
consistency   between   calibrated   and   projected   estimates   of   new   infections,   tests,   diagnoses,   and   deaths.  
 
Table  S3.  Model  parameters  and  calibrated  values  determined  via  fitting  model  outputs  to  King  County                              
data.  

Parameter   Primarily   constrained   by   Calibrated   value   with  
SafeGraph   data:  
median   (95%   CI)  

Calibrated   value  
without   SafeGraph  
data:   median   (95%  

CI)  

Search  
interval  

Probability   of   transmission  
per   contact   per   day   ( β ,   %)  

Initial   rate   of   epidemic   growth  
in   observed   diagnoses   and  
deaths  

4.4   (4.2,   4.6)   4.3   (4.2,   4.5)   [3.3,   4.8]  

Relative   reduction   in  
transmission   rate   in   work   and  
community   layers   from   March  
23   onwards   (%)  

Numbers   of   diagnoses   and  
deaths  

12.3   (2.9,    23.5)   71.7   (65.0,    79.9)  
 
 

[0,   90]  

Relative   reduction   in  
transmission   rate   in   LTCFs  
from   March   23   onwards   (%)  

Age   distribution   of   deaths   and  
diagnoses;   ratio   of   deaths   to  
diagnoses;   time   trend   of  
deaths  

86.1   (70.6,    94.2)   87.1   (71.0,    94.3)   [60,   95]  

Odds   ratio   of   people   with  
symptoms   testing  

Test   positivity   rate;   number   of  
diagnoses  

20.9   (15.2,    27.7)   20.2   (14.8,    27.7)   [10,   60]  
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5.4   Idealized   test-trace-quarantine   scenarios  
For  the  illustrative  transmission  trees  shown  in  Fig.  3A–C,  we  used  a  hypothetical  population  of  100                                
people  with  a  single  seed  infection  simulated  for  100  days.  Population  demographics  were  based  on                              
Seattle,  Washington,  USA,  but  contact  networks  were  generated  using  a  "hybrid"  algorithm  rather  than                            
SynthPops;  this  algorithm  is  described  in  Section  2.4.3.  Testing  and  tracing  interventions  began  on  day                              
20  of  the  simulation.  The  testing  intervention  used  15%  daily  probabilities  of  testing  for  people  with                                
symptoms;  people  without  symptoms  were  not  tested,  and  all  people  were  tested  upon  entering                            
quarantine.  Contact  tracing  probabilities  for  the  household,  school,  work,  and  community  layers  were                          
70%,  10%,  10%,  and  0%,  respectively  (note  that  long-term  care  facilities  are  not  included  in  the  hybrid                                  
network).  
 
To  explore  the  theoretical  properties  of  test-trace-quarantine  (Fig.  3D–F),  we  used  a  hypothetical                          
population  of  30,000  people  with  100  seed  infections  simulated  for  150  days.  As  above,  a  hybrid  network                                  
was  used.  Simulations  were  run  with  10  different  random  seeds,  for  three  different  transmission  levels:                              
medium  transmission  ( β  =  4.2%  per  household  contact  per  day,  consistent  with  estimated β  for  Seattle),                                
low   transmission   ( β    =   3.3%),   and   high   transmission   ( β    =   5.1%).   
 
Parameters  for  each  of  the  three  intervention  scenarios  (physical  distancing,  testing,  and  testing  plus                            
tracing)  were  chosen  to  bring R e  ≈  1  for  the  medium  transmission  scenario.  These  intervention                              
parameters  were  held  constant  for  the  low  and  high  transmission  scenarios.  The  interventions  that                            
began   on   day   15   of   the   simulation   for   each   of   the   three   scenarios   were:   

● Physical   distancing   scenario:   60%   reduction   in    β ,   no   testing   or   contact   tracing;  
● Testing  scenario:  no  reduction  in β ;  daily  probability  of  testing  of  75%  and  7.5%  for  people  with                                  

and  without  symptoms,  respectively,  with  no  testing  delay  (test  results  returned  same  day);  no                            
contact   tracing;  

● Test-and-trace  scenario:  no  reduction  in β ;  daily  probability  of  testing  of  8%,  0.8%,  and  75%  for                                
people  with  symptoms,  without  symptoms,  and  in  quarantine,  respectively,  with  no  testing  delay;                          
tracing   probability   of   90%   across   all   layers   with   no   tracing   delay.  

 
While  zero  delays  were  used  here,  we  also  ran  a  sensitivity  analysis  with  nonzero  delays  (1  day  for                                    
testing  and  1-2  days  for  contact  tracing).  Note  that  even  with  zero  delays,  there  is  a  minimum  one-day                                    
delay  per  step  in  the  contact  tracing  process  (since  people  who  are  placed  into  quarantine  cannot  test                                  
until  the  next  timestep,  i.e.  the  following  day).  In  the  model  we  assume  that  the  duration  of                                  
infectiousness  is  equivalent  to  the  period  during  which  a  person  would  test  positive.  For  idealized  TTQ  to                                  
succeed  for  high  rates  of  transmission,  the  average  delay  for  a  single  step  of  contact  tracing  must  be                                    
less  than  the  average  serial  interval,  i.e.  the  average  delay  between  a  primary  infection  and  a  secondary                                  
infection.  However,  it  is  not  necessary  for  the  delays  to  be  less  than  the  shortest  serial  interval;  if  a                                      
secondary  infection  occurs  prior  to  contact  tracing,  the  cluster  can  still  be  contained  as  long  as  the                                  
average  tracing  delay  is  less  than  the  average  serial  interval.  An  example  of  this  is  shown  in  Fig.  3C:                                      
person  71  is  not  diagnosed  until  after  they  have  infected  person  74  (day  37),  and  person  74  is  not  traced                                        
until  after  they  have  infected  person  75  (day  40).  However,  person  75  is  quarantined  before  they  transmit                                  
further   (day   42),   and   the   cluster   is   contained.  

5.5   Realistic   test-trace-quarantine   scenarios  
We  used  the  10  parameter  configurations  with  the  best  fit  to  the  data  over  the  period  February  1  to  June                                        
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10  as  the  basis  for  the  test-trace-quarantine  (TTQ)  scenarios  shown  in  Fig.  4A.  Scenarios  were  also  run                                  
with  other  sets  of  calibrations  (including  the  top  100,  and  using  the  same  goodness-of-fit  threshold  used                                
for  the  distributions  shown  in  Fig.  1E).  These  results  did  not  differ  qualitatively  and  only  modest                                
quantitative  differences  were  observed;  the  top  10  calibrations  were  chosen  to  ensure  the  best  fit  to  data                                  
while  still  capturing  both  parametric  and  stochastic  uncertainty.  To  explore  the  relative  importance  of                            
different  intervention  parameters,  we  ran  a  sweep  of  50  points  for  each  of  the  six  parameters  (described                                  
below),  for  each  of  the  10  parameter  configurations,  for  a  total  of  3,000  simulations.  Each  scenario                                
began  on  June  10  and  ended  on  August  30,  which  was  chosen  as  the  period  prior  to  the  potential                                      
reopening  of  schools.  Scenarios  began  with  an  immediate  return  to  100%  mobility  in  work  and                              
community  (from  a  baseline  value  of  43%  from  the  last  reported  SafeGraph  data  on  June  1)  as  well  as                                      
immediate  implementation  of  the  testing  and  contact  tracing  interventions  with  the  parameter  values                          
described  below.  Relative β  (compared  to  baseline),  reflecting  mask  use  and  other  non-pharmaceutical                          
interventions,  remained  constant  throughout  the  scenarios  at  its  last  calibrated  value,  which  varied  from                            
73%   to   82%.  
 
For  each  scenario,  only  one  parameter  at  a  time  was  varied.  Note  that  the  parameters  interact                                
nonlinearly;  for  example,  the  impact  of  the  contact  tracing  delay  depends  on  the  amount  of  contact                                
tracing.  Additionally,  the  impact  of  interventions  is  dependent  on  the  epidemic  dynamics:  with  very  low                              
mobility  and  hence  baseline  transmission,  the  impact  of  interventions  will  be  reduced.  Thus,  the  baseline                              
scenario  was  chosen  to  reflect  (a)  a  situation  where R e  ≈  1,  which  is  the  point  most  sensitive  to  small                                        
differences  in  intervention  effectiveness;  and  (b)  a  balance  between  testing  and  contact  tracing  that  is                              
intended  to  reflect  a  realistic  scale-up  of  both  current  programs.  While  other  baseline  points  would  be                                
possible,  this  scenario  aims  to  reflect  a  potentially  achievable  point  by  which  Seattle-King  County  could                              
maintain    R e    ≈   1   with   full   reopening.  
 
The   six   intervention   parameters   are   defined   as   follows:  

1. Isolation/quarantine  effectiveness:  The  relative  change  in  transmission  following  either                  
diagnosis  (isolation)  or  after  being  notified  as  a  known  contact  (quarantine).  While  in  practice                            
(and  for  the  assumptions  used  during  the  calibration  period)  the  effectiveness  would  differ                          
between  isolation  and  quarantine  (with  isolation  expected  to  have  higher  effectiveness),  as  well                          
as  between  contact  layers  (with  a  greater  reduction  in  workplace  and  community  transmission                          
compared  to  household),  here  we  used  a  single  weighted  average  value  to  ensure  that  the  slope                                
has  meaningful  units  (i.e.,  infections  averted  per  person  fully  isolated  or  quarantined).  The  default                            
value  chosen  was  80%  efficacy,  which  is  a  weighted  average  between  workplace  and  community                            
contacts  (where  isolation  efficacy  is  likely  to  be  higher,  e.g.  90–95%  effectiveness)  and                          
household  contacts  (where  isolation  efficacy  is  likely  to  be  lower,  e.g.  40–70%  effectiveness).                          
This  parameter  was  varied  from  0%  (no  impact  of  isolation/quarantine)  to  100%  (zero                          
transmission   during   isolation/quarantine).  

2. Contact  tracing  probability:  The  proportion  of  household,  workplace,  and  LTCF  contacts  of  a                          
person  who  has  been  diagnosed  who  are  reached  by  contact  tracers.  (The  proportion  of                            
community  contacts  reached  is  assumed  to  be  zero  for  this  analysis;  schools  are  closed  for  the                                
scenario  period  so  there  are  no  school  contacts  to  trace.)  The  default  value  chosen  was  50%,                                
which  again  reflects  a  weighted  average  between  household  and  LTCF  contact  tracing  (where                          
probabilities  well  above  80%  are  achievable)  and  workplace  contact  tracing  (where  probabilities                        
in  Seattle-King  County  are  currently  low).  This  parameter  was  varied  from  0%  (no  contacts                            
traced)   to   100%   (all   household   and   workplace   contacts   traced).  

3. Quarantine  testing  probability:  The  probability  that  a  known  contact,  once  traced,  will  be  tested                            
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for  COVID-19.  The  default  value  used  was  90%,  regardless  of  symptoms.  This  parameter  was                            
varied  from  0%  (no  testing  of  people  in  quarantine)  to  100%  (including  uninfected,  asymptomatic,                            
and  presymptomatic  contacts).  Upon  testing  negative,  contacts  were not  released  from                      
quarantine,  due  to  the  possibility  that  they  would  become  infected  due  to  continued  contact  with                              
the  index  case  (as  is  often  the  case  for  household  contacts),  or  in  case  they  were  exposed  but                                    
had   not   yet   started   shedding   at   detectable   levels.  

4. Routine  testing  probability:  The  probability  per  person  per  day  of  a  person  receiving  a  test  for                                
COVID-19.  The  default  values  chosen  were  16%  per  day  for  a  person  with  active  symptoms,  and                                
0.16%  for  people  who  are  uninfected  or  who  do  not  have  symptoms.  These  values  correspond  to                                
an  approximate  doubling  of  the  number  of  daily  tests  relative  to  June  10;  the  ratio  of  probabilities                                  
for  people  with  and  without  symptoms  was  set  to  be  100,  which  was  chosen  to  be  consistent                                  
with  the  observed  testing  yield  in  the  data  (approximately  1.5–2.5%).  This  parameter  was  varied                            
from  0%  (no  routine  testing)  to  50%  daily  symptomatic  testing  and  0.5%  daily  non-symptomatic                            
testing,   corresponding   to   a   roughly   4-fold   increase   in   testing   rates   compared   to   June   10.  

5. Swab-to-result  delay:  The  average  number  of  days  between  when  a  person  receives  a  COVID-19                            
swab  to  when  they  are  notified  of  their  result.  The  default  value  chosen  was  1  day,  reflecting  a                                    
slight  improvement  on  practice  in  Seattle-King  County  as  of  June  10  (approximately  1.5  days).                            
This   parameter   was   varied   from   0   days   (immediate   return   of   test   results)   to   7   days.  

6. Contact  tracing  delay:  The  average  number  of  days  between  when  a  person  receives  a  positive                              
result  from  a  COVID-19  test  and  when  their  contacts  are  traced  and  notified.  The  default  value                                
chosen  was  2  days,  which  is  somewhat  shorter  than  estimates  as  of  June  10  (3-5  days).  This                                  
parameter  was  varied  from  0  days  (immediate  notification  of  all  contacts,  although  the                          
swab-to-result   delay   is   still   present)   to   7   days.   

 
Because  epidemic  growth  is  an  exponential  process,  the  attack  rate  varied  widely  between  scenarios,                            
from  less  than  0.1%  to  nearly  50%.  The  attack  rate  had  nonlinear  dependence  on  all  intervention                                
parameters.  Thus,  the  attack  rate  was  log-transformed  prior  to  fitting.  The  ordinary  least  squares  method                              
from  the  Python  package statsmodels  was  used  for  the  fit.  The  uncertainty  interval  shown  is  the  95%                                  
confidence  interval  from  the  ordinary  least  squares  fit.  Because  of  the  log  transform,  the  slope  of  the  line                                    
depends  on  the  point  of  evaluation;  in  all  cases,  it  was  evaluated  at  the  default  value  for  each  parameter.                                      
Since  the  dependent  variable  in  the  regression  is  attack  rate,  the  slope  is  also  dependent  on  the  period  of                                      
integration  (here,  91  days);  a  longer  integration  period,  for  example,  would  lead  to  a  higher  cumulative                                
attack   rate   and   thus   larger   slopes.  
 
For  the  reopening  sweeps  (Fig.  4B),  all  parameters  except  for  routine  testing  probability  and  contact                              
tracing  probability  were  fixed  at  the  default  values  described  above.  We  simulated  eight  different                            
reopening  levels  (60%  to  100%,  in  5%  increments),  and  show  60%,  80%,  and  100%  to  represent  low,                                  
medium,  and  high  transmission  scenarios.  Each  sweep  consists  of  12,000  simulations,  with  each                          
simulation  drawn  from  a  uniform  random  distribution  for  (a)  routine  testing  probability  and  (b)  contact                              
tracing  probability,  with  each  simulation  also  drawing  from  one  of  the  10  best  calibrations  as  described                                
above.   
 
For  reopening  scenarios  (Fig.  5),  the  status  quo  model  was  implemented  using  the  baseline  calibration                              
to  data  until  June  1,  using  input  data  on  observed  numbers  of  tests  performed  and  contacts  traced.  In                                    
addition,  mobility  rates  were  increased  to  80%  on  June  1,  representing  the  lifting  of  the  "Stay  Home,  Stay                                    
Healthy"  measure;  a  subsequent β  reduction  of  25%  was  applied  on  July  1,  reflecting  the  statewide  mask                                  
requirements   that   were   mandated   on   June   23   and   July   7,   as   described   in   the   August   13    Situation   Report .  
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