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ABSTRACT  

Background: Tuberculosis (TB) is the most deadly infectious disease globally and highly 

prevalent in the developing world, especially sub-Saharan Africa. Even though a third of 

humans are exposed to Myocbacterium tuberculosis (Mtb), most infected immunocompetent 

individuals do not develop active TB. In contrast, for individuals infected with both TB and the 

human immunodeficiency virus (HIV), the risk of active disease is 10% or more per year. 

Previously, we identified in a genome-wide association study a region on chromosome 5 that 

was associated with resistance to TB. This region included epigenetic marks that could 

influence gene regulation so we hypothesized that HIV-infected individuals exposed to Mtb, who 

remain disease free, carry epigenetic changes that strongly protect them from active TB. To test 

this hypothesis, we conducted a methylome-wide study in HIV-infected, TB-exposed cohorts 

from Uganda and Tanzania. 

Results: In 221 HIV-infected adults from Uganda and Tanzania, we identified 3 regions of 

interest that included markers that were differentially methylated between TB cases and LTBI 

controls, that also included methylation QTLs and associated SNPs: chromosome 1 (RNF220, 

p=4x10-5), chromosome 2 (between COPS8 and COL6A3 genes, p=2.7x10-5), and chromosome 

5 (CEP72, p=1.3x10-5).  These methylation results colocalized with associated SNPs, 

methylation QTLs, and methylation x SNP interaction effects.  These markers were in regions 

with regulatory markers for cells involved in TB immunity and/or lung.   

Conclusion: Epigenetic regulation is a potential biologic factor underlying resistance to TB in 

immunocompromised individuals that can act in conjunction with genetic variants.   

 

 

Keywords (3-10): methylation, epigenetics, infectious disease, genetics, genomics, lung 
function, immunology 
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BACKGROUND 

Mycobacterium tuberculosis (Mtb), the cause of tuberculosis (TB), results in approximately 1.5 

million deaths per year [1], but  the vast majority of the almost 2 billion people infected with Mtb 

do not progress to active TB.  Although the risk of developing active TB is low in most infected 

people, it is the most common cause of death in people with HIV infection who live in TB 

endemic countries [2, 3]. As many as 10% of co-infected people develop active disease each 

year, illustrating how strongly immune compromise contributes to risk.  People with HIV 

infection, who do not develop active TB despite Mtb infection, offer a major opportunity to 

understand resistance to TB that persists despite being immunocompromised, and possibly a 

key to how any Mtb infection leads to active TB.  

 

Several studies  indicate that susceptibility (or resistance) to TB is at least partially due to 

genomic factors [4].   Indeed, several genome-wide association studies (GWAS) have been 

conducted, identifying loci of interest, but most of these studies show small effect sizes in HIV 

uninfected subjects.  In contrast, our GWAS [5], conducted in HIV-infected subjects, found 

significant association with resistance to TB and a  region of chromosome 5 containing the 

IL12B gene.  Annotation of this region showed that the associated SNPs resided in a histone 

mark, indicating that epigenetic marks in this region may influence regulation of a nearby gene 

that we hypothesized to be IL12B.  Because differences in genomic features, such as histone 

and other epigenetic marks, can impact gene expression patterns, thereby linking genetic and 

environmental disease risk factors, and since epigenetic marks can be inherited, they have 

been hypothesized to explain some of the “missing heritability” for complex diseases [6-8]. 

Evidence for this model has been found in cancer and autoimmune diseases, where 

associations have been demonstrated between epigenetic marks and disease risk [9, 10].  

Based on these studies and our own prior results on chromosome 5, we hypothesized that 
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regulatory factors, including methylation marks, associate with TB susceptibility/resistance, 

beyond the genetic influences encoded in the DNA.   

 

Since disease risk may be influenced by epigenetic variation, either directly or indirectly via 

DNA-level variation [11], we examined loci identified through an methylome-wide analysis 

(MWAS) and their association with single nucleotide polymorphisms (SNPs) at those same loci.  

We also investigated differential methylation near loci initially identified through GWAS of TB 

risk (Figure 1).  Our underlying model was that both genetic and epigenetic factors are 

associated with risk of TB and that the two may modify the effects of each other. To understand 

the functional implications of identified loci, we annotated these loci using available databases.  

By integrating results across multiple platforms and data types [12], we extended GWAS results 

to show that a framework containing both epigenetic changes and DNA variations, and their 

interactions, can associate with regulation of lung and immune cell function relevant to TB 

pathogenesis.   

 

RESULTS 

Overall approach 

Our approach (Figure 1) was to first conduct an MWAS in the Ugandan and Tanzanian cohorts 

independently.  Because the Ugandan cohort was larger, we considered it the discovery cohort 

and the Tanzanian cohort as the replication set, although we repeated analyses in the opposite 

direction.  Markers that were differentially methylated in the discovery cohort at p< 5x10-5 to 

account for multiple testing, and p<0.1 in the replication cohort were considered for subsequent 

analyses.  In the next step, we examined SNPs from our GWAS ± 200 kb of the methylation 

signal, and identified whether they were significantly (p<0.05) associated with TB; we did not 
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adjust for multiple testing because these and subsequent analyses were hypothesis-driven.  In 

the third step, we conducted a meQTL analysis, where we examined SNPs ± 200 kb of the 

associated methylation marker to test for association with methylation of the associated CpG 

site.  Fourth, we examined the interaction between methylation status and SNPs in association 

with TB.  A comparison of the results of the second through fourth steps addressed whether 

genetic variation at least partially influences TB susceptibility through effects on methylation, or 

if differential methylation and genetic variation acted independently.  Lastly, all loci significant in 

the first step underwent functional annotation as described in the Methods.  In parallel, we 

examined the association between methylation level and TB in regions that were significantly 

associated with TB in our GWAS (Table 1 from Sobota et al.[5]).   

 

Sample description 

This analysis included a total of 221 adult subjects with HIV infection (Table 1).  The Uganda 

cohort included 143 subjects, of whom 76 had TB.  The Tanzania cohort included 78 subjects, 

of whom 32 had TB.  The subjects who did not have active TB all had latent Mtb infection (LTBI) 

based on a positive tuberculin skin test.  No subjects received antiretroviral therapy (ART) for 

HIV because all were enrolled prior to the availability of ART in Africa.  In the Uganda cohort, 

there was a greater proportion of males among TB cases than controls, reflecting the greater 

preponderance of TB among males in the general population.  Thus, sex was considered as a 

covariate in all analyses.   

 

Differentially methylated regions associated with TB 

In our analysis, we identified 3 regions, the first two on chromosomes 1 and 2, respectively, that 

were differentially methylated with p < 5 x 10-5 in the Uganda sample and p < 0.10 in the 
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Tanzania cohort with effect estimates in the same direction (Table 2) and a third region, on 

chromosome 5 that showed a significant (p=2x10-5) differentially methylated marker detected in 

the Tanzanian cohort that replicated in Ugandan cohort (p=0.0398) and had effect estimates in 

the same direction in both populations.  A nearby chromosome 5 marker also showed 

association in the Ugandan cohort (p=2.08x10-5), but did not replicate in the Tanzanian cohort.  

The two methylation markers on chromosome 5 were uncorrelated in both cohorts (r=0.03 in 

Uganda, r=0.18 in Tanzania).  The marker on chromosome 1 fell in a methylation island in 

RNF220 (Figure 2a), the marker on chromosome 2 fell in an “open sea” (CpG sites not 

associated with a CpG island or CGI) flanked by COPS8 and COL6A3 (Figure 2b), and the 

markers on chromosome 5 were on the “south shore” and “north shore” (regions up to 2 kb from 

a CGI), respectively, of the CEP72 gene (Figure 2c).   

 

Validation of differentially methylated regions in GWAS 

We then interrogated the regions on chromosomes 1, 2, and 5 that contained differentially 

methylated CpG sites in the GWAS dataset that included the same subjects [5] (Supplemental 

Table 1). All three regions had a SNP associated with TB within 200 kb of the differentially 

methylated sites (p<0.05 unadjusted for multiple testing): chromosome 1, rs175222 (p=0.00016) 

(Figure 3a), chromosome 2 rs7586225 (within COL6A3, p=0.0082) (Figure 3b), and 

chromosome 5, rs12518227 (p=0.018) (figure 3c). Associated SNPs in these regions are in 

regulatory regions, or in introns, and one on chromosome 5 is a missense variant (rs868649). 

One of these SNPs (rs175222 on chromosome 1) maintained significance after Bonferroni 

correction.   

 

SNP-methylation QTL associations and SNP x methylation interaction 
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Next we examined both association between SNPs in these regions and the level of methylation 

of the methylation site (meQTL analysis), and also examined the interaction between SNP 

genotype and methylation marker in its association with TB.  These results are shown in Figure 

3 to illustrate their co-localization with the original methylation findings and marginal SNP 

associations with TB.  Again, each region had a significant meQTL effect and SNP x 

methylation interaction effect.  On chromosome 1 (Figure 3a), rs928685 was a significant 

meQTL (p=0.014), and there were 3 SNPs with significant interaction effects with the 

methylation site (rs270709, p=0.0108; rs6664827, p=0.0405; rs1890948, p=0.0412), all within 

the RNF220 gene.  On chromosome 2 (Figure 3b), there were 2 meQTLs — rs2645771, within 

COL6A3 (p=0.0019), and rs10165956 (p=0.0318) — and 1 methylation x SNP interaction at 

rs4530312 (p=0.0457).  On chromosome 5 (Figure 3c), there were 3 meQTLs: rs4956936 

(within AHRR, p=0.0103), rs1697952 (p=0.0316), and rs6864158 (within SLC9A3, p=0.0392).  

This region had one SNP that interacted with methylation status, rs12518227 (within CEP72, 

p=0.0405). The SNPs that associate with methylation and those that associate with TB are in all 

cases different. 

 

 Functional implications of 3 differentially methylated regions 

The methylation site on chromosome 1 falls in a frequently interacting region (FIRE) and is a 

bivalent enhancer in a variety of cells involved in TB immunity, including T cells, monocytes, and 

B cells; bivalent enhancers have been linked to increased gene expression [13].  The 

chromosome 2 region contains a histone modifier, and is an enhancer in lung tissue; a FIRE 

crosses the COL6A3 gene.  The differentially methylated region on chromosome 5 falls within 

an active transcription start site in T cells and lung tissue, and flanks the transcription start site 

in monocytes, B cells and neutrophils.  Tracks showing functional regions in these regions are 

shown in Figure 2.   
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SNPs significant in original GWAS are also in differentially methylated regions 

We also examined loci that were genome-wide significant in our prior GWAS for TB [5], and 

found that they contained significantly differentially methylated sites.  The MWAS did not identify 

these regions as having significant methylation effects after multiple testing correction.  

However, we explored these based on our original hypothesis that regions associated with TB 

risk in GWAS might also act through epigenetic mechanisms.  In most cases, the same 

methylation marker was not significant in both the Uganda and Tanzania datasets.  For the 

methylation marks nearest IL12B, the most significant finding from our GWAS [5], differential 

methylation associated with TB in both Uganda (cg15353886, p=0.0015) and Tanzania 

(cg11092268, p=0.0089).  Two other methylation markers that replicated in the two samples 

from these regions fell on chromosome 5 (cg09049927, p=0.00089 in combined data) and 

chromosome 17 (cg24357302, p=0.00071 in combined data).  Both of these methylation 

markers fell in “open seas”, with the chromosome 5 marker falling near an miRNA, and the 

chromosome 17 in an intron of ABCA8 (Supplemental Table 2).   

 

DISCUSSION 

Host factors play an important role in the progression from LTBI to active TB disease, including 

genetic and transcriptomic factors [4, 14].  To our knowledge, only two small methylome-wide 

studies have been published [15, 16] in human cohorts, though in vitro studies have been 

conducted [17-19].  Our analysis of TB patient cohorts from Uganda and Tanzania revealed 

three regions that were differentially methylated in HIV-infected individuals who exhibited 

protection from active TB.  These same regions contained nominally significant SNPs 

associated with TB, as well as SNPs associated with methylation level and SNPs interacting 
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with methylation level in association with TB.  Functional annotation revealed that these loci 

have regulatory effects on cells involved in the TB immune response, providing mechanistic 

plausibility of the results.  In addition, regions that were previously shown to have genome-wide 

significant associations between SNPs and TB also demonstrated differential methylation.  

Although none of these analyses alone provide compelling evidence for association, the 

concordance of the different analyses does; these results indicate that epigenetic factors, in 

combination with genetic variation, can influence susceptibility to TB.   

 

Cellular and humoral immunity are well established components of the immune response to 

Mtb, but our results newly establish that epigenetic regulation of T cell, B cell and monocytes 

can influence protection from active TB.  This may define a path from SNP to regulation of gene 

expression to protection from TB disease as well as suggest new drug targets for prevention of 

active TB. As seen in Figure 2, the three regions identified through our analyses contain 

regulatory markers for monocytes, T cells, natural killer cells, and lung tissue, among others, 

suggesting a role for these specific loci in TB susceptibility.   

 

While the methylation marker on chromosome 2 resides in an “open sea”, the SNPs associated 

with TB and methylation level, as well as SNP x methylation interaction, are all within COL6A3.  

Collagen VI, as a component of the extracellular matrix, plays a role in innate immune defense 

against bacteria and regulates autophagy [20, 21], thus indicating that COL6A3 influences 

protection from TB via influencing immune responses to TB antigens.  Collagen VI-related 

myopathies are associated with decreased pulmonary function [22].  COL6A3 has been 

associated with lung cancer [23].  Thus, we hypothesize that COL6A3 may influence TB 

susceptibility through its effect on lung function.  The fact that the methylation site we identified 
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falls in an enhancer region for lung tissue reinforces this hypothesis.  The mechanism of action 

may be diverse as the associated SNPs are also both regulatory and result in coding changes.  

RNF220 is in the middle of the chromosome 1 region, and many of the associated SNPs are 

within the RNF220 coding region (Figure 3a).  RNF220 is known to enhance Wnt signaling [24], 

and thus may indicate a role for epigenetic modulation of Wnt signaling in the innate immune 

response to Mtb [25].   

 

The associated methylation sites and SNPs on chromosome 5 cross multiple genes, but most 

results co-localize to SLC9A3 (Figure 3c). Another methylome-wide study found association 

between SLC9A3 and atopy and asthma [26], whereas SNPs in SLC9A3 were also associated 

with lung function in cystic fibrosis patients [27, 28].  These data provide further support for our 

prior hypothesis [29] that lung immune responses associate with protection from TB such as 

previously observed in patients with asthma [30, 31].  In further support of this hypothesis, 

SLC9A3 is also a component of a biomarker that predicts progression to TB [32].  A recent 

GWAS of lung function identified an association with CEP72 [33], which is also in this region 

with associated methylation findings, so it possible that either, or both, gene(s) in this region are 

involved in TB susceptibility.   

 

The results from our connected analyses (MWAS, genetic association, meQTL, and methylation 

x SNP interaction) are challenging to interpret, but do lay out a possible connection between 

genetic variation, its implications for methylation/gene regulation and TB.  Nominally significant 

SNP association, meQTLs, and/or SNP x methylation interaction findings co-localize in regions 

that map to genes of interest, though different SNPs were associated in each of these terms.  

One explanation is because linkage disequilibrium patterns vary across African populations and 
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the true functional variants are tagged differently across cohorts [34].  Limited sample size, 

combined with variable allele frequencies and distributions of the methylation marker, are 

additional factors.   A second potential explanation for non-exact replication across cohorts may 

be exposure to different Mycobacterial lineages and/or environmental differences, such as 

cooking method, that may affect cellular phenotype.  This study does not distinguish between 

methylation differences induced by Mtb stimulation, which has been shown by other studies [17, 

19, 35, 36] versus inherent differences between individuals with TB or LTBI.  An alternative 

hypothesis may be that subjects who resist development of TB respond to Mtb-induced 

methylation differently; future studies are needed to distinguish these hypotheses.  Larger 

sample sizes will be important to elucidate the effects of each of these factors.  Nonetheless, 

our results taken as a whole indicate that methylation and genetic variation are both important 

factors in TB susceptibility, and the effects are not necessarily independent of each other.   

 

It is important to emphasize that the study subjects in this analysis were not on ART or anti-TB 

treatment at the time that blood was drawn for this study, as methylation profiles may be 

influenced by ART [37-39]. This is a strength of our study although given the ubiquity of ART, 

future replication studies will only identify differentially methylated regions that are robust in 

patients on ART.  Another potential limitation of our study is the use of a broad array instead of 

bisulfite sequencing, which examines only select nucleotides for epigenetic modification.  HIV 

may have an impact on differential methylation, but since all subjects in this study were HIV-

infected, that potential confounder was controlled; this may result in findings that are not 

generalizable to HIV-uninfected.  Our MWAS results do not attain multiple testing correction, but 

the support of the aforementioned SNP association tests bolster confidence in these findings.  

Lastly, the source of DNA for this assay was buffy coat, which consists of a variety of cell types, 

including the major cells involved in the TB immune response, potentially enriching findings 
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significant to those cell types compared to others.  Nonetheless, these findings clearly indicate 

future studies should explore the linkage between epigenetic regulation of cellular and humoral 

immune responses with protection from TB along with other genomic data.   

 

It is also of interest to understand how differential methylation affects RNA expression.  

However, this question in TB is not trivial.  The most easily accessible tissue, peripheral blood 

mononuclear cells, may not be the relevant tissue for TB.  Some TB transcriptomic studies [40] 

stimulate monocyte-derived macrophages and examine the RNA expression change after 

stimulation with Mtb.  While this gets closer to the immune response, it is more difficult to 

measure than RNA expression level at a putative baseline that is usually what is studied [12].  

The primary cell of interest would be alveolar macrophages.  There are ongoing studies to 

determine whether gene expression in the lung is different than in circulating blood.   

 

 CONCLUSION 

In conclusion, this is the first study to identify methylation changes associated with protection 

from active TB in patients with HIV-associated susceptibility to TB disease.  Methylation is of 

interest because it is a possible pharmacologic target that describes cellular response to MTB 

infection and disease progression.  Future studies will need to extend our findings and examine 

the impact of methylation on differential RNA expression and how these can vary by patterns of 

genetic variation, especially in regulatory regions, and how methylation profiles differ by specific 

cell type. However, it is now clear that patterns of methylation and genetic variation synergize 

with each other and can identify important associations in TB risk.  
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METHODS  

Study participants 

This study includes the same subjects as in our previous GWAS [5]. Briefly, subjects were from 

a household contact study in Kampala, Uganda [41], or two clinical trials of TB in Dar es 

Salaam, Tanzania [42].  All subjects were HIV-infected, over the age of 15, and none received 

ART due to unavailability at the time of enrollment.  TB cases were culture-confirmed.  Controls 

all had LTBI based on a positive tuberculin skin test; interferon-γ release assays were not 

performed at the time of subject ascertainment.  All subjects provided written informed consent.  

The present analyses utilized samples from those subjects who had DNA remaining after the 

GWAS.  

 

Molecular methods for MWAS and GWAS 

DNA came from buffy coat samples in the Uganda cohort and either buffy coat or whole blood in 

the Tanzania cohort, and was prepared as previously described [5] then bisulfite converted 

according to the specifications for the Illumina Methylation EPIC 850k chip.  GWAS data were 

available from our previous analysis [5]. 

 

Quality control and statistical analysis 

Quality control and principal components analysis 

Quality control and normalization of raw methylation data (as Illumina .idat files) were applied to 

the combined Uganda and Tanzania cohorts and carried out using the Bioconductor package 

minfi for R [43, 44].  Data for probes and samples with good detection p-values (less than 0.01) 

were retained. We normalized signal intensity by means of the BMIQ algorithm [45], which 
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adjusts for differences between Infinium I and II probes, adjusted for batch effects using 

ComBat [46] and adjusted for between-array technical variation, as well as, background 

variation using the functional normalization procedure [47].   

 

We estimated cell proportions in the combined Uganda and Tanzania cohort for CD8, CD4, 

natural killer, B, monocyte and neutrophil cells using the minfi package. Within each cohort, we 

conducted a methylome-wide principal components analysis, using the prcomp function in R. 

We regressed our TB outcome on each of the first 20 principal components (PCs) selecting PCs 

that were significantly associated (at p-value < 0.1) with TB in a model that included cell 

proportions. This resulted in multiple PCs and cell proportions (dependent on cohort) retained 

as covariates in each cohort specific MWAS. 

 

MWAS Analysis 

Within each of the two cohorts we tested for association between CpG beta values (converted 

to M values (log2(β/1-β)) and TB status using limma in R [48]. Here we adjusted for significant 

methylation-based PCs, cell proportions, age and sex in a linear model that compares 

methylation values between TB and LTBI samples. Because Uganda was the discovery cohort, 

we sought to replicate top hits from the Uganda cohort (at p-value < 5 x 10-5) in the Tanzania 

cohort (with p-value < 0.10). 

 

Genetic association analysis 

Genetic association analysis was performed using the full data from Sobota et al. [5]  

Association between SNPs in the regions of interest and TB was conducted using PLINK [49] 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 17, 2020. ; https://doi.org/10.1101/2020.07.14.20153395doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.14.20153395


15 
 

for SNPs with minor allele frequency > 0.10.  We examined SNPs within ± 200 kb of the 

associated methylation marker.  A Bonferonni-corrected p-value was derived based on the total 

number of SNPs tested across all 3 regions (20 SNPs on chromosome 1, 33 on chromosome 2, 

and 22 on chromosome 3).   

 

meQTL analysis 

We conducted a targeted cis-methylation QTL analysis around the replicated CpG sites in the 

combined Uganda/Tanzania sample that had overlapping methylation and genotype data (total 

N = 188, with 75 from the Tanzania cohort (32 with TB) and 113 from the Uganda cohort (66 

with TB)). SNPs within ±200 kb of the replicated CpG sites were pulled from the GWAS dataset 

[5].  Using Matrix eQTL, we ran a linear regression model adjusting for gender, age, cohort, cell 

proportions (CD4, CD8, monocytes, neutrophils) and the first two genetic-based PCs [5] to 

determine if nearby SNPs were influencing the methylation levels of our replicated CpG sites. 

 

SNP x methylation interaction 

We conducted a targeted interaction analysis around the replicated CpG sites in the combined 

Uganda/Tanzania sample that had overlapping methylation and genotype data (sample sizes as 

above). As in the meQTL analysis, SNPs within 200 kb of the replicated CpG sites were pulled 

from the GWAS dataset [5]. Using glm in R we ran a logistic regression model adjusting for 

gender, cohort, CD4 cell proportions and the first two GWAS-based PCs [5] to determine if the 

difference in methylation levels between TB and LTBI samples are modified by genotypes of 

nearby SNPs. 
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Functional annotation 

HUGIn [50] and RegulomeDB [51] were used to examine chromatin state evidence predicting 

whether or not our methylation markers fell in promoter or enhancer regions, whether 

associated methylation markers were in regions of DNAase hypersensitivity, transcription factor 

biding sites, and promoter regions, and also to identify frequently interacting regions (FIREs).    

 

LIST OF ABBREVIATIONS 

ARVs   anti-retroviral therapy 

GWAS   genome-wide association study 

HIV   Human Immunodeficiency virus 

LTBI   latent M. tuberculosis infection 

meQTL  methylation quantitative trait locus 

Mtb   Mycobacterium tuberculosis 

MWAS   methylome-wide association study 

SNP   single nucleotide polymorphism 

TB   Tuberculosis 
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Table 1.  Study population characteristics 

 Cohort 

Uganda 

 TB 
(n = 76)  

No TB 
(n = 67) 

Overall 
(n = 143) 

P-value across TB 
groups (TB vs No 
TB) 

Proportion 
Male Sex (n) 0.50 (38) 0.36 (24) 0.43 (62) 0.121 

Mean Age (SD) 31.4 (9.3) 26.1 (12.5) 28.9 (11.2) 0.022 

     

 Tanzania 

 TB 
(n = 32) 

No TB 
(n = 46) 

Overall 
(n = 78) p 

Proportion 
Male Sex  (n) 0.19 (6) 0.26 (12) 0.23 (18) 0.631 

Mean Age (SD) 35.0 (7.7) 36.0 (7.6) 35.6 (7.6) 0.302 

1 Pearson’s chi-squared test of independence used. 2 Wilcoxon-Mann-Whitney test used. 
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Table 2.  Significantly associated methylation markers 

Methylation 
marker name chr position Relation to Island UCSC_RefGene_Name 

Uganda p-
value 

Tanzania p-
value 

Combined p-
value 

Methylation markers that are replicated in both cohorts   
cg19382731 chr1 44883990 Island RNF220 4.62 E-05 0.07 4.63E-05 

cg16974832 chr2 238188707 OpenSea 
Flanking genes (COPS8 
and COL6A3) 4.47 E-05 0.04 2.69E-05 

          
          
Different methylation markers in same region by population attaining significance    
cg18730862 chr5 611926 N_Shore CEP72 2.08E-05 9.21E-01 2.28E-04 
cg03602880 chr5 612961 S_Shore CEP72 0.0398 2.09E-05 1.25E-05 
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Figure 1.  Analytical framework 

 

 

Figure 2 legend. CoMET plots of our top CpG methylation association results are shown. The 
top track shows the methylation-phenotype association P-values across the region for the 
Uganda cohort, with CpG sites depicted as circles. Also shown in the top track are the 
estimated co-methylation values (correlation in DNA methylation values) between the reference 
(top) CpG site and others in the region, depicted by the fill of the circle, as a gradient from red to 
blue (correlation mapping shown in legend at the bottom of each panel).  Additional tracks 
include Ensembl genes, CpG islands and regulatory information for the specified tissues via the 
ChromHMM-core 15 state model. Ensembl genes shown may be truncated if they extend 
outside of viewing window.  A) RNF220 gene CpG site cg1938271 shown +/- 25kb. B) COL6A3 
gene CpG site cg16974832 shown +/- 50kb. C) CEP72 gene CpG site cg18730862 shown +/- 
25kb. The CpG-Tanzania indicated site is for cg03602880 (p=2x10-5 in the Tanzania cohort, 
p=0.04 in the Uganda cohort); Spearman’s correlation between cg030602880 and cg18730862 
was 0.11 overall (0.03 in Uganda only and 0.18 in Tanzania only). D) Legend for panels A-C. 
The 15 chromatin states and corresponding color mappings.   
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Figure 3 legend.  Plots of association p-values from MWAS, GWAS, meQTL, and methylation x 

SNP interaction analyses.  MWAS p-values come from Uganda cohort, as it was the discovery 

cohort, and GWAS, meQTL, and methylation x SNP p-values come from the combined cohort.  

Results from each type of analysis are represented by different colors and shapes, with –log(p-

value) plotted on the y-axis, and chromosomal location on the x-axis.  a) chromosome 1 (20 

SNPs), b) chromosome 2 (33 SNPs), c) chromosome 5 (22 SNPs) 

 

Supplemental Tables. 

Supplemental Table 1: SNP association results within regions identified through MWAS. 

Supplemental Table 2: Follow-up of regions identified in Sobota et al. [5] within MWAS data.  

MWAS p-values are provided separately for Ugandan and Tanzanian cohorts, and combined p-

values are indicated as (*p-value) within the cells with both Ugandan and Tanzanian cohort p-

values.   
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Figure 2.  Regional plots of epigenetic-phenotype association results 
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a) Chromosome 1 region including RNF220
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c) Chromosome 5 region including CEP72 and SLC9A3
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