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Abstract

The COVID-19 pandemic has affected millions and congested healthcare systems globally.
Hence an objective severity assessment is crucial in making therapeutic decisions judiciously. Com-
puted Tomography (CT)-scans can provide demarcating features to identify severity of pneumonia
—commonly associated with COVID-19—in the affected lungs. Here, a quantitative severity as-
sessing chest CT image feature is demonstrated for COVID-19 patients. We incorporated 509
CT images from 101 diagnosed and expert-annotated cases (age 20-90, 60% males)in the study
collected from a multi-center Italian database1 sourced from 41 radio-diagnostic centers. Lesions
in the form of opacifications, crazy-paving patterns, and consolidations were segmented. The
severity determining feature —Lnorm was quantified and established to be statistically distinct
for the three —mild, moderate, and severe classes (p-value<0.0001). The thresholds of Lnorm for
a 3-class classification were determined based on the optimum sensitivity/specificity combination
from Receiver Operating Characteristic (ROC) analyses. The feature Lnorm classified the cases
in the three severity categories with 86.88% accuracy. ‘Substantial’ to ‘almost-perfect’ intra-rater
and inter-rater agreements were achieved involving expert (manual segmentation) and non-expert
(graph-cut and deep-learning based segmentation) labels (κ-score 0.79-0.97).We trained several
machine learning classification models and showed Lnorm alone has a superior diagnostic accuracy
over standard image intensity and texture features. Classification accuracy was further increased
when Lnorm was used for 2-class classification i.e. to delineate the severe cases from non-severe
ones with a high sensitivity (97.7%), and specificity (97.49%). Therefore, key highlights of the
COVID-19 severity assessment feature are high accuracy, low dependency on expert availability,
and wide utility across different CT-imaging centers.

Keywords: COVID-19, Computed Tomography, severity assessment, lung, machine learning;
health informatics

1 Introduction

With the onset of the COVID-19 pandemic caused by the SARS-CoV-2 coronavirus, newer tools and
techniques are increasingly needed for efficient detection and therapy. As of now, RT-PCR based
detection of the virus from oral/nasal swabs is globally accepted as the confirmatory test. However,
due to the chances of the absence of viral particles on the swab especially in the asymptomatic or mild
cases, the sensitivity of the method suffers (71% [1]). Therefore several screening methods are being
deployed to augment COVID-19 detection including clinical history, symptom assessment, blood tests
and imaging methods. Among the different imaging methods, chest X-Ray [2], Computed Tomography
(CT) [3], and Ultrasonography (USG) [4, 5] are used in different clinical settings across the world
to identify features associated with lung pneumonia commonly caused in the COVID-19 infection.

1https://www.sirm.org/category/senza-categoria/covid-19/
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Figure 1: Illustration of pathological features of lung pneumonia in COVID-19 patients along with
corresponding CT features.

Among these imaging methods, CT and high-resolution CT (HRCT) have shown a sensitivity of up
to 98% [1] and hence has emerged as a strong screening tool for COVID-19 [3]. Thus, CT-imaging
reduces the incidence of several infected individuals being discharged back in the community [6, 7].

The most common pathology seen in COVID-19 is pneumonia [7] (Figure 1) which eventually
disrupts the lungs’ ability for gaseous exchange and reduces the oxygen availability for the normal
cells to function. Due to the excessive deposition of fluid and pus (exudates) in the alveolar space,
breathing is obstructed leading to respiratory failure. In severe cases, the immune response goes
systemic and damages other vital organs like heart [8], liver [9] and kidney [10]. This increases
the mortality of people with already present underlying health conditions and comorbidities like
CAD (coronary artery disease), COPD (chronic obstructive pulmonary disease), CRF (chronic renal
failure), diabetes, cancer, hepatitis, immunodeficiency etc [11]. Although the disease can be fatal,
most individuals show only mild symptoms and do not need hospitalization.

Due to the entire range of symptoms expressing in the population from asymptomatic to fatal,
severity assessment is crucial for effective administration of the right therapeutic drugs as per the
patient’s condition [12]. This becomes even more complicated with underlying conditions as some
drugs that are otherwise effective for the virus, may have adverse effects on pre-existing conditions.
Currently severity assessment is done by symptoms and chemical tests (liver function, pO2, saO2,
procalcitonin, troponin, creatinine, blood cell count, inflammatory markers etc.). However most of
the specific markers express differently in different stages of the disease [13] and provide the indirect
status of the most affected organ, i.e. the lungs.

Review of Literature: Assessment of 3-class severity (mild, moderate, severe) is crucial to de-
termine the treatment route [14] and is well summarized in the WHO interim guidance on clinical
management of COVID-192. Some recent literature have shown chest CT to determine COVID-19
severity qualitatively and quantitatively with good correlation with clinical parameters [15–17]. Fur-
ther, recent studies have also demonstrated that quantification of lung CT based severity can predict

2WHO reference number: WHO/2019-nCoV/clinical/2020.5
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the short-term prognosis of COVID-19 [18, 19]. A number of publications have highlighted methods
for determining severity from lung CT images qualitatively, semi-quantitatively, and quantitatively.
Schaible et al. proposed two new CT image features —margin sharpness and geographic shape from
108 COVID-19 patients to assess severity [20]. However the effectiveness of these features to stratify
severity is yet to ascertained. Yang et al. have analysed 20 segments from chest CT images (with
constant CT parameters) manually (by expert) and based on an objective rating of opacification
cover in each segment, have assessed mild and severe disease state [21]. Although the evaluation
is clinically thorough, the method is expertise-heavy and the requirement for a manual scoring of
20 different segments to obtain a severity score makes prediction of an incoming case cumbersome.
Shen et al. on the other hand have used (1) lesion percentage cover and (2) mean lesion density
to evaluate 3-class severity in 44 affected individuals [22]. They have used a computer-aided tool
to semi-automatically segment lesions and identify the correlation between the two parameters and
chest CT pathological features. Although, the computer aided performance correlated well with ex-
pert performance, no severity scoring index or predictive performance for classification into severity
groups have been shown. Huang et al. have used U-Net deep learning architecture for segmentation of
the lung lesions [23], measured the percent opacification cover, and have shown that this feature was
statistically different for the four severity classes. The segmentation method has a high performance
and is a major highlight in automated assessment of opacification cover. However, the predictive
performance of the feature in classifying severity with clear feature thresholds in differentiating the
severity groups needs to be explored. Matos et al. quantified the volume of the disease (VoD) as
a CT image parameter in addition to 11 other clinical features to determine severity and predict
outcome [19] and the VoD quantification, achieved an ROC-AUC (area under the curve) of 0.75. The
search for a powerful quantitative feature to assess severity is elusive due to their high variance and
heterogeneity as illustrated in a retrospective study involving 4410 COVID-19 patients [24]. A few
studies have achieved good accuracy to classify severity in two-classes. Sun et al. using commercial
software quantified a number of CT features including the percent lesion cover and the type of de-
position to classify 84 patients into severe and non-severe categories with about 91% specificity and
sensitivity [15]. On the other hand, Gouda and Yasin quantified CT features of 120 patients including
percentage of high and low opacity and total lesion cover using a CT pneumonia analysis algorithm
by Siemens Healthineers [16]. With the aid of AI-rad —an artificial intelligence based lesion detection
tool they could classify mild and non-mild cases with a sensitivity of up to 90%. The use of AI based
lesion detection tools have indeed played a key role for predicting several outcomes like severity and
disease progression in COVID-19 [25]. Although a number of published articles have provided severity
assessment, very little research is being done to address issues emerging from images sourced from
multiple radio-diagnostic centers and hospitals. With the huge clinical burden of COVID-19, it is
important to have common assessment features that can cater to images from a variety of imaging
units with different CT parameters. Feng et al. performed a multi-center retrospective study on
298 COVID-19 patients wherein they semi-quantitatively estimated severity from CT images using
lesion coverage in the lungs. They determined that the CT severity is closely linked with a number
of clinical risk parameters and hence discussed how CT based severity measurement can help in risk
stratification [17].

A major step in CT image analysis is detection of lung abnormalities. A number of methods
ranging from manual to automatic detection are available [26, 27] today. While expert based man-
ual detection incorporates crucial domain knowledge, it is difficult to cater to a huge number of
images. Automatic detection methods incorporating advanced image processing and artificial intel-
ligence overcomes this drawback to a large extent but may face problems in delineating borderline
cases [28]. Semi-automatic or computer assisted detection methods provide several advantages [29]
as they bridge between the two approaches but can still be limiting when the disease burden is very
high like that of COVID-19.

Logical Exposition: Recent literature have correlated chest CT image features with the cor-
responding pathological disease severity [22, 30]. These gradual emergence of pneumonia attributes
—ground-glass opacifications (GGOs), reticular patterns, and dense consolidations [31] in CT im-
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ages were found to correlate with exudate accumulation and septal thickening/lung fibrosis affecting
breathing. Since these pathologies causes a higher absorbance of X-rays (and hence shows a higher CT
value) [32], the disease severity should correspond strongly to the lesion gray scale intensity. However,
the gray scale-intensity has been found only to be moderately correlated to disease severity [22]. This
is because CT scans are often modified among CT centers. Also, individual CT scanners can be set to
variably operate at specific CT window settings (level and width) as per user’s requirement. Addition-
ally, the X-ray tube settings, rotation time, pitch, slice thickness etc. are some of the other variables
that can affect the perception of lesion ‘density’ in a CT slice and hence severity analyses. Also, image
contrast-enhancement for better visualization post-imaging is often performed affecting the CT-values
further. Thus a type of normalization of the lesion gray scale intensity is required i.e. independent
of the amount of post-processing and parametric variables adopted in CT imaging. Although use
of multiple features for severity assessment is important, but multi-variate analysis, use of complex
and black-box methods of classification often affect the interpretation of the findings especially for a
disease like COVID-19 where images are used to indirectly interpret the pathological severity. Here
we have shown an anatomically normalized intensity as a lesion feature and relevant framework to
assess severity of lung pneumonia in COVID-19 patients. Comparative evaluation with other methods
and features, methodological validations, and relevant thresholds have been also demonstrated.

Specific Contributions: In this paper, a retrospective study of 102 COVID-19 positive individuals
(including multiple follow-ups) has been done to mine the relevant patient history/data to evaluate
ground truth severity of the patients. The main contributions of the paper are listed as follows:

i A CT image feature —Lnorm to stratify COVID-19 severity into three classes (mild, moderate,
and severe) having linear correlation with disease severity from multi-center image data-set.

ii A framework for detection of COVID-19 associated pneumonia lesions using manual, computer
assisted (semi-automatic), and deep learning-based (fully automatic) methods adapted to quantify
Lnorm. We have not attempted to improve state of the art CT nodule/lesion detection methods
but have only adapted the most relevant methods for quantifying the feature Lnorm.

iii Quantification of cut-off values with optimum specificity and sensitivity to classify among healthy,
mild, moderate, and severe classes.

iv Quantification of agreement in severity assessment between multiple raters using the feature Lnorm.

v Comparison of Lnorm with 13 different machine learning based classification methods and against
nine other popular image features/feature combinations for both 3-class and 2-class (severe and
non-severe) classification of severity.

2 Methods

A schematic methodological work-flow is illustrated in Fig. 2.

Dataset All the CT images used for the extraction and validation of Lnorm has been taken from
the repository of the Italian Society of Medical and Interventional Radiology (SIRM) [33]. A total
of 509 CT and HRCT images of 101 COVID-19 positive individuals were taken between the age of
20 to 90 (60% males). All clinical data of the patients were mined and translated to English to be
used for determining the ground truth or clinical severity (Supplementary Table S1). No pediatric or
COVID-19 negative CT images were included in the study. All clinical annotations given with the
cases were used as well. The database includes Multi-center CT scans from 41 different CT/ HRCT
imaging centers (Supplementary Table S2).
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Figure 2: Schematic flow of Lnorm feature quantification for severity analysis of COVID-19 affected
lungs from multi-center chest CT data. The scheme illustrates the framework for the application and
validation of Lnorm.

For automated deep learning based lesion detection, we used four other independent CT image
datasets for training the model—(1) Radiopaedia3, (2) MedSeg4, (3) MosMed5 [34], and (4) Coro-
nacases6 [35]. All the datasets have corresponding annotated masks to be used for training and
validation purposes. All CT images were in ‘.nii’ format, 2D images of size (512, 512) were extracted
from them and stored in ‘.npy’ files for training. For the Radiopaedia, Coronacases and MosMed
datasets, the images that had blank masks (no visible lesions) were removed from the dataset. The
dataset was augmented by adding images which were flipped either horizontally or vertically. Data
augmentation was necessary here as deep learning networks perform better with more data, preventing
overfitting of the model during training.

Ground Truth for COVID-19 Severity All the lung-CT images were evaluated by a radiology
expert given the case history, CT images, and corresponding radiological findings in the case-reports
to assign three classes based on severity (Supplementary Table S1). The severity was divided into
three classes —mild (S-1), moderate (S-2), and severe (S-3) [36] (Figure 3). It is to be noted that S-3
class includes severe and above (including critical) cases.

Lesion Detection

i Expert (manual lesion area annotation) A radiological expert was provided chest CT images of
COVID-19 patients and was asked to manually draw the boundaries of the lung lesions. A total
of 180 images were manually annotated by the expert and was used for feature extraction.

ii Non-expert (semi-automatic lesion detection)

3https://radiopaedia.org/playlists/25887
4http://medicalsegmentation.com/covid19/
5https://mosmed.ai/
6https://www.kaggle.com/andrewmvd/covid19-ct-scans
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a All images were converted to 8-bit gray scale format. No image pre-processing was performed.

b Lesion detection- Graph-cut based adaptive region growing algorithm [37] was used to detect
the lesions in MATLAB R2019a. Two individuals (without radiological expertise) were briefly
trained by an expert to visualize the lesions in the affected lungs. The non-expert individuals
provided the initial seed points in the respective foreground (all lesions) and background (rest
of the image) and the lesion boundary was detected.

c Refinement- The detected lesions were refined by morphological opening to remove the co-
detected smaller/thinner bronchial structures and pulmonary vessels in the lung tissue.

Some segmentation results using this approach are presented in Supplementary Fig. S1-S3.

iii Non-expert (automatic lesion detection)

a A U-Net model [38] was used to segment the lesions from CT scan images of lungs. It is a
neural network architecture specialized to perform better for biomedical image segmentation
tasks, where we have limited data and annotations.

b Since the datasets used in this work are sourced from a variety of imaging centers, the intensity
ranges of the images varied significantly. Thus, histograms were plotted for images of each
dataset (Supplementary Fig S4). The values of the pixels were adjusted to lie between the
range -1500 to 500. Normalization was done by subtracting the image with the mean pixel
value divided by the standard deviation.

c The histograms of the lesion masks revealed that the number of pixels corresponding to infec-
tions(white pixels) is very little compared to the number of background pixels (black pixels)
(Supplementary Fig S4). This is a huge class imbalance and we would need to employ special
methods during training to avoid this. All images were resized to a size of (256, 256) for training.

d U-Net model: The Python package segmentation models7 has been used to create our model
as it offers a high-level interface to create and test models quickly. The model has three parts,
a backbone, a decoder block and the head. The backbone was essentially a pre-trained model
without the last dense layers, which was used as a feature extractor. The efficientnetb0 model
initialized on imagenet weights was used as our backbone. The decoder block consists of 5
upsampling blocks with filter sizes of 256, 128, 64, 32, and 16. The head of our model was
a 2D convolutional layer defining the number of output classes (2 in our work) with sigmoid
activation.

e the training was performed on Google Colab —a free Jupyter notebook environment that runs
entirely on the cloud and provides the use of free GPU. The model was trained on 4033 images
and validated on 449 images (training-validation: 90-10 split).

Performance of Lesion Detection/Segmentation

i For graph-cut method, A binary mask was created from the resultant detected lesions (expert
and non-expert) and was used to segment the lesions from the 8-bit gray scale images. The
performance of the computer-aided segmentation was validated against the expert labelled lesion
area using the Dice similarity coefficient (DSC) or F1 score given by

DSC =
2TP

2TP + FP + FN
(1)

where, TP= True Positive, FP=False Positive. and FN= False Negative. Each connected com-
ponent was considered as a single lesion. Feature extraction was performed for all the segmented
lesions.

ii For the performance evaluation of the lesion detection by deep learning method, the following
steps were taken.

7https://github.com/qubvel/segmentation_models
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a Owing to the class imbalance, we used the focal Tversky loss function [39], which is derived
from the dice coefficient (DSC). The Tversky Index (TI) is given by

TI =
TP

TP + αFN + βFP
(2)

where α and β are rational numbers. The focal Tversky loss function (FTL) is given by

FTL = (1− TI)γ (3)

where γ is a rational number.

b in addition to F1 score (DSC) and Tversky Index, we also used other metrics like precision,
recall, and mean IoU (Intersection-Over-Union) given by

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

MeanIoU =
TP

TP + FN + FP
(6)

c For training we used α=0.45, β=0.55, and γ=0.75. The performance of the lesion detection on
the validation set has also been tested with other values of α, β, and γ listed in Table 1.

d The Adam optimizer was used to optimise the loss function as it was found to perform better
than SGD, Nadam and Adamax by converging the model faster. It was found that a learning
rate of 10−4 was the best starting point for training the model. The use of higher learning
rates gave unstable results, while use of lower learning rates made the model converge slowly.
The Keras callback ReduceLROnPlateau was used to reduce the learning rate if it did not
improve during the last two epochs by a factor of 0.1. A batch size of 8 was used, the model
was trained for 40 epochs. The convergence plots are provided in Supplementary Fig S5.

Feature Extraction and Quantification Since in CT, the bone has the highest CT value i.e. ∼
400-1000 Hounsfield units (HU) and the air has the lowest i.e. -1000 HU, the vertebral disk (cancellous
region) was taken as the maxima bone reference (B) and the air-region exterior to the chest in the
same image was taken as the minima air reference (A) (Figure 2 colored box). The choice of the
vertebral cancellous region was to reduce the CT-value variability within bones. The non-expert
after segmenting the lesions gets automatically prompted to position a 30 pixel diameter circle each
for the minima (air cavity) and maxima (vertebra) from the same CT image. The program then
evaluates the Lnorm. First, the mean gray intensities of A, B, L were calculated from the region using
{A,B,L} = (1/n) × (

∑n
i=1 xi), where x is the pixel intensity between 0 to 255. Once all the three

values (A, B, L) are determined, the Lnorm was calculated by

Lnorm = 100× (L−A)

(B −A)
| 0 ≤ Lnorm ≤ 100 (7)

All analyses were performed in MATLAB R2019a. In case of multiple lesions, up to two lesions with
the highest Lnorm were selected for severity assessment. Based on the values of Lnorm, the lesion was
categorized into three severity classes (S-1, S-2, S-3) using cut-off values evaluated from ROC analyses
(discussed in subsequent section).

Validation

i Statistical Analysis Pearson’s correlation test was employed to evaluate the correlation between
Lnorm and the mean gray scale intensity of the lesion (L). A total of 163 evaluations from both
groups were considered, and the test was performed with two-tailed t-test and 95% confidence
interval (CI).
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Figure 3: Overview of clinical and chest CT features of pneumonia in COVID-19 patients
Columns 1 and 2 are representative expert assigned chest CT images for the three severity groups.
C olumns 3 and 4 are the associated lung-CT features and clinico-symptomatic features. This is a
guide to better understand the basis of expert classification (ground truth). Note: Features are an
approximate guide based on previous literature [22,30] and does not always correlate completely with
severity.

One way ANOVA (with multiple comparisons) was performed to evaluate how well the feature
Lnorm can delineate the three severity states and the p-value was estimated at 95% confidence
interval. A two-tailed t-test was additionally performed to evaluate separation between group
pairs.

To identify mild from non-mild cases and severe from non-severe cases, Receiver Operating Char-
acteristic (ROC) curve analysis was performed at 95% confidence interval. The area under the
curve as well as the optimum cut-off with the highest combination of sensitivity and specificity was
determined. The radiological Lung-CT scores was the ground truth for allocating the individual
groups to be delineated.

To evaluate the agreement between and within raters (1 radiology expert and 2 non-experts),
κ-statistic was used (at 95% CI). All statistical analyses were performed in GraphPad Prism
platform.

ii Numerical weighted accuracy The evaluated results of quantified severity assessment using
Lnorm by an expert and two non-experts was validated against the ground truth disease severity.
To obtain the overall weighted percentage accuracy of agreement between the ground truth and
Lnorm findings, we used:

Accuracy(weighted) =

(
1−

∑n
i=1|r − t|
2× n

)
× 100% | r, t = {1, 2, 3} (8)

where n is the number of cases, r= ground truth based severity, t=Lnorm based severity; 1, 2, 3
correspond to mild, moderate and severe classes.

iii Machine Learning for Estimating Severity To evaluate the computational performance of
Lnorm to achieve the three-class classification (mild, moderate, and severe), a number of machine
learning based classifiers were employed e.g. Decision trees, Näıve Bayes, KNN, Ensemble classi-
fiers etc. Lnorm values evaluated from multiple lesions by one expert and two non-experts which
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constituted a total of N=248 for classification. For classification, the sample size was partitioned
randomly in a ratio of 60:40 (training:testing). A number of intensity (gray-scale intensity, le-
sion standard deviation) and Gray level co-occurence matrix (GLCM) texture features (angular
moment, contrast, correlation, inverse difference, and entropy) were measured for the same set
of lesions to compare their classification performance with Lnorm. The classifiers were trained
in MATLAB R2019a and were 10-fold cross validated in order to avoid over fitting by the clas-
sification models. Principle component analysis (PCA) was used for dimensional reduction in
multivariate trained models with intensity and texture features. The testing accuracy of the best
classification model was then determined.

Figure 4: Lnorm to delineate healthy from pneumonia affected lungs. (a) Pearson’s correlation
test showing that the mean lesion intensity has almost no correlation with Lnorm (N=163). (b) plot
shows that Lnorm of healthy and COVID-19 lesions are significantly distinct (N=94, p-value<0.0001,
two-tailed t-test), (c) plot shows that Lnorm of healthy and mild COVID-19 lesions are also significantly
distinct (N=65, p-value<0.0001, two-tailed t-test), (d and e) are the ROC curve of normal vs COVID-
19 and normal vs mild COVID-19 showing Lnorm can delineate healthy and COVID affected lung
lesions with 100% specificity and sensitivity.

3 Results

The CT image dataset presented key images, patient history, clinical, and radiological findings. After
processing the entire dataset and filtering cases as per the inclusion/exclusion criteria, we determined
that the images used in this study were procured from 41 different imaging centers/hospitals spread
across Italy (Supplementary Table S2). The severity index —S-1, S-2, and S-3 were assigned to the
severity conditions—mild, moderate, and severe (Fig. 3, Supplementary Table S1). We found that for
a multi-center CT data with high variation between images,the Lnorm value has almost no correlation
with the primary variable it is derived from i.e. the mean lesion intensity (Figure. 4). Furthermore,
upon comparing the Lnorm of healthy lung tissue and COViD-19 lesion, it was observed that the
feature could distinguish all COVID-19 lesions including even the mild lesions from healthy lung with
100% sensitivity and specificity (Figure. 4 b-e).

Lesion Detection and Feature Extraction: The lesions were detected using graph-cut region
growing initiated by user-defined seed points for foreground and background followed by morphological
opening (Fig. 5). We observed that the segmentation method detected lesions that are —small and
faint (Fig. 5a-c), multiple with size variations (Fig. 5e-g), periphery localized (Fig. 5i-k) as well
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Figure 5: Semi-automated lesion detection of pneumonia-affected lungs in COVID-19
patients. (a,e,i,m) original chest CT images with lesions of different size, number, and localiza-
tion, (b,f,j,n) lesions detected by the graph-cut based lesion detection, (c,g,k,o) binary images of the
segmented lesions, (d,h,l,p) overlay of segmented result and expert-marked lesion area. The white
area depict fully overlapped region, the orange and magenta areas depict exclusively segmented and
expert-labeled regions respectively.

as pan-lung (Fig. 5m-o) with significant overlap with expert-determined lesion area (Fig. 5d,h,l,p).
A few more results to illustrate the segmentation performance of CT images from multiple centers
are shown individually for mild, moderate and severe cases in Supplementary Fig. S1, S2, S3. A
Dice similarity coefficient (DSC) of 0.887(N = 180) was found when the segmentation results were
compared against expert-marked lesion area.

The deep-learning based method also effectively detected the lesions (Figure 6) with significantly
high accuracy i.e. DSC of 0.87 (N=449). The different performance metric scores for lesion detection
using deep learning are listed in Table 1. The convergence plots for evaluating performance are avail-
able in Supplementary Fig. S5. Detection of different types of lesions are also shown in Supplementary
Fig. S6.

Thus, it was noted that both the non-expert based methods have similar performance in detecting
the lesions.

Determination of Thresholds to Delineate the Severity Conditions: Lnorm feature values
to identify the severity was determined using Equation 7 from segmented lesions shown in Fig. 2.
The ground truth score determined by the in-house experts after going through the database reports
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Figure 6: Automated detection of lesions of pneumonia-affected lungs in COVID-19 pa-
tients. (a,c,b) are CT images from the validation set, representing mild, moderate and severe
pathology, (b,d,f) are the corresponding predicted lesions. The color code is—Yellow=true positive,
Red=false-positive, Green=false-negative. (g,i,k) are CT images from the testing set, representing
mild, moderate and severe pathology, (h,j,l) are the corresponding predicted lesions.

Table 1: Performance of deep learning based lesion detection predicted on the validation set.

Tversky parameters
[α, β, γ]

Tversky Index F1 score Precision Recall Mean IoU

[0.45, 0.55, 0.75] 0.8720 0.8714 0.8753 0.8824 0.7705

[0.55,0.45, 0.5] 0.8724 0.8705 0.8974 0.8567 0.7781

[0.55,0.45, 2] 0.8650 0.8634 0.8940 0.8545 0.7649

[0.55, 0.45, 0.75] 0.8723 0.8707 0.8953 0.8630 0.7526

(see general guidelines in Fig. 3) along with the evaluated Lnorm values are given in Supplementary
Table S1. The distribution of Lnorm values in each of the ground truth categorized severity groups
from the heuristic inputs of both experts (Fig. 7a) and detected inputs of non-experts (Fig. 7d) shows
the features are statistically distinct for the three severity stages (p-value < 0.0001, 95% CI). Since
the detection performance of both non-expert semi-automatic (graph-cut) and non-expert automatic
(deep learning) lesion detection was similar, their Lnorm evaluations were combined under non-expert
category.

The optimum cut-off values of Lnorm to identify the three stages were determined by the ROC anal-
ysis (Fig. 7b,c,e,f). Based on the best sensitivity and specificity combinations from the ROC analysis
(from both expert and non-expert data) to delineate severe from non-severe (sensitivity/specificity
- 92.26%/95.1%) and mild from non-mild cases (sensitivity/specificity - 75%/87.3%), we determined
the cut-off for each of the three categories and normal lungs (Table. 2). Both expert and non-expert
assigned demarcations had a high accuracy for delineating severe from non-severe cases with ROC
area under the curve (AUC) of 0.939 and 0.977 (Fig. 7 b,e). Similarly, results from expert annotations
(AUC=0.899) were comparable to non-expert (AUC=0.875) for delineating mild from non-mild cases
(Fig. 7 c,f). Thus, in conclusion, the feature Lnorm is found to be well-differentiated for the three
severity conditions in a multi-center data across experts and non-experts.

Agreement Among Human Raters for Severity Assessment: To determine the accuracy of
chest CT feature Lnorm based severity to match the annotated ground truth we evaluated the weighted
accuracy as per equation 8. The accuracy was measured using the expert derived Lnorm to assess
the closeness of the radiological (expert) measure to a multi-factor ground truth (symptoms, clinical
findings, radiological findings etc.). The severity classes were assigned based on the thresholds deter-
mined in the previous section (Table 2). The weighted accuracy for the 3-class severity classification
was determined to be 86.88%.

11



Figure 7: Statistical analyses for determining Lnorm’s potential in severity assessment.
(a-c) are statistical findings from one expert annotations (N=191) while (d-f) are from non-expert
annotations (N=425). (a,d) shows Lnorm is well separated for the three severity cases,between all
groups p-value <0.0001, (b,e) ROC analyses for classifying severe from non-severe class, (c,f) ROC
analyses for classifying mild from non-mild class. Statistical analyses in (a) and (d) is done with
one-way ANOVA, followed by Tukey’s post-hoc test for multi-group comparison.

Table 2: Normalized lesion intensity Lnorm for each severity class.

Severity Score Lnorm

Normal Lung 0 - 18.86
S-1 (mild) 18.87 - 46.06
S-2 (moderate) 46.07 - 61.84
S-3 (severe) 61.85 - 100

To further determine the agreement between raters and dependency of expertise levels and seg-
mentation method, the statistical κ-scoring was done involving two non-experts and one expert (Table
3). Both the non-expert intra-rater agreements were the highest (κ score 0.965) showing the fidelity of
the non-expert lesion detection methods used. The agreement between expert and non-expert ranged
from substantial to almost perfect [40]. In conclusion, the high agreement between and within raters
demonstrates the reliability and reproducibility of the feature Lnorm.

Machine Learning for evaluating classification accuracy: To establish that Lnorm can ef-
fectively classify severity in three classes without exclusively assigning optimized cut-offs (like from
ROC analysis), we employed machine learning classifiers. A number of classification models were
used for training with Lnorm values (Table 4). Additionally, we used different standard features of
image gray-level intensity and texture associated with the chest CT lesion images to compare their
classification performance with Lnorm. Severity classes (S-1, S-2, and S-3) were assigned as per the
annotated ground truth associated with the individual cases for training the models. It was found
that the feature Lnorm had the highest classification accuracy among all the other individual as well as
compound (multi-variate) features for all the classification models (88.2%). Among the classification
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Table 3: κ-statistic to evaluate the agreement of expert and non-expert raters to assign one of the 3
severity classes (mild, moderate, and severe) based on ROC-derived optimum Lnorm threshold.

Agreement Type N
%agre-
ement

κ-score Remark [40]

Intra-rater
(non-exp1)

30 96.67 0.965
almost
perfect

Intra-rater
(non-exp2)

30 96.67 0.965
almost
perfect

Inter-rater
(non-exp1vs.2)

30 83.33 0.825
almost
perfect

Inter-rater
(exp vs. non-exp1)

30 80 0.791 substantial

Inter-rater
(exp vs. non-exp2

30 86.67 0.859
almost
perfect

models, the Decision Tree was determined to have the highest classification accuracy, followed by
KNN and ensemble-learning models (Boosted and bagged trees). In conclusion, Lnorm alone has a
superior 3-class classification performance as compared to the standard intensity and texture features.

Table 4: Comparison of classification accuracy based on various popular classification models to
achieve the 3-class classification using different chest CT image features vs. Lnorm

Model accuracy (%) of 3-class classification from different chest CT lesion features.

Classifier Type MI MI+SD AM
GLCM
Contrast

GLCM
Correlation

ID
GLCM
Entropy

GLCM
(All)

MI+SD+
GLCM

Lnorm

1 Decisison Tree 66.3 67.5 44.1 51.6 48.9 48.4 44.1 52.2 50.5 88.2

2 L-DA 65.0 65 38.2 41.9 40.3 40.9 38.2 41.9 40.9 76.3

3 Q-DA 65.6 63.8 33.3 40.9 44.1 30.1 38.2 40.9 41.9 77.4

4 Naive Bayes 65.6 62.6 41.4 40.9 44.2 47.3 44.1 42.5 41.9 80.1

5 Linear SVM 63.2 66.3 35.5 39.2 37.1 35.5 34.4 39.2 39.2 78.5

6 Quadratic SVM 57.7 73.0 31.7 36.6 39.2 34.9 35.5 34.9 37.6 74.7

7 Gaussian SVM 66.9 73 40.3 38.7 40.3 45.2 45.7 38.2 38.1 83.3

8 KNN 63.8 73 46.2 50.5 48.4 50.5 49.7 49.5 48.9 86

9 Cubic KNN 63.8 66.3 41.9 47.8 41.9 43.5 43 47.3 46.8 86

10 Weighted KNN 62 71.8 45.2 51.1 48.4 50 48.9 50.5 48.4 81.7

11 Boosted Trees 61.3 70.6 43 51.6 50.5 53.2 45.7 51.1 48.9 82.8

12 Bagged Trees 62 71.2 43.5 51.1 49.5 52.2 47.8 49.5 48.4 83.3

13
RUS Boosted
Trees

60.1 68.7 41.9 41.9 46.8 51.1 45.2 45.7 44.1 83.9

Abbreviations: L-DA: Linear Discriminant Analysis, Q-DA: Quadratic Discriminant Analysis, SVM: Support Vector
Machine, KNN: K-Nearest Neighbor, RUS: Random Undersampling, MI: Mean intensity, SD: Standard deviation,
GLCM: gray level co-occurrence matrix, AM: GLCM angular moment; ID: GLCM Inverse Difference

3-class vs. 2-class classification: In many scenarios delineation of severe to critical cases are
more relevant and therefore we additionally showed the performance of Lnorm for classifying severe
from the non-severe class. Upon investigating the results of 3-class classification models (Fig.8 a-
c) it was seen that most of the errors in the model were concentrated in the mild and moderate
classification (Fig.8 a,c). The confusion matrix of the trained Decision Tree model (Fig.8 c) revealed
that none of the severe cases were mis-classified as mild or moderate. Thus we re-trained a decision
tree model with only two classes i.e. severe and non-severe(Fig.8 d-f). Both mild and moderate cases
(S-1 and S-2) were considered as non-severe here. This two-class classification showed a much higher
AUC (0.99) and accuracy as compared to the 3-class classification (training (N=148) 98.9%, testing
(N=100) 100%) . Additionally, the summary of the model accuracy for the 2-class classification for
different trained models is summarized in Table 5 highlighting the enhanced performance compared
to the 3-class classification.
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Figure 8: Evaluation of Lnorm for 3-class and a 2-class (severe and non-severe) classification
using a Decision Tree model. (a) Classification performance for a 3-class 1. mild, 2. moderate,
and 3. severe classification (training N=150), (b) corresponding ROC curve and (c) confusion matrix
showing no mis-classification for severe cases, (d) performance of 2 -class classification 1. non-severe
and 2. severe, (e) corresponding ROC curve and (f) confusion matrix showing the positive predictive
value and false discovery rate.

Table 5: Accuracy of classification models to achieve the 2-class classification (severe and non-severe)
using Lnorm.

Decision
Tree

L-DA Q-DA
Naive
Bayes

SVM KNN
Bagged
Trees

%
accuracy

98.9 98.4 98.4 98.9 98.4 98.9 98.9

4 Discussions

The emergence of CT imaging of lungs as an important tool for identifying severity, motivated the
quest of a single feature that can be used across multiple imaging centers to perform severity classifi-
cations. The images in the dataset were captured from 41 different radiology units and expressed high
variations in image quality and contrast (Supplementary Fig. S1, S2, and S3). A number of imaging
parameters (discussed previously) determine the intensity of the visualized lesion. Further, contrast
adjustment during imaging is a common practice among radiologists to make distinct identification of
affected lung regions, and in many practical situations, raw images may not be available or retrievable.
To this aim, the feature Lnorm does not require raw or pre-processing of the enhanced images. This
is essentially due to the inherent anatomical normalization with normalizing elements depending only
on the same image-slice as the lesion. This ensures the reproducibility of the method across a range
of CT units.

In the recent publications it was shown that mean lesion intensity does not have a very high
correlation with the severity features of the lungs [22]. However, although Lnorm is primarily derived
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from the same lesion intensity it has a superior performance in classifying severity. This is because
Lnorm normalizes large variations among images and is independent of the post-processing and imaging
parameters. The amount of this variation is clear with almost negligible correlation between mean
lesion intensity and Lnorm (Figure 4).

The increased clinical burden of COVID-19 has expedited the necessity of assessing severity of
individuals affected with the virus and allocation of radiological expert can be challenging. With
a high agreement in severity assessment between the experts and non-experts, the method can be
implemented by non-expert staffs with little training for routine evaluation of severity. The feature
Lnorm shows high performance in delineating severe cases from non-severe ones by both expert and
non-expert annotations(Fig. 7). Additionally Lnorm showed a similar performance in stratifying the
different classes between expert and non-expert based quantification (Fig. 7). Therefore, it can be
concluded that the expert dependency is relaxed substantially.

The chest CT gray scale intensity clinically translates to the increase in pathological deposition
of exudates along with tissue involvement [31]. As Lnorm captures the chest CT intensity, its linear
increase, correlates with the increase in disease severity. Besides, the linearity of Lnorm reduces the
co-dependence of other image features and multi-variate classifier training in order to achieve better
classification results. Although specific cut-offs have been provided for classification, it needs to be
noted that severity is more continuous than a discrete class bounded by a cut-off margin. Thus, the
linear dependence of the Lnorm values with the disease severity makes interpretation of the disease
condition easier and non-discrete. This is also the reason why even for weak classification learners
like Decision Tree, the performance of the Lnorm is the highest. This reduces the computational
complexity as well.

Figure 9: A proposed workflow of resource utilization and incorporation of severity assessment in
diagnosis to therapy pipeline of COVID-19 disease in clinical settings.

The different classification models that were employed to classify severity showed that the severity
misclassifications are rarely seen when identifying severe cases in the 3 class-classification. Further-
more, no cases were misclassified more than one level of severity i.e. mild cases can be misclassified
as moderate but never as severe. This not only shows the fidelity of the feature but ensures almost
no severe cases to be misclassified. This became apparent when the classification models were trained
for a 2-class severe vs non-severe classification (Fig. 8). The 2-class classification not only showed
an extremely high AUC (0.99) but a very high classification accuracy across all the classifiers (Table 5).

The demonstrated quantitative severity assessment from chest CT in COVID-19 positive individ-
uals, if implemented properly can help in managing the patients and provide the necessary treatment
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to reduce mortality and side-effects. Here we have outlined a scheme of general clinical work flow to
demonstrate how the patient management can be done to incorporate the method (Figure 9).

5 Conclusion

To summarize, the article illustrates the lung-CT feature of COVID-19 patients to evaluate their
severity quantitatively and group them in three classes of severity —S-1(mild), S-2(moderate), and
S-3(severe) using the feature Lnorm. This feature helps identification of severity groups which can
help in therapeutic decision making for reducing risks and mortality in such a wide pandemic. The
simplicity of the method along with high agreement score makes it a potential tool to be incorporated
in the clinical diagnosis-therapy pipeline for management of COVID-19.
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