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Abstract 

Cephalometric analysis has long been one of the most helpful approaches in 

evaluating cranio-maxillo-facial skeletal profile. To perform this, locating 

anatomical landmarks on an X-ray image is a crucial step, demanding time and 

expertise. An automated cephalogram analyzer, if developed, will be a great help 

for practitioners. Artificial intelligence, including machine learning is emerging 

these days. Deep learning is one of the most developing techniques in data 

science field. The authors attempted to enhance the accuracy of an automated 

landmark predicting system utilizing multi-phase deep learning and voting. To 

guarantee objectivity, an open-to-the-public dataset, cephalometric images 

accompanied with coordinate values of 19 landmarks, were used. A regressional 

system was developed, consisted with convolutional neural networks of three 

phases. First phase network was to determine approximate position of each 

landmark, inputting whole area of compressed original images. Five secondary 

networks were to narrow down the area, based on the first phase prediction. Third 

phase networks were trained by small areas around respective landmarks, with 

original resolution. Third phase prediction with voting was done inputting 81 

shifted areas. Successful detection rates improved as the phase advances. 

Voting in third phase improved successful detection rate. In comparison with 

previously reported benchmarks, using the same dataset, proposed system 

marked better results. Within the physical limitation of memory and computation, 

multi-phase deep learning may be a solution to deal with large images. 
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Introduction 

Cephalometry was first introduced by Broadbent in19311. X-ray image was taken, 

stabilizing the examinee’s head in a standard position. It has been and still is one 

of the most helpful modalities in evaluating cranio-maxillo-facial relations. In 

analyzing process, plotting landmarks on the X-ray image is required. This 

procedure requires time and expertise. Machine learning is one of the most 

developing fields in data science. Artificial neural network2,3 is a type of approach 

in machine learning. Optimizing artificial neural network with many layers is called 

deep learning4. Convolution neural network5,6 is a type of deep learning method 

with one or more convolutional layers. It has been attracting attention in image 

recognition. In medical field, cognition of dermatological images7-9, X-ray 

images10, optical funduscopic images11 and coherence tomography12. 

Convolution neural network can also be used for regression13,14. 

In a previous report, we built an automated landmark prediction system, based 

on a deep learning convolutional neural network15. Cephalograms were gathered 

through the internet and landmarks were plotted by ourselves. Although it 

seemed to be a good result, objectivity was not guaranteed. In this study, an 

open-to-the-public dataset was used to evaluate our system objectively. 2014 

IEEE 11th International Symposium on Biomedical Imaging (ISBI)16, and 2015 

IEEE 12th ISBI17 was done and cephalograms with coordinate value for each 

landmark is released to the public (http://www-

o.ntust.edu.tw/~cweiwang/ISBI2015/). In one staged deep learning, original high-

resolution (2400 x 1935) images have to be resized into low-resolution ones, to 

reduce computation volume. Precise information may be lost in this process. To 

increase prediction accuracy, multi-phased deep learning was conducted. 

 

Materials and Methods 

Personal computer  

All procedures were done on a desk-top personal computer:  CPU (Central 

Processing Unit):  AMD  Ryzen 7 2700X 3.70GHz (Advanced Micro Systems, 

Sunnyvale, CA, USA), memory:  64.0GB,  GPU:  GeForce  RTX2080  

8.0GB ((nVIDIA,  Santa  Clara,  CA,  USA),  Windows  10  pro  

(Microsoft  Corporations, Redmond, WA, USA). Python 3.6 (Python Software 

Foundation, DE USA): a programing language, was used under Anaconda 
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(FedoraProject. 

http://fedoraproject.org/wiki/Anaconda#Anaconda_Team_Emeritus) as an 

installing system, and Spyder 3.6 16   as an integrated development 

environment. Keras (https://keras.io/): the deep learning library, written in Python 

was run on TensorFlow (Google, Mountain View, CA, USA). GPU computation 

was employed through CUDA (nVIDIA). OpenCV3.1.0 libraries 

(https://docs.opencv.org/3.1.0/) were used in image processing. 

 

Datasets 

Lateral cephalograms with coordinate values of 19 landmarks each were 

downloaded from https://figshare.com/s/37ec464af8e81ae6ebbf. They were the 

ones published and used in 2015 IEEE 12th ISBI Challenge 1. Original 

resolutions of them were 1935 pixels for horizontal (x) and 2400 pixels for 

longitudinal (y), representing 0.1 mm/pixel. Coordinate values of the landmarks 

are provided in a text file for an image. There provided two sets of them in different 

folders, named “400_junior” and “400_senior”. The coordinate values of all 

images in a folder were gathered into a table and saved as a csv formatted file. 

To be in conformity with previous studies, average coordinate values of the two 

sets were used as ground truth (Fig 1). 

 

Multi-phase deep learning 

First phase deep learning 

Images for training, counting 150, were loaded in grayscale and downsized to 

387 x 480 pixels. 

Data augmentation was done to increase training images (Fig 2). Gamma values 

of the images was changed using OpenCV program. Shifting and rotation of the 

images were performed, with coordinate values of the landmarks correspondingly. 

Water-droplet-like distortion of the images18 were also done with corresponding 

coordinate values computation. When any landmark placed out of range, the data 

was omitted. Yield of 18288 images was obtained. 

Based on Keras with TensorFlow backend on Python, a regression neural 

network with 4 convolution layers, followed by 4 dense layers, which was used in 

our previous report15 (Fig 3), was constructed, with input of 387 x 480 and output 

of 38 values (x, y each for 19 landmarks). Stochastic gradient descent was used 

as the optimizer. The Leaky-ReLu was used as activating function. Epochs of 800 

were done, trained with previously described 18288 images and corresponding 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.12.20150433doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.12.20150433
http://creativecommons.org/licenses/by-nc-nd/4.0/


coordinate values. The model and trained weights were saved in json and h5 

formatted files, to use in further prediction. 

 

Second phase deep learning 

Landmarks were divided into five groups: upper posterior (L1: Sella, L4: Porion, 

L19: Articulare), upper frontal (L2: Nasion, L3: Orbitle), upper jaw (L5: Point A, 

L12: Upper incisor, L13: Upper lip, L15: Subnasalis, L18: Anterior nasal spine), 

lower jaw (L6: Point B, L7: Pogonion, L8: Menton, L9: Gnathion, L11: Lower 

incisor, L14: Lower lip, L16: Soft tissue pogonion) and lower posterior (L10: 

Gonion, L17: Posterior nasal spine). For each group, the center coordinate values 

of the landmarks were calculated. Sub-areas of 600 x 600 pixels were cropped 

from the original image with the previously calculated centers (Fig 4). Areas with 

the centers, shifted -200 to 200 pixels, stepping 40 pixels, were also cropped. 

The relative coordinate values of the landmarks in the cropped images were listed. 

The images were downsized to 200 x 200 pixels. Data augmentation was done 

by enlarging and making small, accompanied by coordinate values changes. 

Main structure of the network model was the same as the one used for the first 

phase deep learning. Input was 200 x 200 and output numbers were varied 

respectively. Training of the models were done with the epochs of 500. The 

models and trained weights were saved in json and h5 formatted files. 

 

Third phase deep learning 

Setting the landmarks as the centers, 200 x 200 pixels sized image were cropped 

(Fig 5). Areas, shifted -50 to 50 pixels stepping 10 pixels, were cropped and 

coordinate values of the landmark were calculated as the relative values in the 

image. The images were processed with CLAHE (contrast limited adaptive 

histogram equalization)19 using OpenCV. Data augmentation was done as the 

second phase deep learning. Basic structure of the neural model was the same 

as the first and second deep learning, except that the input was 150 x 150 and 

the output was two (x, y). The model was trained with the epoch of 500 and saved. 

 

Landmark prediction 

Flow chart for landmark prediction and evaluation is shown in Fig 6. 

First phase prediction 

Testing images, which were not used for training, were loaded in grayscale, 

downsized to 387 x 480 pixels and fed to the first phase trained model. 38 values 
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(x, y for each19 points) for every image were predicted.  

 

Second phase prediction 

Based on the first phase coarse prediction, 600 x 600 pixel-sized sub-areas were 

cropped from the original testing images. They were downsized to 200 x 200 

pixels, CLAHE processed and fed to the second phase trained models. 

 

Third phase prediction  

Setting coordinate values, obtained by the second phase prediction, as the center 

points, 19 areas with 150 x 150 pixels were cropped from each original testing 

images. The images were CLAHE processed, fed to the trained models and 

coordinate values for each landmark were predicted. 

 

Third phase prediction with voting 

Eighty-one areas, shifted the second phase predicted centers -20 to 20 pixels 

stepping 5 pixels, were cropped from each original testing images. The images 

were CLAHE processed, fed to the trained models and coordinate values for each 

landmark were predicted. Median of the predicted 81 coordinated values was 

adopted as the prediction. 

 

Evaluation of the predicted coordinate values 

Distance between a point, predicted by neural network P: (px, py) and 

corresponding ground truth point O: (ox, oy) was calculated as norm of vector 

OP: (px - ox, py - oy). One pixel-length was evaluated as 0.1 mm. Successful 

detection rate, defined as the percentage of landmarks predicted within 2.0 mm, 

2.5 mm, 3.0 mm and 4.0 mm, was calculated. Within a series of procedures, 

prediction of the testing images, which were not used in the training stage, were 

done one by one, followed by evaluation by NumPy computation. 

 

Results 

Machine learning 

First phase deep learning 

Learning for 800 epochs for the first phase with 18288 training images, took 57 

hours and 47 minutes.  
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Second phase deep learning 

Average testing image number used for each second phase was 14578. Average 

duration time for learning 500 epochs was 3 hours and 35 minutes. 

 

Third phase deep learning 

Number of images, used for the third phase deep learning, was 47248 

respectively for each landmark. It took 1 hour 55 minutes and 5 seconds in 

average for 100 epochs training. 

 

Landmark coordinate value prediction 

To load modules of TesorFlow, Keras, OpenCV and so on, it took 1.45 seconds 

in our setting. To load neural networks and weights, it took 39.16 seconds. For 

150 datasets of Test1Dataset, loading images and coordinate value predicting 

with three phase networks required 42.74 seconds. Computing distances from 

ground truth landmarks took 0.29 seconds. For Test2Dataset, it took 18.47 

seconds for coordinate value prediction and 0.22 seconds for evaluation. With 

voting, prediction took 15 minutes and 55 minutes for Test1Dataset and 6 minutes 

and 54 seconds for Test2Dataset, Successful detection rates for each three 

phases assessing Test1Dataset and Test2Dataset is shown respectively in Fig 7 

and 8. Landmark by landmark prediction errors (distances from ground truth 

coordinate values) are shown in Fig 9. 

 

 

Discussion 

Our concept was to emulate the way in finding a place, when the address is 

provided. First, we open a map of the country. Next, we try to find the state and 

city in a larger scaled map. Then, open a much larger scaled map to find the 

street and number. You cannot precisely point the place in a low-scaled map. And, 

you cannot orientate yourself in a large-scaled map from the first. 

First phase prediction was done by a network, which evaluate whole area of an 

image. The original image to evaluate was 1935 x 2400 pixels. They were 

downsized to 387 x 480 pixels because of computation limitation. Second phase 

prediction was done in smaller areas. Interested area of 600 x 600 pixels size, 

based on the coarse prediction by the first deep learning model, was cropped and 

downsized to 200 x 200 pixels. Third phase prediction was done in cropped 
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images from the original one, with the size of 200 x 200 pixels, based on the 

coordinate values of second prediction. Prior to this, we tried with 150 x150 pixels 

areas (data not shown). Better results were obtained with 200 x 200 pixels. As 

shown in Fig 7 and 8, Successful detection rates improved as the phase 

advances. Within the physical limitation of memory and computation, multi-phase 

deep learning may be a solution to deal with large images. CLAHE processing 

before second and third phase prediction slightly improved accuracy (comparison 

with or without is not shown). Voting in last phase improved successful detection 

rate. 

Comparing with previously reported benchmarks (Ibragimov and Lindner: the two 

best in ISBI201517, Arik20: a method using convolutional neural network), 

successful detection rate by proposed procedures marked better results (Fig 

10,11). 

It is well known that accuracy of machine learning prediction highly be dependent 

on the number of training data. Though, there are many cases that the number 

of raw data is limited. Data augmentation technique helped making up for the 

data shortage. It markedly improved our accuracy (data not shown). 

 

It has been pointed that manual plotting can be varied by plotters16,21 or time even 

by the same plotter16,22. Ground truth coordinate values may differ from one 

plotter to the other. How much error can be clinically and practically allowed is 

hard to standardize. In the datasets, we used in this study, there provided two 

sets of coordinate values (“400_junior” and “400_senior”), plotted by two different 

practitioners. Comparing 7600 landmark points coordinate values in 400 images, 

there existed 2.15 mm discrepancy in average with 2.22 mm standard deviation, 

21.7mm as maximum. Landmark by landmark discrepancies of them in the 150 

training images are shown in Fig 12. Largest discrepancy was seen on L16: Soft 

tissue pogonion, which is not always easy to plot even by experienced 

practitioners.  

In this study, we used the mean value of them to be in conformance with former 

studies. This averaging process may have led to that the point is not be on the 

edge of structure, which could complicate the predictor.  

Landmarks were plotted in Fig 13, with average discrepancies between the two 

provided coordinate values for the training datasets as horizontal axis and 

average prediction errors for the testing datasets in our best scored system as 

vertical axis. Very high correlation was seen between them. It implies that 
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difficulty in plotting the landmarks influenced the prediction accuracy. 

In supervised learning and prediction, high prediction implies that ground truth 

values were consistently rated in training and testing datasets. If the training data 

plot is not clinically "correct", the predicted value will not be "correct". High quality 

coordinate values in training datasets are essential. 

 

 

Conclusion 

We constructed an automated cephalogram landmark plotting system, utilizing 

multi-phase convolutional neural networks. The system was consisted of three 

phases. Each phase was trained respectively. The system significantly increased 

accuracy comparing with a single-phased model. As there always physical 

limitation in computation, multi-phase deep learning may be a solution to deal 

with large images. 
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Figure Legends 

Fig 1. Anatomical landmarks plotted on a cephalogram (TrainingData/009.bmp). 

Coordinate values of them were set as the average of the two provided sets. 

 

 

Fig 2. For the first phase deep learning, training images, originally 1935 x 2400 

pixels, were downsized to 387 x 480 pixels. For data augmentation, shifting, 

rotation and water-droplet-like distortion of the images were performed, with the 

change of landmarks coordinate values correspondingly. Shown is an example 

(TrainingData/009.bmp).  

 

 

Fig 3. The convolutional neural network model, used in the first phase deep 

learning. Ii is consisted of 4 convolution layers and 4 dense layers. Basically the 

same model was used for the second and third phase deep learning, except for 

the input and output shapes. 

 

 

Fig 4. Landmarks were divided into five groups. Midpoint of each group was set 

as the center for 600 x 600 pixels sub-areas. The Sub-areas were cropped for 

the training images for the second phase deep learning. Shown is an example 

(TrainingData/009.bmp). 

 

 

Fig 5. 200 x 200 pixels sized areas were cropped, setting landmarks as the 

centers. They were used to train the third phase convolutional neural networks. 

Shown is an example (TrainingData/009.bmp). 

 

 

Fig 6. Flow of landmark prediction and evaluation. Coordinate values of each 

landmark were predicted through three trained convolutional neural networks.   

 

 

Fig 7. Successful detection rates for 150 images of Test1Dataset. The rates 

increased as the phase advances. Third phase with voting marked the best result. 
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Fig 8. Successful detection rates for 100 images of Test2Dataset. The rates 

increased as the phase advances. Third phase with voting marked the best result. 

 

 

Fig 9. Box plotting of prediction errors (distance between predicted point and 

ground truth point) for each landmark, testing 250 images (Test1Dataset and 

Test2Dataset). Whisker ranges 5 to 95 percntile. Box ranges 25 to 75 percentile. 

Center line indicates the median. Triangle indicates the average.  

 

 

Fig 10. Comparison of previously reported benchmarks with proposed 

procedures, in successful detection rates for Test1Dataset. 

 

 

Fig 11. Comparison of previously reported benchmarks with proposed procedures, 

in successful detection rates for Test2Dataset. 

 

 

Fig 12. Discrepancies between the two provided coordinate values (in folders, 

named “400_junior” and “400_senior”) for training images. 2850 points for all and 

150 points for each landmark. Average + standard deviation. 

 

 

Fig 13. Landmark by landmark plotting. Horizontal axis: average discrepancies 

between the two provided coordinate values (“400_junior” and “400_senior”) in 

150 training datasets. Vertical axis: average prediction errors for the 250 testing 

datasets by 3rd phase + voting system. With linear regression analysis, high 

correlation was observed. 
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Fig 1. Anatomical landmarks plotted on a cephalogram (TrainingData/009.bmp). Coordinate values of them were set as the average of the two provided sets.
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Fig 2. For the first phase deep learning, training images, originally 1935 x 2400 pixels, were downsized to 387 x 480 pixels. For data augmentation, shifting, rotation and water-droplet-like distortion of the images were performed, with the change of landmarks coordinate values correspondingly. Shown is an example (TrainingData/009.bmp). 
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Fig 3. The convolutional neural network model, used in the first phase deep learning. Ii is consisted of 4 convolution layers and 4 dense layers. Basically the same model was used for the second and third phase deep learning, except for the input and output shapes.
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Fig 4. Landmarks were divided into five groups. Midpoint of each group was set as the center for 600 x 600 pixels sub-areas. The Sub-areas were cropped for the training images for the second phase deep learning. Shown is an example (TrainingData/009.bmp).
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Fig 5. 200 x 200 pixels sized areas were cropped, setting landmarks as the centers. They were used to train the third phase convolutional neural networks. Shown is an example (TrainingData/009.bmp).
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Fig 6. Flow of landmark prediction and evaluation. Coordinate values of each landmark were predicted through three trained convolutional neural networks. 
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Fig 7. Successful detection rates for 150 images of Test1Dataset. The rates increased as the phase advances. Third phase with voting marked the best result.
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Fig 8. Successful detection rates for 100 images of Test2Dataset. The rates increased as the phase advances. Third phase with voting marked the best result.
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Fig 9. Box plotting of prediction errors (distance between predicted point and ground truth point) for each landmark, testing 250 images (Test1Dataset and Test2Dataset). Whisker ranges 5 to 95 percntile. Box ranges 25 to 75 percentile. Center line indicates the median. Triangle indicates the average.
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Fig 10. Comparison of previously reported benchmarks with proposed procedures, in successful detection rates for Test1Dataset.
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Fig 11. Comparison of previously reported benchmarks with proposed procedures, in successful detection rates for Test2Dataset.
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Fig 12. Discrepancies between the two provided coordinate values (in folders, named “400_junior” and “400_senior”) for training images. 2850 points for all and 150 points for each landmark. Average + standard deviation.
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Fig 13. Landmark by landmark plotting. Horizontal axis: average discrepancies between the two provided coordinate values (“400_junior” and “400_senior”) in 150 training datasets. Vertical axis: average prediction errors for the 250 testing datasets by 3rd phase + voting system. With linear regression analysis, high correlation was observed.
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