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Abstract 

Glucocorticoids (GCs) are an essential component of acute lymphoblastic leukemia (ALL) 

therapy. To identify genes mediating the anti-leukemic GC effects in vivo, we performed gene 

expression profiling of lymphoblasts from 46 children during the first 6-24h of systemic GC 

mono-therapy. Differential gene expression analysis across all patients revealed a 

considerable number of GC-regulated genes (190 induced, 179 repressed at 24h). However, 

when 4 leukemia subtypes (T-ALL, ETV6-RUNX1+, hyperdiploid, other preB-ALLs) were 

analyzed individually only 17 genes were regulated in all of them showing subtype-specificity 

of the transcriptional response. “Cell cycle-related” genes were down-regulated in the 

majority of patients, while no common changes in apoptosis genes could be identified. 

Surprisingly, none of the cell cycle or apoptosis genes correlated well with the reduction of 

peripheral blasts used as parameter for treatment response. These data suggest that (a) GC 

effects on cell cycle are independent of the cell death response and (b) GC-induced cell death 

cannot be explained by a single transcriptional pathway conserved in all subtypes. To unravel 

more complex, potentially novel pathways, we employed machine learning algorithms using 

an iterative elastic net approach, which identified gene expression signatures that correlated 

with the clinical response. 
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Introduction 

Synthetic glucocorticoids (GC) are essential components in the treatment of childhood acute 

lymphoblastic leukemia (chALL) but which chALL patients will respond to GC therapy is not 

known. In addition, GC-resistance is a poorly understood phenomenon that limits GC therapy 

[1]. According to the AIEOP-BMP protocol (http://www.bfm-international.org/aieop_ 

index.html) patients undergo 1 week of systemic GC monotherapy, after which peripheral 

blood counts are included in the stratification of patients into high and standard/medium 

risk groups, because a poor GC-response, i.e., >1000 blasts/µl on day 8, is associated with a 

high risk of relapse [2]. The major subtypes T-ALL and precursor B-ALL (preB-ALL) are 

further subdivided according to immunophenotype or molecular markers, such as ploidy, 

chromosomal translocations, such as BCR-Abl, ETV6/RUNX1 in preB-ALL, mutation of 

NOTCH1 in T-ALL and others [1]. 

To improve the efficacy of GC treatment and to overcome primary and secondary GC-

resistance [3-5] the molecular mode of action of GC in vivo needs to be better understood. 

GCs mainly act via the GC receptor (GR, NR3C1) through transcription regulation [6-8]. Upon 

ligand binding the cytosolic GR [9] is transported into the nucleus [10,11], where, upon 

binding to GC-response elements (GREs), the GR directly induces or represses transcription. 

The GR also collaborates with other transcription factors, such as AP1 [12], HES1 [13], STAT5 

[14], NF-κB [15,16], and others [17], to regulate gene expression in the presence or absence 

of GREs. GCs can also exert non-genomic effects, which are, however, less well understood 

[18]. Because GCs activate a transcription factor, the anti-leukemic effects are likely to be 

initiated by changes in gene expression, although other mechanisms have also been proposed 

[19-21]. Analysis of leukemia cell lines suggested that the anti-leukemic effects of GCs are due 
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to inhibition of proliferation and induction of cell death via regulating the expression of 

numerous genes [22-28], including some controlling apoptosis [29,30]. Whether regulation 

of these genes underlie the action of GCs in vivo in children with ALL is, however, not clear. 

To overcome this gap, we generated whole genome expression profiles from 46 children with 

ALL during GC monotherapy and correlated them, for the first time, with the clinical 

response. As detailed below, we observed GC treatment-associated regulation of mRNAs for 

key regulators of mitosis in all chALL subtypes but no consistent alteration in genes 

controlling cell death. 

Materials and Methods 

1. Patients, lymphoblasts and expression profiling 

Forty six children with ALL admitted to the Department of Pediatrics, Innsbruck Medical 

University (n=38), or the St Anna Children’s Hospital in Vienna (n=8) and treated according 

to BFM protocol 2000 (n=43) and AIEOP-BFM 2009 (n=3) were prospectively enrolled in this 

study, approved by the Ethics Committee of Innsbruck Medical University (EK1-1193-

172/35) with written informed consent obtained from parents or custodians. The relevant 

clinical data are detailed in the Supplementary Table S1 and Figure 1. 

Blood samples were taken from patients prior to, and 6-8 and 24h after the first intravenous 

application of prednisolone at 20mg/m² at 3 doses/day. Blasts were isolated to >90% purity 

and total RNA subjected to expression profiling using Affymetrix U133 Plus 2.0 microarrays. 

Blast counts were recorded prior to and daily during treatment. GC bioactivity in the blood 

at the time of sample recovery was determined as published [31]. Details regarding blood 

sampling, treatment protocol, lymphoblast purification, RNA preparation and Affymetrix 
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gene chip analysis including all quality control measures have been published previously 

[32].  

2. Data preprocessing 

For microarray raw data preprocessing see Supplementary Information. Raw and 

preprocessed expression data have been deposited at the Gene Expression Omnibus 

(Accession number: GSE73578); during the review process data are accessible using the link:  

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=sfktcoyghzavrup&acc=GSE73578. 

3. Patients ALL subtype classification and GC-response quantification 

Patients were assigned to 4 groups (Figure 1): T-ALL, ETV6/RUNX1 positive preB-ALL, 

hyperdiploid preB-ALL, and a mixed group of preB-ALL (“other preB-ALL”). A detailed 

description of signature generation and patient classification can be found in Bindreither et 

al. [33] and in Supplementary Table S1. The response of the patients to GC treatment was 

evaluated by calculating the area under the curve (AUC) from the blast counts during the first 

72h of treatment (Supplementary Figure S1). 

4. Differential gene expression and GO analyses 

M-values (log2 fold change values) representing differential gene expression between the 6-

8 or 24h time point and the time point prior to treatment initiation were obtained employing 

Bioconductor’s limma package [34] and p-values adjusted for multiple hypotheses testing 

according to Benjamini and Hochberg (BH) [35]. Genes with an absolute M-value larger than 

0.7 (i.e. > 1.6-fold regulation) at a 5% false discovery rate (i.e. adjusted p-value < 0.05) were 

considered as significantly differentially expressed. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2020. ; https://doi.org/10.1101/2020.07.11.20148890doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20148890
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Gene ontology analyses were performed using R package topGO with algorithm “weight01” 

and Fishers statistics according to Alexa and Rahnenfeld 

(https://www.bioconductor.org/packages/3.3/bioc/html/topGO.html).  

5. Regression models 

Two different regression models were used to evaluate the relationship between gene 

expression/regulation and the response to GC-treatment as measured by AUC after 72h 

(AUC): “simple regression”, modeling gene expression/ regulation as dependent only on AUC, 

and “extended regression”, incorporating time point, ALL subtype and gender as adjustment 

factors. The detailed description of regression models are provided in Supplementary 

Information. The p-values for the AUC coefficients were adjusted for multiple hypotheses 

testing [35]. 

6. Elastic-net regression 

For elastic-net regression, gene expression was adjusted for subtype, gender and time point 

by fitting a regression model and among the regulated genes, we focused on likely direct 

targets due to the presence of GR-binding sites determined in chALL cell lines [36]. Elastic 

net regression was applied to the combined data set of adjusted average expression values 

and average regulation values of approximately 1000 probe sets, each using the R package 

glmnet [37] with the elastic net mixing parameter α set to 0.1 and the regularization 

parameter 𝜆 within 1 standard error from the minimum of the cross-validation error curve 

in the direction of increased regularization (see Supplementary Information for details). 
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Results 

1. Characterization of the transcriptional response to GC in lymphoblasts from children 

with ALL 

In order to define the molecular mechanism underlying the antileukemic GC effects, we 

analyzed 46 chALL patients undergoing GC treatment. Clinical data, such as leukemia 

subtype, age distribution, clinical response and active GC serum levels of the patients are 

summarized in Supplemental Table S1 and Figure 1. Microarray-derived expression profiles 

from purified leukemic blasts of these patients prior to, 6-8h and 24h after initiation of GC 

treatment were subjected to differential gene expression analysis. Using a false discovery 

rate (FDR) <0.05 and absolute log2 fold change > 0.7 (M values), we defined 206 and 516 

“GC-regulated” probe sets after 6-8h and 24h, respectively, with similar numbers of up versus 

down-regulated probe sets (Figure 2A, “all patients”). As detailed in Supplementary Table 

S2A, many of the corresponding genes contained GR-binding sites in their regulatory regions 

and have been found regulated in cell lines exposed to GC [36]. During the time of treatment, 

gene regulation was monotonic as we did not observe any gene with apparent “counter 

regulation” (significant induction after 6-8h followed by repression after 24h or vice versa). 

The mean M values were moderate, i.e., between -1.6 and +1.9 after 6-8h (Figure 2B) and -

2.1 and +2.3 after 24h (Supplementary Figure S2), and even on an individual patient level, 

regulations rarely exceeded 4-8 fold changes (Supplementary Table S2B). Thus, GC-

treatment affected many genes (144 after 6-8h and 340 after 24h) but, in most cases, by only 

mildly changing their expression. 

To address whether the transcriptional response was conserved between the various ALL 

subtypes, we performed differential expression analysis for every ALL subtype. As can be 
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seen in Figure 2A, the molecular subtypes showed dramatic differences in their response to 

GC and not a single probe set was significantly regulated in all 4 subtypes after 6-8h and only 

20 probe sets (17 genes) after 24h (Figure 2C). Although this underestimates the extent of 

common GC-regulated genes due to the arbitrarily set cut-off for M-values (many genes 

revealed regulation in several or all subtypes but just failed to reach a mean M-value of >0.7 

and/or a pBH of <0.05), several genes were significantly regulated in only one molecular 

subtype but not regulated in others (as defined by a mean M-value ≤0.2 in any of the probe 

sets corresponding to a given gene, Supplementary Table S2A). Moreover, several genes were 

significantly induced in some but repressed in other subtypes (designated “both” in 

Supplementary Table S2A). Taken together, in vivo, the GCs activate a large number of genes 

in chALL blasts but to a relatively moderate extent, that increases over time, and comprises 

both a small number of common and many more ALL subtype-specific genes. 

 

2. Assigning pathways to GC-regulated genes in leukemia treatment 

Next, we performed gene ontology (GO)-term analyses for the genes found to be significantly 

regulated either at 6-8h or 24h (206/144 and 516/340 probe sets/genes, respectively, see 

Supplementary Table S2A). This GO term analyses revealed a dramatic enrichment of cell 

cycle-related terms at both time points, i.e., of the 43 GO terms significantly associated with 

these genes, 33 fell into the category “cell cycle” (see Supplementary Table S3 for details). 

Interestingly, at the same level of stringency, GO terms related to apoptosis or cell death 

induction did not reach significance levels suggesting that, unlike GC-induced cell cycle 

arrest, GC-induced cell death is not associated with a set of known cell death-inducing genes. 
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Since an individual gene responsible for cell death induction would not be detected by GO 

term analyses, we manually scrutinized all GC-regulated genes (mM>|0.7|; pBH<0.05) for 

literature-based evidence for a direct function in cell death regulation. This analysis revealed 

induction of the caspase-3 substrate DFNA5 [38] (induced at 6-8h and 24h) and the pro-

apoptotic BH3-only molecules BMF and BCL2L11/BIM (both induced at 24h) but also 

repression of the pro-apoptotic BH3-only protein HRK (6-8 and 24h) and induction of the 

pro-survival BCL2 family member BCL2A1 (24h). 

 

3. Identification of potential effectors of the blast response in vivo 

To delineate whether GC-regulated genes correlate with the clinical response, we determined 

the area under the curve (AUC) change in peripheral blood blast counts during the first 72h 

of GC treatment. The AUC was selected as a more homogenous and robust parameter for 

correlation analysis than blast counts at a certain time point because it is derived from 

several measurements over 72h and thus reflects the dynamics of blast numbers and is less 

likely to be influenced by measurement errors (for examples see Supplementary Figure S1). 

First, we performed hierarchical clustering of the transcriptional response of each patient 

after 6-8h (Figure 3) and 24h (Supplementary Figure S3). To reduce the number of genes 

entering this analysis we concentrated on potentially direct targets of the GR, thus analyzing 

49 genes that were GC-regulated at 6-8h, and 110 genes regulated at 24h and contained 

potential GR binding sites, as determined previously using ChIP-chip data identifying GR 

binding sites (GBS) in childhood T-ALL (CCRF-CEM-C7H2) and/or preB-ALL (NALM6) cell 

lines [36]. This analysis revealed 2 main clusters of patients (Figure 3 and Supplementary 

Figure S3 for 6-8 and 24h, respectively). All T-ALL children fell into cluster I at both time 
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points, while ETV6/RUNX1 leukemia cases were found in cluster II (all at 24h, all but 1 at 6-

8h). The children from the hyperdiploid and “other” preB-ALL groups did not cluster, 

consistent with their more heterogeneous genotype. Moreover, there was no clustering with 

the serum GC levels (GBA) even though cluster II clearly showed a stronger transcriptional 

response. Importantly, although the overall blast response reflected in the AUC was weaker 

in cluster I compared to cluster II (6-8h: I: -98.3±70; II: -183.1±74.1; 24h: I: -101.1±70.3; II: -

166.5±80), there was no clear clustering with the blast response. For example, T-ALL case 

61-KKI, a strong blast responder, clustered with the other (much weaker responding) T-ALLs 

in cluster I but not with the other good responders in cluster II suggesting that the 

transcriptional response is dominated by subtype specific genes rather than cell death 

inducing ones.  

The GC-regulated genes clustered in two main groups, i.e., genes mainly up- or down-

regulated by GCs. Among 13 down-regulated genes, 9 were linked to the cell cycle as 

determined by GO-term analysis. None of these genes, however, correlated with the ‘blast 

responses’. The lack of correlation between the regulation of cell cycle genes and clinical 

outcome suggests that GCs have separate effects on cell cycle regulation and cell death 

induction, as we have proposed for the CCRF-CEM chALL cell line model [39]. Among the non-

cell cycle related genes, we found induction of JDP2 [40], P2RY14 [41], RASSF4 [42], CD30 [43], 

SOCS1 [44], PER1 [45], KANK1 [46] and PFKFB2 [47], as well as suppression of PDE4B [48], 

SOX4 [49] and MDM2 [50], which have been shown to control proliferation or cell survival in 

leukemia or other malignancies.  

Next, we correlated the blast response (AUC) with gene regulation at 6-8h and 24h of all 

probe sets using ordinary least squares regression (“simple regression”). At 6-8h, no gene 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2020. ; https://doi.org/10.1101/2020.07.11.20148890doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20148890
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

reached significance and the best coefficient of correlation (R2) was 0.41 (data not shown). 

After 24h, 7 genes reached significance but their R2 values were still moderate (0.45 or less). 

Moreover, 3 of these genes (RTN1, PLEKHA1, and unassigned 237520_x_at) were regulated 

only weakly and were not among the 2307 GC-regulated probe sets defined as having a 

mM<0.7; the remaining 4 were regulated only in patients of the ETV6/RUNX1 subtype 

(BEST3, PLEK, VSIG10) or in “others” (S100A4) but not in all patients. Hence, none was a good 

candidate explaining the ‘blast response’ in all subtypes. Importantly, the above described 

GC-induced apoptosis related genes BMF, BCL2L11/BIM and DFNA5/GSDME showed no 

correlation with the ‘blast response’, making them unlikely candidates for common cell death 

inducers by GCs in chALL patients.  

Inclusion of additional factors to the model (“extended linear regression”), such as time of 

measurement of the blast response, subtype and/or gender, improved the coefficient of 

determination, 𝑅2 , to at most 0.69, but none of the genes with significant p-value for the 

response coefficient (30 genes with p-values from 9.7e-05 to 0.05) had 𝑅2 higher than 0.47 

(Table 1 and Supplementary Table S4). Given the above, this analysis suggests that there is 

no single GC-regulated gene that could explain the blast response in these patients. One 

explanation for the failure to detect a conserved cell death pathway in our chALL cohort 

might be that the pathway underlying the blast response depends on the cellular context, a 

hypothesis that is addressed in the next section. 

 

3. Identification of potential modulators of the blast response in vivo  

Apart from “effector” genes (genes that are regulated by GC) able to control cell death, other 

genes might influence the blast response even if they are not regulated by GCs (“modulator” 
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genes). These “modulator” genes may act either as facilitators or as inhibitors and, hence, 

their expression level might correlate positively or negatively with the blast response (as 

measured by AUC). 

To identify such modulator genes, we used ordinary least squares regression, with additional 

adjustments for chALL subtype, gender and the time of measurement of blast counts 

(Supplementary Table S5). For 232 probe sets representing 146 genes this model could 

explain over 80% of variability, indicating a much better performance than the previous 

model based on GC-regulations. In addition, among them we were able to identify 64 probe 

sets representing 42 genes with significant relationship between gene expression and blast 

response (see Table 2 and Supplementary Table S5). Altogether, this can serve as evidence 

that these genes might be potential facilitators or inhibitors of the GC response in patients, 

thereby contributing to the particular cell context that is necessary for the treatment 

response. 

4. Correlating “regulators”, “modulators” and the blast response in vivo 

By definition, modulators on their own cannot cause GC-dependent effects but require GC 

regulation of effector(s) (also referred to as ‘regulators’). To identify combinations of 

modulators and regulators that may cooperate, we implemented an elastic net 

regularization-based approach. As a result, we identified 98 candidate genes that in 

combination might explain the blast response in the patients (62 regulators and 36 

modulators, Figure 4 and Supplementary Table S6). Using hierarchical clustering, we found 

that these genes form 4 clusters (gene sets): GC-repressed regulators (gene set 1), GC-

induced regulators (gene set 3), modulators acting as inhibitors (gene set 2) and modulators 

acting as facilitators (gene set 4). Children who failed to regulate gene sets 1 and 3, and have 
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an increased expression of inhibitors and reduced expression of facilitators form the cluster 

of worst responding patients (patient cluster 6 in Figure 4). Children regulating sets 1 and 3 

(patient clusters 1, 3 and 4) or set 3 alone (patient cluster 2) comprised the better responding 

patients, with modulator gene expression apparently influencing the extent of the blast 

response. GO-term analyses of the genes identified as regulators or modulators did, however, 

not reveal an obvious pathway that may help to understand the clinical response to GCs. 

Nevertheless, based on the clear clustering results, the expression levels or regulations of the 

genes shown in Figure 4 appear to correlate with the clinical response.  

 

Discussion 

Glucocorticoids induce cell death in cells of the lymphoid lineage and several genes have been 

suggested to provide a mechanistic explanation of GC-induced cell death [4,51,52]. These 

data were obtained from studying cell lines, patient samples or murine animal models but no 

canonical GC-induced cell death pathway in leukemia able to explain the phenomena of GC 

sensitivity and resistance could be extracted yet. This lack of a consensus pathway might be 

due to the fact that these experimental systems are very diverse, e.g., cell lines correspond to 

a single clinical case only and, in addition, do not necessarily represent the underlying disease 

as they may diverge from the clinical situation by mutations and adaptations acquired during 

the in vitro cultivation process. Similar restrictions apply to ex vivo treated primary samples, 

cells used in xenographs or other model systems. For example, GILZ (TSC22D3), a well-known 

GR target gene [53], was not identified to be strongly GC regulated in our patients because 

GILZ is already strongly expressed in the patients due to the action of endogenous corticoid 

hormones. When patient samples are then removed from the patient and kept in standard 
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media, GILZ mRNA expression values drop dramatically but are rapidly re-induced by in vitro 

re-exposure to GCs (data not shown). 

Alternatively, a consensus pathway might not exist, because GC effects are pleiotropic and 

may reduce the threshold of cell death induction, e.g., by dampening survival signals, or 

induce (untimely) differentiation, or interfere with metabolism, rather than inducing a cell 

death gene or pathway. 

In this study, we determined gene regulation by GC in vivo in children suffering from ALL and, 

thus, provide a data set that is as close as possible to the in vivo, i.e., the clinical, situation. We 

first determined which genes were regulated by GC and correlated gene expression levels 

with clinical GC-effects (blast counts). Since we aimed at correlating the clinical response, as 

measured by peripheral blast counts, with gene expression changes during the first 24h, we 

used peripheral blood counts up to 72h, rather than taking the “classical” 8d time point used 

for stratification purposes or even later time points. Taking the AUC of blast counts over 

several time points (before treatment and at several time points up to 72h) was considered 

more robust than using a single time point because it included several measurements and 

reflected the dynamic changes during therapy. Moreover, in preliminary experiments the 48h 

and 72h time points gave similar results. Thus, given the above considerations we calculated 

a normalized AUC to adjust for different initial blast counts as read out for the clinical 

response. To determine GC-regulated genes, we used a modest M-value (log2 fold change) 

cut-off at 0.7, which corresponds to 1.62-fold change in gene expression compared to 

pretreatment levels. GCs influence the expression of several thousands of genes directly and 

indirectly with various degrees of magnitude of regulation. However, for correlation analysis 
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between gene expression and clinical outcome, we used the whole data set without an M-

value cut off to also test weakly regulated genes for their potential role in GC effects in vivo. 

The data set generated in this study is unique because it contains in vivo gene expression data 

from a considerable number (46) of children with ALL during the first 24h of systemic GC 

monotherapy. Each individual expression profile is linked to clinical data from an individual 

patient, including peripheral blood GC levels and peripheral blood blast counts, which 

provides a unique resource for correlation analysis between gene expression and regulation 

and the clinical response. Furthermore, this data set is a resource to validate GC-regulated 

candidate genes, identified in any model system for their potential role in vivo.  

We have exploited this data set to analyze the in vivo mRNA response to GC in chALL cells 

and to correlate in vivo gene expression data with the clinical response to GC. Our study led 

to three important conclusions: 1. Among patients from at least 4 different types of ALL, GCs 

regulate only a limited number of common genes; 2. GCs regulate a large set of cell cycle genes 

but the extent of regulation did not correlate with a drop in blast counts; and 3. GCs do not 

induce a common set of apoptosis genes, suggesting that induction of cell death is highly cell 

type specific. 

In our opinion, the number of patients (46) is sufficient to answer the general question of 

whether the anti-leukemic effects of GC (i.e., cell cycle arrest or cell death) are correlated 

with, and perhaps caused by, common changes in the gene expression profile shared in all 

types of childhood ALL. In fact, we observed repression of mRNA of cell cycle associated 

genes throughout all subtypes. Even though, for technical reasons, we don’t know how many 

and which cells in a given patient show this response, the fact that we can extract this 

response shows that shared transcriptional responses can be observed in a heterogeneous 
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data set consisting of transcriptional responses of different populations of malignant 

lymphoblasts (T-ALL, different types of Pre-B-ALL) investigated in this study.  

For this reason, we find it remarkable that not a single gene previously suggested to be 

involved in GC-induced apoptosis could be identified as associated with the blast response in 

this study. We concluded, therefore, that there is no common transcriptional response of cell 

death genes associated with GC-induced cell death in childhood ALL. Moreover, the same 

result, i.e., suppression of cell cycle-associated genes, but no shared cell death mRNA 

response, was derived when T-ALL (9) and pre-B-ALL (37) patients were investigated 

separately. Even the most homogeneous subgroup, i.e., ETV6/RUNX1 with 15 patients, 

produced the same results, confirming our conclusion. Similar findings, i.e., very 

heterogeneous GC responses and lack of a consensus cell death initiation pathway, were 

recently obtained in a study that compared GC-regulated genes in 10 B-ALL cell lines, 3 ex 

vivo patient samples and 1 sample derived from a xenograft model [54]. 

Only when we analyzed individual patients, we could find the induction of known cell death 

regulators, such as BIM (BCL2L11). Due to the averaging affect when looking for common 

patterns in populations, these genes were lost, suggesting that each subclass and maybe even 

each patient might have to be treated as an own entity if one aims to understand the 

molecular pathway of GC-induced cell death. Similarly, the extent, diversity and magnitude 

of GC-induced gene regulation seen in individual T-ALL patients is similar to those found in 

hyperdiploid or ‘other’ preB-ALL patients (Supplementary Figure S2), but is lost when 

looking for common GC-regulated genes in this subset of ALL patients (Figure 2A).  

By asking whether the extent of gene regulation by GC correlates with the clinical response, 

none of the regulated genes showed any significant correlation. The extent of gene regulation, 
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however, did in fact correlate with the GC levels as determined by GBA, demonstrating that 

the obtained gene expression profiles did reflect the effect of GCs (data not shown). In 

contrast, the GC-serum levels did not correlate with the clinical response, again indicating 

that the extent of gene regulation by GCs is not correlated with the clinical response. In 

summary, comparison of gene expression and regulation by GC in chALL samples did not 

reveal genes that might explain the drop in blast counts. This might be due to the 

heterogeneity between and even within subtypes of ALL or it might be due to the fact that 

GCs regulate many genes which cooperate in cell death induction.  

Primary or secondary GC-resistance is caused by mutations in the GR or changes in GR 

expression levels but no other downstream mechanisms mediating GC resistance have been 

identified although several genes are known to control GC sensitivity. One possible 

explanation for this observation is that GCs regulate several different genes involved in 

metabolism, cell growth, differentiation, etc., to which cells respond with cell cycle arrest and 

apoptosis. To address whether the combination of GC-regulated genes (‘regulators’) in a 

certain context defined by the expression of other genes (‘modulators’) could explain the 

effect of GC in chALL, we applied elastic net regularization, which led to the definition of gene 

signatures that corresponded with the clinical outcome.  

Among the modulator genes we find CD24, USP28 and GRK5, whose expression levels 

negatively correlated with the blast response. High expression of CD24, a GPI-anchored 

receptor involved in B-cell proliferation [55], has been linked to poor prognosis in several 

tumor entities [56]. USP28 is required to maintain high levels of MYC [57], whose 

downregulation has been linked to apoptosis in leukemia [58]. Finally GRK5 is a 

serine/threonine protein kinase that, amongst other targets, phosphorylates p53 to keep it 
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inactive [59]. Thus, our data suggest that low expression levels of CD24, USP28 and GRK5 

might not only be prognostic markers but may render leukemia cells susceptible to GCs and 

possible other forms of chemotherapy. Modulator genes that were found to be positively 

correlated with the blast response include genes regulating glycosylation and translation, 

suggesting that cells expressing these genes might depend on extracellular signals and high 

translation rates, pathways that are known to be targeted by GCs. 

In the set of downregulated genes (gene set 1), we find genes involved in metabolism, e.g. 

glucose transporters, biosynthesis, e.g., ribosome formation and transcription, or mitogenic 

signaling. While good responders downregulated these genes, poor responders, such as 

patients with T-ALL, largely failed to downregulate these potentially survival promoting 

genes. Similarly, the good responders tended to increase gene set 3, which includes genes 

such as GIMAP2 [60], LXN [61], PCDH9 [62] as well as miRNA mir101-1 [63], which have all 

been implicated in adversely affecting proliferation in various malignancies. 

In summary, our effort to identify transcriptionally regulated genes that can explain the effect 

of GCs during the first week of treatment of ALL patients, suggests that GCs do not act via 

regulation of a conserved genes controlling cell death. To improve our understanding of GC-

induced cell death, it will be essential to increase the number of cases for each individual 

subtype of chALL to improve this unique dataset of in vivo GC-responses, which will finally 

help to decipher cell type specific pathways for cell death induction by GCs in vivo. 
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Figures and Figure Legends: 

Figure 1: Summary of patient characteristics 

The graphs summarize (A) the number of patients per subtype, sex, and prednisolone 

response (PGR, PPR: prednisolone good or poor responders), (B) the age distribution of the 

patients, (C) their blast response to systemic GC monotherapy (AUC, area under the curve – 

see Material and Methods), (D) and (E) the change in serum levels of active GC after 6-8h (D) 

and 24h (E) GC treatment as measured by GC bioactivity assay (GBA). Shown are box plots 

with mean values, and whiskers of 25% from all patients per subtype (color code as in panel 

A) where corresponding data were available (see Supplementary Table S1 for individual 

data). Significance values (p<0.05) between groups are indicated by an asterisk.  

Figure 2: The transcriptional in vivo response to GC 

(A) Panel A shows the number of GC-regulated probe sets after 6-8h and 24h GC 

monotherapy in all 46 patients and in the subgroups (all probe sets in Supplemental Table 

S2). 

(B) A “Volcano plot” showing the mean M values of all 46 patients GC-treated for 6-8h (M) 

and the BH adjusted p values (left scale in log10) or percent false discovery rate (right scale 

in log2). 

(C) Venn diagrams showing number of significantly regulated probe sets in the 4 subgroups 

after 6-8h (left panel) or 24h (right panel). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 20, 2020. ; https://doi.org/10.1101/2020.07.11.20148890doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20148890
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Figure 3: Hierarchical clustering of ‘direct’ GC response genes  

“Heatmap” depicting 49 genes that contain a glucocorticoid receptor binding site and are 

regulated after 6-8h of systemic GC monotherapy. A corresponding heatmap for 24h is shown 

in Supplementary Figure S3, the values for the individual genes are summarized in 

Supplementary Table S2A. 

Figure 4: Elastic Net gene selection results 

Gene is marked as “Regulator” and “Modulator” if gene regulation or gene expression were 

found to contribute to the response (AUC), respectively. For regulators, the color represents 

the average regulation in a patient from 0 to 6-8h and from 0 to 24h. For modulators, the 

color represents average adjusted gene expression in a patient (see Materials and Methods). 

GC response was measured as AUC in the first 72h of treatment.  
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Tables 
 
Table 1: Genes detected as potential effectors of GC-response by regression analysis. 
 

Gene pAUC R² Gene pAUC R² 
FAM19A4 9,70E-05 0,40 WDFY1 0,0298 0,26 

CCDC69 2,30E-03 0,47 ELL3 0,0400 0,39 

ANTXR1 5,58E-03 0,33 IQCK 0,0400 0,41 

LRRC34 7,12E-03 0,34 ERBB4 0,0400 0,27 

LOC101060019 7,12E-03 0,36 CPEB4 0,0400 0,36 

CRISP2 7,12E-03 0,32 SLC26A3 0,0400 0,22 

CALCOCO2 0,0137 0,41 LPCAT4 0,0416 0,23 

ESRP1 0,0138 0,31 SERPINA1 0,0416 0,31 

NPAS2 0,0154 0,30 C6orf10 0,0423 0,24 

KCNK1 0,0166 0,30 INVS 0,0437 0,24 

ERMP1 0,0166 0,40 CALML5 0,0464 0,29 

RHBDL3 0,0180 0,24 RP11-26J3.1 0,0464 0,28 

LOC153546 0,0199 0,24 RP11-159D8.2 0,0464 0,27 

PTCRA 0,0211 0,29 LOC100506172 0,0464 0,27 

PRG4 0,0298 0,29 SLMAP 0,0495 0,25 

 
A single probe set per gene is selected with the lowest p-value for the AUC coefficient. The 

complete data set, with all genes, coefficients and p-values can be found in Supplementary 

Table S4. 
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Table 2: Genes detected as potential modulators of GC-response by regression 

analysis.  

Gene pAUC R² Gene pAUC R² 

CD24 2,78E-10 0,92 LILRA2 0,013 0,84 

CD79A 1,95E-06 0,84 INSR 0,016 0,81 

ZNF296 9,73E-06 0,85 CSRP2 0,019 0,83 

LRP10 3,29E-05 0,82 LOC284757 0,019 0,89 

CTNNA1 5,15E-05 0,87 ZFY 0,022 0,95 

CIITA 1,27E-04 0,86 UTY 0,022 0,93 

BIVM 1,48E-04 0,85 PSD3 0,024 0,91 

GRAP2 1,42E-03 0,82 TFDP2 0,025 0,83 

CYTH3 1,55E-03 0,86 IGF2BP1 0,026 0,83 

KCNN1 1,59E-03 0,91 DSC2 0,028 0,95 

GPR132 1,77E-03 0,89 WNK3 0,031 0,85 

ENPP4 2,74E-03 0,80 ASL 0,031 0,85 

POU2AF1 3,01E-03 0,83 SAMD13 0,033 0,94 

CLIC5 3,50E-03 0,86 GNG7 0,039 0,84 

EBF1 4,29E-03 0,92 MAPK13 0,039 0,82 

SH2D1A 4,52E-03 0,93 XIST 0,040 0,81 

FAM49A 6,15E-03 0,82 PRKCQ-AS1 0,042 0,83 

TSHR 6,50E-03 0,81 MYOCD 0,048 0,94 

DSC3 6,84E-03 0,90 UNC93B1 0,049 0,82 

NUCB2 8,22E-03 0,88 ZCCHC7 0,049 0,90 

HLA-DOA 0,011 0,88 ATP8A2 0,049 0,86 

 

 

A single probe set per gene is selected with the lowest p-value for the AUC coefficient. The 

complete data set, with all genes, coefficients and p-values can be found in Supplementary 

Table S5. 
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