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Abstract    

Individuals with gender dysphoria experience life-threatening distress due to incongruence between their 

gender identity and birth-assigned sex. Hormone therapy can be effective for reducing body 

incongruence, but responses vary, and there is no reliable way to predict therapeutic outcomes. We use 

clinical and MRI data before cross-sex hormone therapy as features to train a machine learning model to 

predict individuals’ post-therapy body congruence (the degree to which photos of their bodies match their 

self-identities). Twenty-five transwomen and transmen with gender dysphoria participated. The model 

significantly predicted post-therapy body congruence. This study provides evidence that hormone therapy 

efficacy can be predicted from information collected before therapy and that patterns of connectivity within 

fronto-parietal and cingulo-opercular networks may provide insights into body-brain effects of hormones, 

affecting one's sense of body congruence. Results could help identify the need for personalized therapies 

in individuals predicted to have low body-self congruence after standard therapy. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.11.20147538doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.07.11.20147538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

2 

 

Impact Statement   

Outcomes of cross-sex hormone therapy in gender dysphoria can be predicted on an individual level prior 

to initiating therapy. Multivariate neuroimaging features provided superior prediction performance over 

clinical data alone.  

Introduction     

Awareness of gender dysphoria (GD) has climbed sharply in recent years.  Issues related to self-identity, 

body image, and medical interventions in GD are challenges for the 21st century, particularly given the 

high suicide risk (Clements-Nolle et al., 2006; Maguen and Shipherd, 2010; Mueller et al., 2017; Narang 

et al., 2018) associated with the disorder. GD, in DSM-5 (American Psychiatric Association., 2013), or 

gender incongruence in ICD-11 (World Health Organization, 1992), refers to significant distress and/or 

impairment due to a feeling of incongruence between a person’s experienced gender and their birth-

assigned sex. Individuals with GD comprise a subset of those who identify as transgender (T. C. van de 

Grift et al., 2016). GD has been theorized to be a consequence of incongruence between cerebral sexual 

differentiation (Swaab, 2004) and birth-assigned sex. Therefore, GD is usually treated with cross-sex 

hormone therapy (Dhejne et al., 2016; Nguyen et al., 2018), in many cases followed by gender-affirming 

surgery (van de Grift et al., 2018). In a large proportion of individuals, these therapies reduce the sense of 

incongruence and associated dysphoria, as well as ratings of depression, suicide risk, and quality of life 

(Dhejne et al., 2016; Murad et al., 2010; Nguyen et al., 2018; Nobili et al., 2018). In a non-trivial 

proportion, however, therapy is unsuccessful as evidenced by the high heterogeneity of quality of life 

outcomes across studies  (Murad et al., 2010; Nobili et al., 2018), as well as variable improvements in 

body image (van de Grift et al., 2017).   

The medical profession currently lacks the ability to determine who will respond well to therapy 

and who will not -  a critical piece in moving towards personalized, evidence-based medicine to optimize 

clinical outcomes and efficacy of therapy. Overall there have been few studies that have examined 

predictors of clinical outcomes for cross-sex hormone or gender-affirming surgical treatments. A recent 

study of hormone and surgical treatments (van de Grift et al., 2017) found that that body dissatisfaction 
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pre-treatment predicted body dissatisfaction post-treatment (p < 0.001), but there was no predictive value 

of birth-assigned sex (p = 0.83), age (p = 0.23), or physical “passing” at admission (p = 0.50).  A study of 

surgical treatments found better outcomes were predicted by pre-treatment lower dissatisfaction with 

secondary sex characteristics (p < 0.001) and less psychopathology (p <0.028), as well as being 

homosexual (p <0.002) (defined in relationship to birth-assigned sex)(Smith et al., 2005).  

In those with GD, the primary therapy outcomes - improving congruence between one’s gender 

identity and the sex-related physical characteristics of their body, as well as associated dysphoria - are 

conscious experiences and have a prominent basis in neural function. Consequently, not only is it of 

paramount importance to be able to predict therapy response, in large part this may be predicated on the 

underlying neurobiology. 

 We recently proposed a hypothesis that GD is characterized by a functional disconnection 

between systems in the brain that process the perception of self (“self-referential”) and those that mediate 

own-body perception (Majid et al., 2019),(Manzouri et al., 2017). Self-referential systems include the 

default mode network, particularly medial prefrontal cortical regions such as the dorsal and pregenual 

anterior cingulate cortex (Northoff et al., 2006), and the salience network, particularly the insular cortex 

(Craig and (Bud) Craig, 2010), (Uddin, 2015). Involved in own-body perception are the temporoparietal 

junction (Blanke et al., 2005) and the extrastriate and fusiform body areas (Vocks et al., 2010). We 

proposed that differences in coordinated activation and connections between own-body and self-

perception networks could explain the discomfort with their bodies reported by individuals with GD (Majid 

et al., 2019),(Manzouri et al., 2017). To better understand relationships between body perception and 

gender-related self-identity, we previously designed a “body morph task” (Feusner et al., 2016), 

specifically to test the degree of incongruence between self own-body perception in relation to the body 

sex phenotype. In this task participants view their own bodies in unitards in photographs that are 

incrementally morphed with others’ bodies that are the same as, or opposite to, their birth-assigned sex. 

For each image presentation, the participant assesses to what degree the image represents him/her. We 

then determine the ratings of the “body morph index”: the perception of the degree of self, represented by 

an index calculated from ratings across all of the morphed bodies presented. The body morph index 
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provides an indication of an individual’s maximal perception of ‘self’ on a continuum from traditionally 

feminine to traditionally masculine appearances.   

Studies using the body morph task (Burke et al., 2018; Feusner et al., 2017, 2016; Kilpatrick et 

al., 2019; Majid et al., 2019) suggest that, at least in transmen, information from this task in combination 

with resting state fMRI may be an indication of self-perception pre-therapy, as well as the effects of 

hormone therapy on self-perception. Further, because the body index is calculated from multiple 

presentations of morphs toward and away from birth-assigned sex, it may be a more objective and 

precise instrument to assess body congruence compared with a subjective, self-report rating scale, e.g. 

the Transgender Congruence Scale (TCS), or qualitative reports. Therefore, in the current study we used 

the body index as our main outcome variable to quantify an individual’s body congruence.   

  In alignment with our previous studies of structural and functional brain systems in GD, we 

focused on seven brain networks as potential predictive features. These networks have shown 

differences in brain activation (Burke et al., 2019), cortical thickness (Kilpatrick et al., 2019), or in 

connectivity (Feusner et al., 2017), (Uribe et al., 2020) in transgender compared with cisgender 

individuals. In addition to the above mentioned (i) salience and (ii) default mode networks (Manzouri and 

Savic, 2019), the (iii) fronto-parietal and (iv) cingulo-opercular task control networks, including dorsal and 

pregenual anterior cingulate cortices, are implicated in the perception of self (Northoff et al., 2006). The 

(v) dorsal and (vi) ventral attention networks include the temporal parietal junction and surrounding 

cortices important in own body perception (Blanke et al., 2005). Regions within the (vii) memory retrieval 

network include midline regions of the posterior cingulate shown to be important for self-perception 

(Manzouri et al., 2017). All network-defined regions of interest (ROIs) were derived from a brain 

parcellation from Power et al., (Power et al., 2011) who partitioned the brain into functional networks 

based on resting-state connectivity data. (See Figure S1 for node locations for a priori networks.) 

For the current study, we used this knowledge of underlying biology to build a set of features 

capable of predicting therapeutic outcomes for GD individuals within a machine-learning framework. We 

focused on resting-state fMRI connectivity measures before cross-sex hormone therapy, combined with 

clinical data - pre-therapy body index ratings, body mass index (BMI), therapy duration, and sexual 
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orientation (Kinsey scores) - to train and test a penalized regression model for predicting post-hormone 

therapy body congruence, measured by the post-hormone therapy body index scores.  

 

Results 
Participants 

Twenty-five adults ages 18-50, mean years 25.2 (SD 7.8), with DSM-diagnosed GD participated in the 

study. Data from 16 transwomen (assigned male at birth) and 9 transmen (assigned female at birth) were 

combined for all analyses. See Table 1 for demographics.  

 

Body Congruence Changes  For short duration trials, body index scores changed in the direction of 

increased congruence pre- to post hormone-therapy in 18 of 25 participants (72%), see Figure S3. The 

pre-therapy mean was -10.4 (SD, 21.8); the post-therapy mean was -23.1(SD, 25.7), t24 = 3.1, p = 0.002, 

1-tailed. Similarly, for long duration trials, change in the direction of increased congruence was observed 

in 15 of 25 participants (60%). The pre-therapy mean was -11.1(SD, 33.5); the post-therapy mean was -

21.3 (SD, 31.7), t24 = 1.8, p =0.04, 1-tailed (Table 1). More-negative scores on the body index are 

indicative of greater congruence of their body with their gender identity. There were associations in a 

comparison of pre- and post-therapy values of body index scores: body index ratings for short duration 

trials (R2 = 0.41, p = 0.006) and body index ratings for long duration trials (R2 = 0.39, p = 0.008). There 

was a trend for an association between treatment duration and body index ratings after hormone therapy 

for short duration trials, (R2 = 0.11, p = 0.11), see Figure S3.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.11.20147538doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20147538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

 

 
Table 1. Demographics, clinical values and ratings of the participants (N=25). 

 Characteristic Value      SD 
P value 
T-test 

P value 
correlation 

Transwomen/Transmen  16/9     

Age  25.2   7.8   

BMI  24.1  5.5    

Kinsey scores    4.0   2.0   

Years of education  13.3   1.9    

Therapy duration (months)  14.3   5.4    

Body index pre-therapy 
short duration trials  -10.4  21.8   

Body index post-therapy 
short duration trials  -23.1 25.7 

             
p=0.002*     p<0.001+  

Body index  pre-therapy 
long duration trials  -11.1  33.5   

Body index  post-therapy 
long duration trials  -21.3  31.7 

           
p=0.040*     p<0.001+  

____________________________________________________________________________ 
* Paired one-tailed, t-test, comparing pre- versus post-hormone therapy. 
+ Correlation, comparing pre- versus post-hormone therapy.  
Negative values of the body index represent ratings toward gender (congruent with sense of self in those 
with gender dysphoria). 
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Body congruence prediction  

 

Predicting post-therapy body index ratings using LASSO machine learning regression  

For these analyses, we used functional connectivity (FC) from resting-state fMRI data either a) across all 

nodes composing an individual network or b) across all aggregate nodes composing multiple networks. 

Short-duration trials (Table 2), but not long-duration trials (Table S1), predicted post-treatment body 

congruence. Clinical data points that were also leveraged alongside the FC values in the feature set 

included pre-therapy body index ratings, sexual orientation (Kinsey scores), BMI, and time from initiation 

of therapy. See Table S6 for similar results, without considering treatment duration.  

 

Individual a priori networks 

The associations between the algorithm’s predicted post-therapy body index ratings (ŷ)  and the actual 

ratings (y) was statistically significant when using two of the seven a priori networks, the fronto-parietal 

network and the cingulo-opercular network, alongside the clinical features.  When only the clinical 

features were considered in the model, there was not an association between predicted (ŷ) and actual (y) 

body index values, R2 = 0.24, p = 0.013; however, when the model included the clinical features and the 

functional connectivity, there were associations for the fronto-parietal network, R2 = 0.52, p < 0.001 and 

for the cingulo-opercular network R2 = 0.47, p < 0.001, (Table 2, Figure 1), for Bonferroni corrected,       

pbf < 0.006. 
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Figure 1. Associations between the distributions of body index predictions and actual post-therapy values 

are shown in scatter plots. These LASSO cross-validation models used feature sets that included pre-

therapy functional connectivity from the cingulo-opercular network (Left) and the fronto-parietal network 

(Right), in addition to clinical features. Error bars are standard-errors across the 100 cross-validation 

predictions for each individual. The Bonferroni-corrected significance level is pbf  ≤ 0.006.  
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Table 2. Associations between predicted post-therapy body congruence for seven brain functional 

connectivity networks, combined with clinical features, using multivariate analysis.  

 
 

         Network 

R2  
Functional connectivity 

 and clinical features 
      
     Fronto-parietal                          0.52* 

     Cingulo-opercular 0.47* 

     Memory Retrieval  0.20 

     Salience 0.19 

     Dorsal Attention 0.09 

     Ventral Attention 0.06 

     Default Mode 0.02 

     All 7 networks 0.09 

      Exploratory post-hoc   

        Cingulo-opercular 
        & Fronto-parietal 0.33* 

________________________________________________________ 
*  for pbf  ≤ 0.006, Bonferroni-corrected significance level. Clinical features alone  
were not significant, R2  = 0.24.    
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Aggregated a priori networks 

Including all seven of the a priori networks in the model along with pre-therapy clinical features resulted in 

a lower value of R2 = 0.09, p = 0.149. However, combining the two networks (cingulo-opercular and 

fronto-parietal) that showed significant associations between predicted and actual body index ratings 

above, with clinical features, resulted in an association of R2 = 0.32, p = 0.003.  

 

Predicting post-therapy body index ratings using ridge machine learning regression  

We additionally tested predictions using ridge regression. The results when including the same clinical 

and network features were similar to those using the LASSO models, showing associations for cingulo-

opercular R2 = 0.41, p = 0.001, and fronto-parietal networks R2 = 0.32, p = 0.003, and combining the two 

networks R2 = 0.32, p = 0.003; all significant for pbf  <  0.006, Table S2. Clinical features alone were not 

associated,  R2 = 0.25, p = 0.010, (Table S2). 

 

Post Hoc prediction of pre-therapy body index ratings 

The association between the predicted pre-therapy body index ratings and actual pre-therapy ratings for 

short duration trials was not significant when using clinical features and the FC of any of our a priori 

networks.  

 

Discussion    

 

This study in individuals with gender dysphoria tested whether multivariate pattern recognition using 

neurobiological features from resting state brain connectivity along with clinical features could be used to 

predict therapeutic response to cross-hormone therapy. The goal was to predict, on an individual basis, 

the important clinical outcome of body congruence in those with gender dysphoria after hormone therapy 

by using brain functional connectivity data from a short (7.5 minute) MRI scan, BMI, and body congruence 

ratings before hormone therapy.  Multivariate connectivity in the cingulo-opercular and fronto-parietal 

networks before hormone therapy explained a high proportion of the variance in individual body 
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congruence after hormone therapy.  Clinical variables alone were not able to explain body congruence 

using the body index ratings. These findings have implications for identifying those who will benefit more 

or less from hormone therapy. Furthermore, these results support our previous finding using anatomical 

metrics (Kilpatrick et al., 2019; Manzouri and Savic, 2019), and contribute to identifying the specific brain 

networks in GD, prior to therapy, whose connectivity patterns are critical with respect to hormone therapy 

effects. 

The predictive model that we built and tested was able to explain 52% of the variance in body 

congruence subsequent to cross-hormone therapy. The predictive power of multivariate connectivity was 

substantiated by the overlapping results of LASSO and ridge machine learning algorithms, which 

converged to provide evidence that functional connectivity from cingulo-opercular and fronto-parietal 

networks can be used prior to initiation of hormone therapy to predict body congruence after hormone 

therapy.  Exploiting multivariate techniques may thus provide additional insight into the neurobiological 

bases of gender as well as body satisfaction. A recent study (Clemens et al., 2020) employed machine 

learning, based on functional connectivity, to successfully predict gender identity in four groups (trans/cis, 

women/men). Further, including treatment duration in our analyses generates an algorithm that has beta 

weights for this as a feature. Therefore, if a new person came into a clinic, entering a specific time point 

after therapy initiation, e.g. 6 mo, or 1 year, could provide an estimate of that person's body congruence 

at that time point. The algorithm that did not include treatment duration was similarly predictive (Table 

S6). 

This work can be conceived of in the context of the evolving concept of using a functional 

connectome as a “fingerprint” that is an index of highly individualized latent neural organization (Finn et 

al., 2015). This latent neural organization is linked to response tendencies, processing of stimuli, 

multisensory integration, and patterns of conscious and unconscious thinking (Finn et al., 2015). The 

most predictive networks in the current study, the fronto-parietal and cingulo-opercular networks, 

comprise important regions implicated in self-identity, self-referential thinking, as well as supporting top-

down control of executive functioning (Ww, 2007). While the fronto-parietal and cingulo-opercular 

networks are largely intraconnected and separable, they also appear to communicate, or perhaps 

compete, for control functions (Dosenbach et al., 2007). Koush et al (Koush et al., 2019) found that the 
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superior frontal gyrus (within the fronto-parietal network) modulates self-referential processes in the 

temporal parietal junction as well as affective valuation in ventromedial prefrontal cortex - which in turn is 

an important hub of the default mode network. Because in the current study the fronto-parietal and 

cingulo-opercular networks were predictive of post-therapy but not pre-therapy body congruence, these 

networks may be more specifically involved in cognitive reorganization that may occur with hormone 

treatment. Perhaps this could involve the directed control of conscious perception of body and body 

changes as they fit into one's sense of gender self-identity. If so, the pre-therapy connectivity in these 

networks may be markers of the degree that individuals' brain network organization is able to update 

one's sense of self as one's body and hormonal milieu changes. As these are cognitive control networks it 

might point to the directed control of self-referential thought processes with body self-awareness. This is 

potentially informative of the neurological underpinnings of gender identity in relation to body and 

hormonal status among transgender individuals as they transition.  

The observation that these networks that significantly predicted post-therapy body congruence 

were not also associated with pre-therapy body congruence suggests that these networks may be more 

specifically involved in cognitive reorganization occurring with hormone treatment. One speculation, for 

example, is that this may identify those individuals whose multivariate connectivity pattern may index 

better or worse ability to bring their subjective experience of their gender identity in line with the 

perception of their post-hormone bodies. 

Connectivity before hormone therapy within the fronto-parietal and cingulo-opercular was most 

predictive of body congruence for short duration trials. It is not clear why ratings of short-duration trials 

were more predictive of body congruence than ratings of long-duration trials. One possibility is that the 

longer two-second trials allow rumination that interferes with the “truer” reflexive responses required by 

the half-second trials. Related to this, some of the ratings for long duration trials may have been 

influenced by individuals’ difficulty viewing the body images for longer times because of continued 

dysphoria triggered by viewing the images, in addition to longstanding patterns of avoidance of viewing 

their bodies, leading to ratings that may have been made in a cursory way and thereby not reflecting their 

true degree of congruence. 
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The body index has been used in other studies (Burke et al., 2018; Feusner et al., 2016; 

Kilpatrick et al., 2019; Majid et al., 2019) as a metric of body congruence. Another scale measuring body 

congruence is the self-report TCS. We did not have TCS scores for most of the participants in this study 

so did not include that metric in this analysis; however, we have examined TCS scores in two ongoing 

datasets and found trends for positive associations between TCS scores and the body index in individuals 

with GD (Supporting Information). This, in addition to significant changes in the body index pre- to post-

therapy and an association between treatment duration and changes in body index (  Figure S2) lends 

support for the body index as a measure of treatment-sensitive body congruence. 

A limitation of the current study is sample size. The cross-validation approach of leaving out 20% 

of the participants for model testing reduced the likelihood of overfitting. However, larger datasets would 

provide the opportunity to split the participants into training and testing groups for a more robust 

validation. In addition, validation in fully independent test sets, ideally in different settings, would 

determine if the results may be generalizable to other populations with GD in different geographical 

locations and cultural and societal environments. Due to sample size limitations we were not able to 

consider transmen and transwomen separately in this study. Future work should do so, since a recent 

report (Majid et al., 2019) has shown that transwomen generally had lower body index ratings than 

transmen for short duration trials and transmen rated images morphed opposite to their birth-assigned 

sex slightly higher than transwomen. This is in line with other work (Tim C. van de Grift et al., 2016) that 

found transmen had a more positive body image than transwomen. Future investigations of the 

mechanisms underlying the regions within the fronto-parietal and cingulo-opercular networks that drive 

the results seen here are warranted. In addition, while the current investigation adds to evidence that 

hormone therapy may enhance body congruence in gender dysphoria, changes in gonadal steroid levels 

have been shown to affect mood and cognition (Epperson et al., 1999), (Wierckx et al., 2013).   

This study illustrates the potential for predicting hormone therapy responsiveness in individual 

patients with gender dysphoria. One goal of this research is to enhance therapy for the individual by 

providing an optimal therapy plan in terms of time and cost of therapy. Hormone therapy is expensive and 

requires years of commitment in most cases. A more immediate practical application of these results, if 

replicated, would be applying the algorithm proposed here to identify individuals for whom it may be more 
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critical to apply therapies in addition to hormones - such as gender affirming surgeries to optimize body 

congruence. This approach may also help identify those for whom standard hormone protocols are not 

expected to work as well and who may need different estrogen or androgen antagonists and/or alternate 

types or regimens of sex hormones, or no sex hormones. Further, results from the study could help us 

understand what pre-therapy brain networks may be involved in post-therapy body congruence and thus 

establish biomarkers that could potentially be used to develop novel ways of improving body congruence. 

In sum, this study contributes to understanding the neurophysiological bases of therapy in gender 

dysphoria. Insights from this research could contribute to future therapy guidelines for gender dysphoria.  

 

Materials and Methods    

Participants 

Participants were recruited in Stockholm, Sweden by the Gender Team of the Center for Andrology and 

Sexual Medicine at Karolinska University Hospital, a center specializing in the evaluation and therapy of 

individuals with gender dysphoria. Adults aged 18 to 50  who were diagnosed with Transsexualism 

based on ICD-10 diagnostic criteria (F64.0, World Health Organization, 1992) or gender dysphoria (GD) 

based on DSM-5 (American Psychiatric Association, 2013) and sought gender-affirming medical 

interventions were invited to enter the study. Participants were excluded for previous or current 

hormonal therapy, any known chromosomal or hormonal disorder, or any concurrent psychiatric disorder 

(determined by the Mini International Neuropsychiatric Interview, MINI, Sheehan(Sheehan and 

Lecrubier, 2010), neurological or other medical disorder including autism spectrum disorder, substance 

abuse, or the use of psychoactive medications. All participants provided full informed consent in 

accordance with the Karolinska Institute ethical committee (Application # Dnr 2011/281-31/4). See 

Supporting Information for details of hormone therapy.  

 

Data Acquisition 

Participants underwent an MRI scan and were evaluated with psychometric tools prior to hormonal 

therapy at session 1 (S1/pre-therapy). The participants were scanned and evaluated at session 2 
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(S2/post-therapy), on average 14 months later. We used S1 clinical measures and resting state 

functional connectivity (FC) as inputs to our machine learning algorithms to predict metrics of body 

satisfaction at S2, with the goal of determining which patients will benefit from hormone therapy -  prior 

to undergoing hormone therapy. 

 

Body Morph Task 

Details of the body morph task can be found in Burke et al. 2019 (Burke et al., 2019). Each participant 

was dressed in a tight, full-body unitard to provide an accurate representation of their body shape 

without the discomfort of being nude. Hands, feet, and head were cropped from the photos, and both 

front and side views were taken. Each participant’s picture was morphed towards those of five different 

female and five different male pictures at degree intervals of 20%, using FantaMorph Software, version 

5.0 (Abrosoft  http://www.fantamorph.com/). Eleven morph conditions resulted, ranging between -100% 

morphed completely opposite to birth-assigned sex to +100% morphed completely towards birth-

assigned sex: 0% referred to the original unmorphed own-body image. A set of 62 images (using a 

randomized order and number of repetitions of the body image morphs and unmorphed own-body 

image) were presented for two different viewing conditions (short duration=0.5s and long duration=2s ), 

totaling 128 trials. These images were presented using Presentation® version 18.1 on a laptop 

computer. Each trial consisted of the image (presented for either 0.5 or 2s) followed by a 1s response 

screen with button press options, followed by a fixation cross. Participants were instructed to respond as 

quickly as possible to the question “To what degree is this picture you?” on a 4-point scale (1: 0-25% 

“me”, 2: 25-50% “me”, 3: 50-75% “me”, and 4: 75-100% “me”). Before the task, participants engaged in a 

practice session to ensure task comprehension. The clinical data was used to extract the body index (BI) 

(Feusner et al., 2017) that was subsequently employed as a predictive feature in our machine learning 

algorithms.  

 

Demographics and Psychometrics 

Clinical metrics collected at S1 were used as features or covariates of non-interest: Kinsey (Kinsey et al., 

2003) sexual orientation score, body mass index (BMI), age, therapy duration (in months from initiation 
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of therapy) and birth-assigned sex. The predicted clinical measure was the body index score, calculated 

from the body morph task described below (Figure 2). The body morph task data were collected on a 

laptop, prior to the resting state MRI acquisition.  

 

 

 

 

Figure 2. The body morph task asks subjects to rate morphed and unmorphed own-body images. Shown 

are examples of a front view male sex-assigned-at-birth photograph morphed by 20, 40, 60, 80, and 

100% to a same and an opposite sex-assigned-at-birth photograph, denoted by positive and negative 

morph degrees, respectively. Note that 100% photographs were unaltered images of another person. The 

0% image is the unaltered, unmorphed own-body photograph of the participant.  
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To calculate the body index, we first multiplied each degree (1-4) of “self” rated for each morph 

with the degree of each morph. These weighted values were averaged for each participant across 

ratings for all images and then divided by the number of rated images, providing an average index of 

self-perception for each participant, weighted by how close or far from the actual self-photograph the 

image was morphed, and in which direction.  Positive values of the body index represent ratings toward 

birth-assigned sex (incongruent), while negative values represent ratings toward gender (congruent).   

  

MR Data Acquisition 

MRI data was acquired on a 3 Tesla MRI scanner (Discovery 3T GE-MR750, General Electric, 

Milwaukee, Wisconsin) using a 32-channel head coil. Resting-state functional MRI data were acquired 

with a gradient echo pulse sequence with: voxel size of 2.25 x 2.25 x 3 mm, TR/TE=2500/30ms, 

FOV=28.8cm, 45 interleaved axial slices, 90  ̊flip angle. Each resting-state scan totaled 7min 35 sec and 

participants were instructed to rest with eyes closed, to remain as still as possible, and not to sleep while 

the sequence was acquired. Structural data, 3D T1-weighted Spoiled Gradient Echo pulse sequence, 

were acquired with : voxel size 0.94 x 0.94 x 1 mm, TR/TE=7.91/3.06ms, TI=450ms, FOV=24 cm, 176 

axial slices, 12 ̊ flip angle.  

 

Data Analysis 

MRI analysis was performed using FEAT (fMRI Expert Analysis Tool) version 5.0.8, part of FSL (FMRIB 

Software Library http://www.fmrib.ox.ac.uk/fsl, (Jenkinson et al., 2012). Bold sequences were motion-

corrected (FMRIB linear image registration tool MCFLIRT), without spatial smoothing, and individual 

participants’ resting state data were denoised using FSL’s AROMA tool (non-aggressive denoising 

option). Functional images were registered to the T1-weighted images (FMRIB non-linear image 

registration tool, FNIRT) after brain extraction using FSL’s BET. Denoised images were then registered 

to their respective T1 images and to the MNI-152 brain for functional connectivity analysis. Two 

participants were excluded from further analyses due to head motion greater than 1.5 mm.  
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ROI Selection 

We used a functionally-defined set of ROIs (10mm diameter spheres) that have been previously mapped 

to functional networks (Power et al., 2011), (Reggente et al., 2018).  We narrowed our scope to seven a 

priori networks that covered regions and networks with functional and/or structural differences between 

cisgender and GD or transgender individuals: default mode, fronto-parietal, dorsal attention, salience, 

cingulo-opercular, memory retrieval, and ventral attention. This resulted in 264 ROIs, each of which was 

tagged with one of seven functional-network identities.   

 

ROI correlation matrices 

We collected resting-state data from each participant prior to cross-hormone therapy and used the 

denoised images to determine connectivity among the ROIs. For each participant we computed the mean 

BOLD activity within each of the ROIs at every time point (every 2.5 seconds), resulting in a time course 

of mean ROI activity. We then computed a pairwise Pearson correlation matrix for each mean time course 

resulting in 264 x 264 matrices containing the pairwise functional connectivity values (r-values) across all 

ROIs. 

  

Feature Creation 

We indexed each correlation matrix depending on network identity, extracting the lower diagonal of each 

matrix and then identifying the rows and columns corresponding to the functional connectivity across 

ROIs within a specific network. These constituted the functional connectivity (FC) feature sets. We 

included these feature sets plus clinical data, as the “hand-selected” features that we tested in the 

machine learning algorithms. See Figure 3 for a flow chart of the machine learning analysis.  Unless 

otherwise indicated, all predictions were tested for significance of p<.05 and were subjected to the 

Bonferroni method to correct for multiple comparisons, The Bonferroni-adjusted p-value, pbf  < 0.006 

(p<0.05/9), was adjusted by the seven networks in our a priori hypotheses, and two combinations of 

networks (all seven networks and the fronto-parietal and cingulo-opercular networks together).  
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Figure 3. Analysis flow chart. (A) The average resting-state activity within ROIs from seven functional 

brain networks defined by Power (30) was used to create a mean BOLD time course. Pairwise Pearson 

correlations of these time courses resulted in a functional connectivity matrix specific for each network. 

(B) The lower diagonal of each participant’s network-specific matrix was concatenated with the 

participant’s pre-therapy clinical features scores to create a feature set for that participant. (C) The 

LASSO regression model was trained on n−5 participants’ feature sets and their associated post-therapy 

body index scores and used to predict each of the left-out participant’s post-therapy body index scores. 

Left-out participants are denoted as highlighted feature sets (only three shown here). This process was 

repeated until all participants had been left out in a fold of the cross-validation and had been assigned a 

predicted post-therapy body index score. We correlated the array of predicted values (ŷ) with the actual 

values (y), resulting in Pearson’s R2, a measure of our model’s feature-dependent ability to capture the 
outcome variable variance across participants. Note that due to our participant sample size (n = 25), one 
fold of the cross-validation left out five participants. 
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Machine learning regression analysis predicting post-therapy body index using  absolute 

shrinkage and selection operator (LASSO) 

We built a LASSO (Tibshirani, 1996)3, (Reggente et al., 2018) regression model on n-5 (20%) participants 

using their feature sets. LASSO was chosen as the regression model of choice due to its ability to handle 

large feature sets, impose a self-directed feature selection, and output continuous variables. Using each 

trained model’s intercept term and beta coefficients, we calculated a predicted measure of interest from 

each left-out participant’s feature set. After obtaining a prediction for each participant (ŷ), we correlated 

the array of predicted values with the actual values (y) to quantify the model’s  feature-dependent ability 

to capture the variance in clinical measures across participants.  

Clinical features included pre-therapy body index rating, therapy duration, BMI, and Kinsey 

scores. Age was treated as a covariate of non-interest and iteratively regressed out of each feature in the 

feature set prior to classification. We did not include birth-assigned sex as a covariate, as it is considered 

within the body index ratings.  For predicting body index for short duration trials, we used the pre-therapy 

body index ratings for short duration trials as a feature, likewise, for predicting pre-therapy body index for 

long duration trials, we used the body index ratings for long duration trials as a feature. In a preliminary 

analysis, we examined the effect of therapy duration in our analyses by including therapy duration either 

as a covariate or as a clinical feature. For six of the seven networks, using therapy duration as a feature 

was more predictive than using therapy duration as a covariate (Table S3); therefore, results reported for 

body index are for therapy duration as a feature (Table 2).   

 

Machine learning prediction of post-therapy body index using ridge regression  

To provide a robustness check on our LASSO predictions, we re-ran the above machine learning analysis 

using ridge (Marquardt and Snee, 1975) regression. Ridge regression is appropriate when the predictor 

features potentially have collinearity. (See Table S5, also see Table S4 for additional post-hoc tests of 

robustness.) 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.11.20147538doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20147538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

21 

 

 

Acknowledgments 

This work was supported by the Swedish Science Council (Dnr 200 7-3107 to I.S) and the National 

Institutes of Health Eunice Kennedy Shriver National Institute of Child Health and Human Development 

(1R01HD087712 to I.S. and J.F.)  We thank Natalie Rotstein for assistance with data validation.  

 

References 

American Psychiatric Association. 2013. Diagnostic and statistical manual of mental disorders: DSM-5, 

5th ed. Washington, DC: American Psychiatric Association. 

American Psychiatric Association. 2013. Diagnostic and Statistical Manual of Mental Disorders (DSM-

5®). American Psychiatric Pub. 

Blanke O, Mohr C, Michel CM, Pascual-Leone A, Brugger P, Seeck M, Landis T, Thut G. 2005. Linking 

out-of-body experience and self processing to mental own-body imagery at the temporoparietal 

junction. J Neurosci 25:550–557. 

Burke SM, Majid DSA, Manzouri AH, Moody T, Feusner JD, Savic I. 2019. Sex differences in own and 

other body perception. Hum Brain Mapp 40:474–488. 

Burke SM, Manzouri AH, Dhejne C, Bergström K, Arver S, Feusner JD, Savic-Berglund I. 2018. 

Testosterone Effects on the Brain in Transgender Men. Cereb Cortex 28:1582–1596. 

Clemens B, Derntl B, Smith E, Junger J, Neulen J, Mingoia G, Schneider F, Abel T, Bzdok D, Habel U. 

2020. Predictive Pattern Classification Can Distinguish Gender Identity Subtypes from Behavior and 

Brain Imaging. Cereb Cortex 30:2755–2765. 

Clements-Nolle K, Marx R, Katz M. 2006. Attempted suicide among transgender persons: The influence 

of gender-based discrimination and victimization. J Homosex 51:53–69. 

Craig AD (bud), (Bud) Craig AD. 2010. The sentient self. Brain Struct Funct 214:563–577. 

Dhejne C, Van Vlerken R, Heylens G, Arcelus J. 2016. Mental health and gender dysphoria: A review of 

the literature. Int Rev Psychiatry 28:44–57. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.11.20147538doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20147538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

22 

 

Dosenbach NUF, Fair DA, Miezin FM, Cohen AL, Wenger KK, Dosenbach RAT, Fox MD, Snyder AZ, 

Vincent JL, Raichle ME, Schlaggar BL, Petersen SE. 2007. Distinct brain networks for adaptive and 

stable task control in humans. Proc Natl Acad Sci U S A 104:11073–11078. 

Epperson CN, Wisner KL, Yamamoto B. 1999. Gonadal steroids in the treatment of mood disorders. 

Psychosom Med 61:676–697. 

Feusner JD, Dervisic J, Kosidou K, Dhejne C, Bookheimer S, Savic I. 2016. Female-to-Male Transsexual 

Individuals Demonstrate Different Own Body Identification. Arch Sex Behav 45:525–536. 

Feusner JD, Lidström A, Moody TD, Dhejne C, Bookheimer SY, Savic I. 2017. Intrinsic network 

connectivity and own body perception in gender dysphoria. Brain Imaging Behav 11:964–976. 

Finn ES, Shen X, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, Constable RT. 

2015. Functional connectome fingerprinting: identifying individuals using patterns of brain 

connectivity. Nat Neurosci 18:1664–1671. 

Grift TC van de, van de Grift TC, Cohen-Kettenis PT, Elaut E, De Cuypere G, Richter-Appelt H, 

Haraldsen IR, Kreukels BPC. 2016. A network analysis of body satisfaction of people with gender 

dysphoria. Body Image. doi:10.1016/j.bodyim.2016.04.002 

Grift TC van de, van de Grift TC, Cohen-Kettenis PT, Steensma TD, De Cuypere G, Richter-Appelt H, 

Haraldsen IRH, Dikmans REG, Cerwenka SC, Kreukels BPC. 2016. Body Satisfaction and Physical 

Appearance in Gender Dysphoria. Archives of Sexual Behavior. doi:10.1007/s10508-015-0614-1 

Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. 2012. Fsl. Neuroimage 62:782–790. 

Kilpatrick LA, Holmberg M, Manzouri A, Savic I. 2019. Cross sex hormone treatment is linked with a 

reversal of cerebral patterns associated with gender dysphoria to the baseline of cisgender controls. 

Eur J Neurosci 50:3269–3281. 

Kinsey AC, Pomeroy WR, Martin CE. 2003. Sexual Behavior in the Human Male. Am J Public Health 

93:894–898. 

Koush Y, Pichon S, Eickhoff SB, Van De Ville D, Vuilleumier P, Scharnowski F. 2019. Brain networks for 

engaging oneself in positive-social emotion regulation. NeuroImage. 

doi:10.1016/j.neuroimage.2018.12.049 

Maguen S, Shipherd JC. 2010. Suicide risk among transgender individuals. Psychology & Sexuality 1:34–

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.11.20147538doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20147538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

23 

 

43. 

Majid DSA, Burke SM, Manzouri A, Moody TD, Dhejne C, Feusner JD, Savic I. 2019. Neural Systems for 

Own-body Processing Align with Gender Identity Rather Than Birth-assigned Sex. Cereb Cortex. 

doi:10.1093/cercor/bhz282 

Manzouri A, Kosidou K, Savic I. 2017. Anatomical and Functional Findings in Female-to-Male 

Transsexuals: Testing a New Hypothesis. Cereb Cortex 27:998–1010. 

Manzouri A, Savic I. 2019. Possible Neurobiological Underpinnings of Homosexuality and Gender 

Dysphoria. Cereb Cortex 29:2084–2101. 

Marquardt DW, Snee RD. 1975. Ridge Regression in Practice. Am Stat 29:3–20. 

Mueller SC, De Cuypere G, T’Sjoen G. 2017. Transgender Research in the 21st Century: A Selective 

Critical Review From a Neurocognitive Perspective. Am J Psychiatry 174:1155–1162. 

Murad MH, Elamin MB, Garcia MZ, Mullan RJ, Murad A, Erwin PJ, Montori VM. 2010. Hormonal therapy 

and sex reassignment: a systematic review and meta-analysis of quality of life and psychosocial 

outcomes. Clinical Endocrinology. doi:10.1111/j.1365-2265.2009.03625.x 

Narang P, Sarai SK, Aldrin S, Lippmann S. 2018. Suicide Among Transgender and Gender-

Nonconforming People. Prim Care Companion CNS Disord 20. doi:10.4088/PCC.18nr02273 

Nguyen HB, Chavez AM, Lipner E, Hantsoo L, Kornfield SL, Davies RD, Neill Epperson C. 2018. Gender-

Affirming Hormone Use in Transgender Individuals: Impact on Behavioral Health and Cognition. 

Current Psychiatry Reports. doi:10.1007/s11920-018-0973-0 

Nobili A, Glazebrook C, Arcelus J. 2018. Quality of life of treatment-seeking transgender adults: A 

systematic review and meta-analysis. Rev Endocr Metab Disord 19:199–220. 

Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J. 2006. Self-referential 

processing in our brain--a meta-analysis of imaging studies on the self. Neuroimage 31:440–457. 

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA, Vogel AC, Laumann TO, Miezin FM, 

Schlaggar BL, Petersen SE. 2011. Functional network organization of the human brain. Neuron 

72:665–678. 

Reggente N, Moody TD, Morfini F, Sheen C, Rissman J, O’Neill J, Feusner JD. 2018. Multivariate resting-

state functional connectivity predicts response to cognitive behavioral therapy in obsessive–

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.11.20147538doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20147538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

24 

 

compulsive disorder. Proc Natl Acad Sci U S A 115:2222–2227. 

Sheehan D, Lecrubier Y. 2010. Mini international neuropsychiatric interview version 6.0 (MINI 6.0)--The 

international standard (MINI 6.0). 

Smith YLS, Van Goozen SHM, Kuiper AJ, Cohen-Kettenis PT. 2005. Sex reassignment: outcomes and 

predictors of treatment for adolescent and adult transsexuals. Psychol Med 35:89–99. 

Swaab DF. 2004. Sexual differentiation of the human brain: relevance for gender identity, transsexualism 

and sexual orientation. Gynecological Endocrinology. doi:10.1080/09513590400018231 

Tibshirani R. 1996. Regression Shrinkage and Selection Via the Lasso. J R Stat Soc Series B Stat 

Methodol 58:267–288. 

Uddin LQ. 2015. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 

16:55–61. 

Uribe C, Junque C, Gómez-Gil E, Abos A, Mueller SC, Guillamon A. 2020. Brain network interactions in 

transgender individuals with gender incongruence. Neuroimage 211:116613. 

van de Grift TC, Elaut E, Cerwenka SC, Cohen-Kettenis PT, De Cuypere G, Richter-Appelt H, Kreukels 

BPC. 2017. Effects of Medical Interventions on Gender Dysphoria and Body Image: A Follow-Up 

Study. Psychosom Med 79:815–823. 

van de Grift TC, Elaut E, Cerwenka SC, Cohen-Kettenis PT, Kreukels BPC. 2018. Surgical Satisfaction, 

Quality of Life, and Their Association After Gender-Affirming Surgery: A Follow-up Study. J Sex 

Marital Ther 44:138–148. 

Vocks S, Busch M, Grönemeyer D, Schulte D, Herpertz S, Suchan B. 2010. Differential neuronal 

responses to the self and others in the extrastriate body area and the fusiform body area. Cogn 

Affect Behav Neurosci 10:422–429. 

Wierckx K, Elaut E, Declercq E, Heylens G, De Cuypere G, Taes Y, Kaufman JM, T’Sjoen G. 2013. 

Prevalence of cardiovascular disease and cancer during cross-sex hormone therapy in a large cohort 

of trans persons: a case–control study. European Journal of Endocrinology. doi:10.1530/eje-13-0493 

World Health Organization. 1992. The ICD-10 classification of mental and behavioural disorders : clinical 

descriptions and diagnostic guidelines. World Health Organization. 

Ww S. 2007. Menon V. Schatzberg AF. Keller J. Glover GH. Kenna H. Reiss AL. Greicius MD. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.11.20147538doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20147538
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

 

Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 

27:2349–2356. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.11.20147538doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.11.20147538
http://creativecommons.org/licenses/by-nc-nd/4.0/

