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Abstract 10 

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-11 

CoV-2) requires a significant, coordinated public health response.  Assessing case density and spread of 12 

infection is critical and relies largely on clinical testing data.  However, clinical testing suffers from 13 

known limitations, including test availability and a bias towards enumerating only symptomatic 14 

individuals. Wastewater-based epidemiology (WBE) has gained widespread support as a potential 15 

complement to clinical testing for assessing COVID-19 infections at the community scale. The efficacy of 16 

WBE hinges on the ability to accurately characterize SARS-CoV-2 concentrations in wastewater.  To date, 17 

a variety of sampling schemes have been used without consensus around the appropriateness of grab or 18 

composite sampling.  Here we address a key WBE knowledge gap by examining the variability of SARS-19 

CoV-2 concentrations in wastewater grab samples collected every 2 hours for 72 hours compared with 20 
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corresponding 24-hour flow-weighted composite samples.  Results show relatively low variability (mean 21 

for all assays = 741 copies 100 mL-1, standard deviation = 508 copies 100 mL-1) for grab sample 22 

concentrations, and good agreement between most grab samples and their respective composite (mean 23 

deviation from composite = 159 copies 100 mL-1).  When SARS-CoV-2 concentrations are used to 24 

calculate viral load, the discrepancy between grabs (log10 difference = 12.0) or a grab and its associated 25 

composite (log10 difference = 11.8) are amplified.  A similar effect is seen when estimating carrier 26 

prevalence in a catchment population with median estimates based on grabs ranging 62-1853 carriers. 27 

Findings suggest that grab samples may be sufficient to characterize SARS-CoV-2 concentrations, but 28 

additional calculations using these data may be sensitive to grab sample variability and warrant the use 29 

of flow-weighted composite sampling.  These data inform future WBE work by helping determine the 30 

most appropriate sampling scheme and facilitate sharing of datasets between studies via consistent 31 

methodology. 32 

 33 

 34 

 35 

Introduction 36 

The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 37 

escalated to a global pandemic.  To date (7-1-2020) there are over 10.5 million confirmed cases and 38 

500,000 deaths world-wide attributed to COVID-19, the disease caused by SARS-CoV-2. 1 Understanding 39 

the extent and density of infection is critical in effectively responding to this pandemic.  However, due to 40 

limited diagnostic testing2,3 and inconsistent reporting of results4, generating reliable COVID-19 41 
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prevalence estimates in a community remains challenging.  This is compounded by asymptomatic 42 

disease transmission, the rate of which is still unclear5.   43 

Wastewater-based epidemiology (WBE) represents a promising complement to clinical testing as a 44 

means of assessing COVID-19 trends and prevalence within a community.  WBE has been used to 45 

investigate occurrence and trends for a variety of chemical (pharmaceuticals6, illicit drugs7) and 46 

biological (pathogens8, antibiotic resistance genes9) constituents at the community-scale by measuring 47 

biomarkers in wastewater.  Unlike clinical testing data, which is susceptible to biases such as test 48 

availability and the inability to detect asymptomatic individuals, WBE yields a community-scale viral load 49 

estimate for a wastewater treatment plant catchment population.  Considering these benefits, there has 50 

been much support for WBE as a complementary strategy to clinical testing in response to the SARS-51 

CoV-2 pandemic.9,10, 11 52 

The use of WBE in a variety of geographically and demographically disparate areas creates the 53 

opportunity to coordinate efforts, assimilate data, and assess SARS-CoV-2 trends on a larger scale than 54 

any single WBE study could alone.  For this broad, integrated approach to succeed many knowledge 55 

gaps must first be addressed for appropriate data comparisons. Such areas include sample collection, 56 

preservation, concentration, and quantification in a complex and challenging wastewater 57 

matrix.9,12,13,14,15 A fundamental study design knowledge gap considers how to collect a sample that is 58 

appropriately representative of SARS-CoV-2 concentrations in wastewater.  Given that influent flows at 59 

wastewater facilities fluctuate continually it is important to understand if these variations in flow 60 

correspond to significant virus concentration variation.  Specifically, do grab samples sufficiently 61 

characterize wastewater SARS-CoV-2 concentrations, or are flow-weighted composites necessary?  62 

We address this knowledge gap via a comparison of grab and 24-hr flow-weighted composite samples 63 

over a 3-day intensive time series. The goal was to characterize SARS-CoV-2 variability in grab samples 64 
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collected every 2hrs for 72 hours and compare this variability with 3 flow-weighted composites collected 65 

over the same time frame. Specific objectives are; 1) to examine the variability of reverse transcription 66 

droplet digital PCR (RT-ddPCR) quantified SARS-CoV-2 concentrations, 2) compare instantaneous loading 67 

calculations from grab sample concentrations with loading calculations using respective 24-hr flow-68 

weighted composite concentrations, and 3) compare instantaneous carrier prevalence estimates from 69 

grab sample concentrations with carrier prevalence estimates using respective 24-hr flow-weighted 70 

composite concentrations. 71 

This work will aid future WBE studies in determining the most appropriate sampling scheme. Increasing 72 

the chance of accurately characterizing SARS-CoV-2 concentrations in wastewater allows WBE work to 73 

provide the best available data for use in subsequent calculations, such as estimates of carrier 74 

prevalence or epidemiological models.    75 

 76 

Methods 77 

Wastewater Treatment Facility  78 

Army Base Treatment Plant (ABTP) is in Norfolk, VA, and is operated by Hampton Roads Sanitation 79 

District (HRSD). It services an area of approximately 21 square miles, which is dominated by residential 80 

development, a port, and a large military base. The treatment plant serves a population of 81 

approximately 78,322, however this figure can fluctuate considerably due to the arrival and departure of 82 

military vessels and cargo ships.   A further consideration is that the population of a catchment can vary 83 

based on redirection of flow throughout the collection system, a practice that is common for 84 

wastewater utilities. 85 
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For ABTP, pretreatment involves coarse screening via bar screens. Residual suspended solids, fats, oils, 86 

and grease are removed during a primary settling step. Secondary treatment consists of a 5-stage 87 

Bardenpho system and secondary settling.  Secondary clarifier effluent is disinfected with sodium 88 

hypochlorite and dechlorinated via sodium bisulfite prior to discharge.  ABTP has a design flow of 18 89 

MGD with a peak capacity of 36 MGD, and average daily flows ranging 10-11 MGD. Over the three-day 90 

study period, the average daily flow was 12.46 MGD.  91 

Study Design 92 

Samples were aseptically collected over a 72-hour period (5/1/2020 10:00 EST– 5/4/2020 10:00 EST) 93 

from the ABTP Raw Water Influent (RWI) sample point prior to pretreatment. Uniform 1L grab samples 94 

were collected every two hours using an ISCO Avalanche portable refrigerated sampler (Teledyne ISCO, 95 

Lincoln, NE) which kept the samples at approximately 4°C. For each 24-hour period, a flow-weighted 96 

composite sample was collected concurrently with the sequentially collected grabs using an ISCO 3710 97 

Portable sampler (Teledyne ISCO). The composite sampler was paced to take a 150mL aliquot every 98 

230,000 gallons, with all aliquots collected in a sterile 15L carboy in a sampler base filled with ice that 99 

was replenished daily. Final Effluent (FNE) samples were collected aseptically after the 30-minute 100 

chlorine contact point between mid-morning and mid-day of each collection. Each set of 24-hour 101 

composite samples were transported on ice from the sampling site to the HRSD Central Environmental 102 

Laboratory (within 4 hours) where samples were processed upon arrival.  103 

Sample Processing 104 

Electronegative filtration, following the method in Worley-Morse et al14, was used to concentrate SARS-105 

CoV-2 from 50 mL of raw wastewater and 200 mL of treated final effluent. Filters were stored in a -80°C 106 

freezer immediately after concentration until RNA extraction using the NucliSENS easyMag (bioMerieux 107 

Inc., Durham, NC, USA) modified protocol described in Worley-Morse et al. RT-ddPCR was used to 108 
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enumerate SARS-CoV-2 N1, N2, and N3 assays16 and the hepatitis G inhibition control on a Bio-Rad 109 

QX200 (Bio-Rad, Hercules, CA, USA) using the protocol in Gonzalez et al.17 110 

Estimating SARS-CoV-2 Infections in the Sewage Collection System 111 

A promising extension of WBE is calculating prevalence estimates to better gauge the number of truly 112 

infected individuals (both symptomatic and asymptomatic). This approach has been used in several 113 

recent SARS-CoV-2 publications.11,18,19 The number of SARS-CoV-2 infected carriers for the ABTP service 114 

area were estimated using two values—viral load per person and total viral load to a treatment facility.  115 

For the purpose of viral load and carrier prevalence estimates, only the N2 assay was used. Equation 1 116 

was used to calculate the viral load per person (the total amount of virus shed by an infected person via 117 

feces). The 90th percentile concentration of SARS-CoV-2 in stool reported from Wölfel et al.20 was used 118 

was variable A in equation 1. A triangular distribution (minimum= 51, likeliest= 128, maximum= 796) for 119 

the fecal mass per person per day, variable B, was fitted from Rose et al.21 This distribution was sampled 120 

during each of 10,000 Monte Carlo simulations conducted using Oracle Crystal Ball (Oracle, Berkshire, 121 

UK). 122 

Equation 1. 123 

 124 

where; 125 

𝐿𝑜𝑎𝑑𝑖𝑛𝑑𝑖𝑣 = Viral load per person (copies day-1) 126 

𝐶𝑖𝑛𝑑𝑖𝑣 = concentration of SARS-CoV-2 virus in feces (copies g-1) 127 

𝑚 = typical mass of stool produced per person per day (g day-1) 128 

𝐿𝑜𝑎𝑑𝑖𝑛𝑑𝑖𝑣  = 𝐶𝑖𝑛𝑑𝑖𝑣 × 𝑚 
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Total viral load to each WWTP during each sampling event was calculated using equation 2. In order to 129 

quantify any potential carriers in the population the N2 assay concentration for each sample was used 130 

as the 𝐶𝑊𝑊𝑇𝑃 value in Equation 2.  131 

Equation 2.  132 

 133 

where; 134 

𝐿𝑜𝑎𝑑𝑊𝑊𝑇𝑃 = Viral load to WWTP (copies day-1) 135 

𝐶𝑊𝑊𝑇𝑃 = concentration of SARS-CoV-2 in wastewater samples (copies 100 mL-1) 136 

𝑄 = Plant flow (MGD, million gal day-1) 137 

𝑓 = Conversion factor between 100 mL and MG 138 

 139 

Prevalence estimates were calculated using equation 3, which incorporated results from equations 1 140 

and 2 for each sampling event.  There is a possibility of asymptomatic carriers, those within higher age 141 

groups, or individuals with co-morbidities shedding a higher range of viruses per stool event. However, 142 

this cannot be accounted for in the population within the WWTP service area since shedding rates for 143 

specific populations are unknown. Subsequently, attempting to adjust the population or the shedding 144 

rates for these differences would require the use of data from other viruses, and would potentially 145 

impart confounding factors in the estimate.  146 

Equation 3. 147 

 148 

𝐿𝑜𝑎𝑑𝑊𝑊𝑇𝑃  =  𝐶𝑊𝑊𝑇𝑃 × 𝑄 × 𝑓 

 

𝑰 =
𝐿𝑜𝑎𝑑𝑊𝑊𝑇𝑃

𝐿𝑜𝑎𝑑𝑖𝑛𝑑𝑖𝑣
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 where; 149 

 𝐼 = Estimated proportion of WWTP service area infected 150 

 151 

Data Analysis and Visualization 152 

Data analysis and visualization was conducted using R Statistical Computing Software version 3.6.3.22  153 

The dplyr23 and tidyr24 packages were primarily used  for data manipulation and the ggplot2 package25 154 

was used for all plotting.  The code used to create each figure can be found at 155 

https://github.com/mkc9953/WW_EPI_grab_composite_study. 156 

 157 

Results and Discussion 158 

Three large wastewater facilities collect and treat portions of the city of Norfolk’s wastewater. The ABTP 159 

currently receives wastewater from approximately 36% of the city’s population. During the study period 160 

there was 211, 211, and 239 clinically confirmed COVID-19 cases in the entire city (for days 1, 2, and 3, 161 

respectively). Gonzalez et al.17 has been monitoring this facility, amongst others, weekly since March 9th, 162 

2020. Detections of SARS-CoV-2 began on April 6, 2020—4 weeks prior to this study.  163 

Influent Flow and Rainfall 164 

Hourly wastewater influent flow during the study period ranged from 7.16 to 16.28 million gallons per 165 

day (MGD), with a mean flow of 12.3 MGD and standard deviation of 2.73 MGD.  A description of flow 166 

characteristics by sample day can be found in Table 1.  Two days prior to the first sampling event there 167 

was a storm generating approximately 1.0 inches of rainfall.  A brief increase in flow was observed, likely 168 

due to stormwater infiltrating the sewer collection system.  Influent flow at the treatment facility 169 
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returned to typical dry weather values in approximately 6hrs and remained at levels typical of dry 170 

weather throughout the study.   No rainfall occurred in the vicinity of the treatment facility during the 171 

study period.  The treatment facility serves several low-lying areas that are subject to inundation during 172 

moderate high tide events, causing saltwater intrusion into sewer collection system. Treatment plant 173 

influent conductivity, used as an indicator of seawater, begins to increase significantly following tidal 174 

levels greater than 3.5’ Mean Lower Low Water (MLLW). High tides during the period sampled were 3.4’ 175 

MLLW or less based on the Sewell’s Point Tide Gage operated by NOAA.  176 

SARS-CoV-2 Concentration and Variability 177 

All three assays used for this study (N1, N2, N3) yielded positive results for every raw wastewater 178 

influent sample. All three final effluent samples were below the limit of detection (LOD = 58 copies/100 179 

mL).  For composite samples, concentrations of all assays ranged from 580 – 1380 copies 100 mL-1, with 180 

a mean of 900 and standard deviation of 215 copies 100 mL-1, showing good agreement across the three 181 

days (Figure 1).  Similarly, composite samples showed relatively low variability within (largest range = 182 

490 copies 100 mL-1) and between assays (largest range = 580 copies 100 mL-1) for a given day (Table 2).  183 

Grab sample concentration variability was also low, ranging from 25 to 1100 copies 100 mL-1 for all 184 

samples collected (Table 3) with a coefficient of variation (CV) of 68.5%. Grab sample concentrations 185 

showed good agreement across assays as means, minima, and maxima were each in the same 186 

respective order of magnitude (Table 3). Examining the association between each possible pair of assays 187 

showed a positive monotonic relationship for all combinations, with Pearson coefficients ranging 0.72-188 

0.90 (Figure 2). Comparing results by day for all assays showed similarly low variability with the greatest 189 

difference in any two daily mean concentrations of 114.8 copies 100 mL-1 (Table 3).  190 

Grab sample concentrations showed good agreement with corresponding composite concentrations 191 

(Figure 1), with a mean deviation of 159 copies 100 mL-1 between a grab sample and its associated 192 
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composite. Over half of the total number of grab samples (59/108) had concentrations which were 193 

within 50% of their respective composite.  Interestingly, the discrepancy between grab and composite 194 

concentrations, regardless of magnitude, often (75/108) showed grabs at lower concentration than the 195 

corresponding composite (Figure 1). These drops in virus concentration were not concurrent with times 196 

of lowest influent flow but seemed to lag by approximately 4-6hrs (Figure 1).  This pattern may be 197 

influenced by the number and density of COVID-19 infections in the region.  In a case with few infected 198 

individuals the viral signal would be sporadic in the daily flow.  Conversely, if a catchment area were 199 

highly impacted by infections, the virus signal in wastewater would be less variable and minimally 200 

influenced by changes in flow. The ABTP catchment could have a high enough infection density to 201 

consistently detect a wastewater signal, but not so ubiquitous that the signal is entirely unimpacted by 202 

diurnal cycles in flow.  Considering this, grab samples should be collected at times that avoid early 203 

morning flow minima and the subsequent 4-6hrs dips in viral concentration, in order to avoid 204 

underestimating viral load to the treatment facility. 205 

 206 

Viral Load and Carrier Prevalence  207 

Wastewater N2 SARS-CoV-2 concentrations were used to calculate viral load for grab and composite 208 

samples (Figure 3). Viral loads calculated using composite sample values showed low variability between 209 

days, ranging from 4.2*1011 – 6.3*1011. Variability in instantaneous load derived using grab sample 210 

concentrations was greater, ranging from 3.7*1010 – 1.11*1012, with a mean of 4.1*1011 and standard 211 

deviation of 2.8*1011.  While the variability in grab sample concentration (CV=68.5%) and viral load 212 

calculated from grab sample concentration (CV=69.3%) are expectedly similar, the magnitude of any 213 

given deviation in viral load is increased due to the way load is derived (Equation 2).  For example, the 214 

greatest difference in concentration between a grab and composite sample, within a common assay, 215 
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was 1340 copies 100 mL-1.  When viral load is calculated using this same grab and composite the 216 

difference between the two types of sample is 2.8*1011 copies 100 mL-1.  For all load calculations using 217 

grab sample values, the mean deviation from the corresponding composite value was 8.4 *1010, or 218 

14.9%. Data presented here demonstrate the potentially large disparity in viral load values calculated 219 

using SARS-CoV-2 concentrations given a difference in only 2hrs between grab sample collection times.  220 

For this study grab samples more often had lower concentrations than the corresponding composite, 221 

thus there is a higher likelihood of underestimating concentrations when collecting grabs.  Viral 222 

concentration data which are biased low will affect downstream calculations made using these data, 223 

such as estimates of viral load and carrier prevalence in the catchment population.   If these metrics are 224 

used to inform a public health response it is critical that they do not systematically underestimate the 225 

extent of COVID-19 infections in the community.  226 

 227 

SAR-CoV-2 concentrations in wastewater can also be used to estimate the prevalence of carriers in a 228 

catchment population (Equation 3).  Currently there is considerable uncertainty around the viral 229 

shedding rate in feces of people infected with COVID-19. A widely reference paper by Wölfel et al. 230 

examining nine clinical cases found concentrations of SARS-CoV-2 viral RNA in stool  ranging from below 231 

the limit of detection to 7.1*108 copies 100 mL-1.20   Furthermore, a sensitivity analysis of previous 232 

carrier prevalence model iterations highlights the high susceptibility to the shedding rate variability, 233 

increasing the error associated with resulting estimates.  However, as viral shedding rate is more fully 234 

described, carrier estimates could become increasingly important, given the potential public health 235 

value in generating a reliable estimate of infected people in a catchment.  Results of this study highlight 236 

the importance of collecting a sample that is representative of SARS-CoV-2 concentrations in 237 

wastewater, as subsequent viral load and carrier estimates are based on this value.  As with viral 238 
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concentration and viral load data, variability in was low in carrier estimates for composite samples with 239 

median values of 703, 1057, 709 copies 100 mL-1 (Figure 3).  When including the 10th and 90th percentile 240 

results, estimates ranged from 365 to 2474 carriers in the catchment for composite samples.  Carrier 241 

estimates based on grab samples were more variable, with an overall range of 32 to 4336 carriers, and 242 

median estimates ranging from 62-1853 carriers.   The median carrier estimate from 24 of 36 grab 243 

samples fell within the 10th-90th percentile range for the corresponding composite.  Of the 12 grabs for 244 

which the median carrier estimate was outside of the composite estimate 10th – 90th range, 11 were 245 

below the composite estimate range and 4 showed no overlap between the grab and composite (10 – 246 

90th percentile) ranges.  Because these calculations are based on viral concentration it was expected that 247 

estimates from grabs would more often be lower than estimates made using composite concentrations.  248 

For these data, the potential underestimation of median carrier prevalence due to collecting a grab 249 

sample rather than a composite could be as large as 995 people, based on the minimum median carrier 250 

estimate (62) and corresponding composite estimate (1057) (Figure 3). That discrepancy in estimated 251 

carriers has practical implications if WBE is used as a component of the public health response to the 252 

SARS-CoV-2 pandemic.  Choosing an appropriate sampling scheme can minimize potential bias 253 

introduced into these estimates by accurately characterizing viral concentration.  If replication in other 254 

studies shows that grab samples reliably underestimate viral concentration, then either composite 255 

sampling or grab samples targeting the expected peak viral concentration should be employed to reduce 256 

the likelihood of generating data which are biased low.  257 

 258 

Limitations and Future Work 259 

One important consideration for using WBE to examine viral trends during a pandemic is the 260 

heterogenous and dynamic nature of the spread of infections.  Epidemiological work has shown that, 261 
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particularly during the early stages of pathogen spread, rates of infection are not uniform but rather 262 

clustered in localized hotspots often driven by importation of cases26, and the disproportionate effects 263 

of “superspreading” events27.   Interpreting WBE data is also confounded by transient use of the 264 

sewerage system from people who may be infected by do not live in the catchment area, e.g. tourists or 265 

people who commute to a different area for work.  Restrictions such as stay-at-home orders and the 266 

subsequent reopening of cities add further complexity to the characteristics of viral spread in a 267 

community.   As a result, extrapolation of findings from one catchment to the surrounding region are 268 

not often appropriate.  Therefore, data and patterns presented here pertain to this specific catchment 269 

over a 3-day period, and do not easily extend to other areas or timeframes.  To address this, we suggest 270 

a surveillance approach to WBE, monitoring multiple catchments on a routine basis17 to characterize 271 

trends specific to a region over time.  As noted, variability in influent concentration change as density of 272 

cases increase or decrease within the catchment.  Calculations using influent flow, such as viral load and 273 

carrier prevalence, will also be influenced by diel and seasonal changes in influent flow volume as well 274 

as short term increases due to wet weather.  Regular monitoring of facilities reduces some uncertainty 275 

by establishing a context for changes in viral loading.  Though estimating carrier prevalence remains 276 

challenging due to uncertainty around viral shedding rates, tracking viral load from a catchment over 277 

time may be sufficient to gain insight into community-level trends.   278 

 279 
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 370 

 371 

Tables 372 

1. Influent Flow for Study Period 373 

 374 

 375 

 376 

2. SARS-CoV-2 Concentrations in Composite Samples 377 

Composite SARS-CoV-2 Concentration 

Date Composite  N1 N2 N3 

5/2/2020 1 860 890 890 

5/3/2020 2 800 1380 1010 

5/4/2020 3 580 910 780 

 378 

 379 

Min Max Mean 
Standard 

Deviation

Hour of 

Peak flow

Day 1 8.18 15.64 12.47 2.60 2000

Day 2 7.86 15.37 12.11 2.79 1200

Day 3 7.16 16.28 12.31 3.02 1200

Influent Flow For Study Period
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 380 

 381 

 382 

3. 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

By Assay

N1 N2 N3 Overall
Min 50 90 140 50

Max 2200 2000 2100 1100

Mean 608 848 768 741

St. Dev 501 500 506 508

By Day

Day 1 Day 2 Day 3 Overall
Min 220 50 110 50

Max 2200 2100 1800 1100

Mean 759 790 675 726

St. Dev 456 571 497 502

Grab Sample SARS-CoV-2 Concentration (copies 100 mL-1)
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Figures 391 

 392 

Figure 1. 393 

Wastewater log10 SARS-CoV-2 concentrations (copies 100 mL-1).  Grab sample concentrations 394 

are denoted by dots with each color representing an assay (N1, N2, N3).  Shaded areas denote 395 

the timeframe for three discrete 24hr flow-weighted composites.  Concentrations for each 396 

composite sample are noted. Influent flow is plotted in the lower panel.  397 

 398 

 399 
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Figure 2.  400 

 401 

Associations between SARS-CoV-2 assays (N1, N2, N3). X and Y axes show log10 concentrations for each 402 

assay. Lines represent linear association between assays, shaded areas denote standard error for 403 

regression.  Spearman correlation coefficients are listed in orange on each plot.    404 

 405 

 406 

 407 

 408 

 409 

 410 

 411 
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Figure 3. 412 

Wastewater SARS-CoV-2 load and carrier prevalence estimates for the 72-hour study. For the upper 413 

panel, load (log10 copies) calculated using grab sample concentrations are denoted by blue dots, while 414 

load (log10 copies) from 24-hr composite concentrations are denoted by horizontal orange lines. In the 415 

lower panel, prevalence of SARS-CoV-2 infected carriers is estimated using Monte Carlo simulation.  416 

Estimates derived using grab sample concentrations are denoted by blue dots (median number of 417 

carriers) with error bars indicating the 10th and 90th percentile range in estimates.  Shaded areas indicate 418 

the 10th to 90th percentile range of carrier estimates calculated using 24hr composite samples.  419 

 420 

 421 
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