
1 
 

Title 

InpherNet provides attractive monogenic disease gene hypotheses 

using patient genes indirect neighbors 

 

Authors 

Boyoung Yoo1, Johannes Birgmeier1, Jonathan A. Bernstein2, Gill Bejerano1,2,3,4,* 

 

Affiliations  

1 Department of Computer Science, Stanford School of Engineering, Stanford, California 94305, 

USA  

2 Department of Pediatrics, Stanford School of Medicine, Stanford, California 94305, USA  

3 Department of Developmental Biology, Stanford School of Medicine, Stanford, California 

94305, USA 

4 Department of Biomedical Data Science, Stanford School of Medicine, Stanford, California 

94305, USA 

Corresponding Author  

*Gill Bejerano 

bejerano@stanford.edu  

Stanford University  

Stanford, CA 94305  

1 (650) 725-6792  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.10.20150425doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.07.10.20150425
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 

Close to 70% of patients suspected to have a Mendelian disease remain undiagnosed after 

genome sequencing, partly because our current knowledge about disease-causing genes is 

incomplete. Although hundreds of new diseases-causing genes are discovered every year, the 

discovery rate has been constant for over a decade. Generating an attractive novel disease gene 

hypothesis from patient data can be time-consuming as each patient’s genome can contain 

dozens to hundreds of rare, possibly pathogenic variants. To generate the most plausible 

hypothesis, many sources of indirect evidence about each candidate variant may be considered. 

We introduce InpherNet, a network-based machine learning approach to accelerate this process. 

InpherNet ranks candidate genes based on gene neighbors from 4 graphs, of orthologs, paralogs, 

functional pathway members, and co-localized interaction partners. As such InpherNet can be 

used to both prioritize potentially novel disease genes and also help reveal known disease genes 

where their direct annotation is missing, or partial. InpherNet is applied to over 100 patient cases 

for whom the causative gene is incorrectly given low priority by two clinical gene ranking 

methods that rely exclusively on human patient-derived evidence. It correctly ranks the causative 

gene among its top 5 candidates in 68% of the cases, compared to 9-44% using comparable tools 

including Phevor, Phive and hiPhive. 
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Introduction 

Every year, approximately 7 million newborns worldwide are affected by Mendelian diseases1. 

Mendelian diseases are most often monogenic, caused by 1-2 highly penetrant variants in a 

single gene. In the age of widely available exome sequencing, diagnosing these monogenic 

conditions can be done by identification of the causal gene against the current body of 

biomedical knowledge.  

one or very few causative genes that contain the disease-causing variants. This is a time-

consuming task for clinicians, since exome sequencing can results in hundreds of candidate 

causative genes that contain variants rarely found in the unaffected population2–7. As sequencing 

technology becomes more time- and cost-efficient, the number of patients being sequenced for 

disease diagnosis is expected to grow fast. It has been projected that over 60 million patients will 

be sequenced by 20258.  

Numerous tools that automate aspects of the diagnosis pipeline for patients with 

suspected Mendelian disease have been developed. For example, ANNOVAR9 annotates variants 

with various relevant attributes, and M-CAP10 and S-CAP11 scores help assess variants’ 

pathogenicity likelihood. ClinPhen12 helps extract patient phenotypes from their free text medical 

records, and candidate causative gene prioritization tools such as Phevor13, PhenIX14, Phrank15, 

and AMELIE16,17 improve diagnosis efficiency by prioritizing the patient’s candidate for 

likelihood of causing a patient’s phenotypes. These tools help speed up the diagnosis process, 

and therefore, allow more cases to be processed.  

Despite these technological advances, the clinical diagnostic yield for patients with a 

suspected Mendelian disease is currently only around 30% after exome sequencing6. Hundreds 

of novel Mendelian disease-causing genes are discovered year in and year out18–21. After a novel 

gene is proved as causative, the relevant gene is conceptually moved from the research realm 

into the clinic (Figure 1). However, while it is still in the research realm, researchers will consult 

the biological literature in search of indirect evidence that makes a candidate causative gene a 

plausible hypothesis for explaining a particular patient’s case. For example, one of the patient 

candidate genes may have an ortholog known to cause similar phenotypes in a model organism. 

Similarly, a candidate gene may be in the same functional pathway as known relevant disease-
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causing genes or have an obligate interaction partner that is already known to cause the patient’s 

phenotypes. 

This open-ended search for the most plausible candidate novel disease gene can take 

months. Since this is an expensive manual task in both time and resources, not all patient cases 

can be closely scrutinized. Computational inference tools like Phive14 and hiPhive14 have been 

developed to help accelerate the discovery of testable research hypotheses. Such tools perform 

cross-species and gene product interaction-based inferences to prioritize candidate genes beyond 

patient-based phenotypic knowledge. 

Here we propose InpherNet, a network-based machine learning gene prioritization 

method that automatically sifts through massive amounts of biological information to discover 

appealing novel disease gene hypotheses. InpherNet leverages indirect evidence not derived from 

human patients to rank candidate genes without the knowledge of the candidate genes’ functional 

annotations. InpherNet ignores human patient-derived phenotypes caused by candidate genes to 

better focus on inferring novel disease genes rather than overweighting those genes with already 

known phenotype annotations. To predict causative genes using non-patient-derived information, 

InpherNet considers variant-based information and four sources of indirect evidence, or 

neighbors: phenotypes associated with orthologs (i.e. the same gene in a different organism), 

paralogs (i.e. another gene from the same gene family member), members of the same functional 

pathway, and co-localized interaction partners. Compared to previous diagnosis inference tools, 

InpherNet constructs an extensive indirect evidence graph, uses a Phrank15 based metric to 

measure set similarity, filters protein interactions by anatomical co-localization, adds variant-

related features, and applies a Gradient Boosting Tree classifier to rank the candidate genes for 

likelihood of causing the patient’s phenotypes based on indirect evidence from candidate genes’ 

neighbors. We test our performance on 137 previously diagnosed patients whose causative genes 

were incorrectly given low rankings by clinical tools that rely on patient-derived phenotypic 

data. In such cases, InpherNet outperforms three existing inference tool configurations and three 

clinical tool configurations in ranking causative genes based on indirect evidence, thus showing 

its potential to accelerate research efforts targeted towards the discovery of novel testable 

disease-causing genes and ultimately increasing diagnostic yield.  
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Materials and Methods 

InpherNet Graph  

Mendelian subgraph of Monarch Initiative’s multi-species biological network 

The Monarch Initiative22 is an effort to develop a comprehensive biological database containing 

numerous entities (e.g. genes and phenotypes) and relationships between these entities from 

multiple existing databases (e.g. gene functions from Gene Ontology23  and disease-causing 

genes from Orphanet24). Since InpherNet aims to prioritize candidate genes in patients affected 

with Mendelian diseases, we defined a subset of the Monarch graph database that is both relevant 

to Mendelian disease inference and annotated with sufficient data (see Supplementary Methods). 

The Monarch Initiative graph knowledgebase is particularly appealing because it is built using 

unified ontologies such as Uberon22 and Upheno22 that greatly facilitate the comparison of cross-

species observations. It also includes Human Phenotype Ontology associations25 (HPO-A) which 

contain gene-phenotype causative relationships. Phenotypes are organized in a directed acycylic 

graph of phenotypic abnormalities, the Human Phenotype Ontology (HPO). Gene-phenotype 

causative relationships are curated from the database Online Mendelian Inheritance in Man 

(OMIM), a database containing manually curated facts about Mendelian diseases and their 

causative genes, and similar databases. In total, we selected 9 ontology sources (see 

Supplementary Table 1) encompassing 1,231,846 attributes of human, mouse, and zebrafish 

genes (see Figure 2).   

Gene orthology and paralogy mappings from Ensembl 

Ensembl26 is a consortium that develops and curates many resources for comparative genomic 

analyses. We used its human, mouse, and zebrafish gene orthology and paralogy relationships in 

the InpherNet graph (see Figure 2). Extending phenotypic abnormalities associated with human 

genes through their mouse and zebrafish orthologs enabled hypothesis generations on many more 

human genes than is currently possible with just human data. For example, only 3,438, or 17.8%, 

of human protein-coding genes in our graph are annotated with direct human patient-derived 

phenotypes. However, after projecting mouse and zebrafish phenotypes to their orthologous 

human genes, over 56.2% (3.2x more) of human genes can be phenotypically annotated (see 

Figure 3). In our dataset, 17,784 genes out of 19,343 total human genes (91.9%) have 

orthologous genes in either or both mouse or zebrafish, 13,315 (68.8%) have in-paralogous 
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genes, and 13,189 (68.2%) have out-paralogous genes in either or both mouse or zebrafish. If we 

consider phenotypic information projected from orthology, in-paralogy, and out-paralogy in 

human, mouse, and zebrafish, the number of human genes that can by phenotypically annotated 

increase to 71.8% (4.04x more).  

Gene scoring by means of a supervised machine learning algorithm 

Our machine learning classifier takes a vector of scalar values (called “features”) as input, and 

outputs a score between 0 and 1, indicating the classifier’s assessment of whether the input 

should be classified as positive (here, indicating that the indirect evidence suggests a gene is 

causative for a patient) or negative (here, that the indirect evidence does not support a match). 

InpherNet used a Gradient Boosting Tree27 classifier, a type of supervised machine learning 

classifier, to assign such a score to each candidate gene (see Figure 4 and Supplementary 

Methods). 

InpherNet feature set  

Candidate genes are genes that contain at least one candidate causative variant in the patient (see 

Supplementary Methods). We associated each candidate gene with a vector of 15 features 

derived from information about the candidate gene’s neighbors (orthologs, paralogs, pathways, 

and interaction partners) and the candidate variants. (see Figure 4). None of the 15 features are 

about the direct functional annotations of the candidate gene, which prevents overweighting 

candidate genes with previously known patient-derived phenotypes, since InpherNet aims to 

derive hypotheses for novel disease-causing genes from indirect evidence.   

Gene neighbors feature set 

Mouse ortholog: Orthologs are similar genes in two different species related via a speciation 

event, and often have similar functions28. For each patient candidate gene, we computed a 

phenotypic match score between the mouse ortholog-associated phenotypes from the Mouse 

Genome Informatics (MGI) phenotype database29 and the patient phenotypes in HPO terms using 

a Phrank15-based phenotype match score that we call “Phranken” (for Phrank-normalized). The 

Phranken score takes two sets of phenotype terms and an underlying phenotype directed acyclic 

graph (DAG) as inputs and quantifies how similar the two sets are with a single match score (see 

Supplementary Methods). In InpherNet, we took the phenotype DAG and gene’s phenotype 

annotations from Upheno22, a Monarch Initiative unified phenotype ontology that merges terms 

from multiple sources including HPO-A, Gene Ontology, MGI Phenotype, and Zebrafish 
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Information Network (ZFIN). If a candidate gene has more than one mouse ortholog, we 

computed the Phranken match score for all mouse orthologs and selected the ortholog that has 

the highest Phranken score as the value for the “mouse ortholog” feature. If a candidate gene has 

no mouse ortholog or none of the mouse orthologs has any known function, -1 is assigned. The 

same convention is used repeatedly to compute the other neighbor feature values described 

below. 

Zebrafish ortholog: Defined as the highest Phranken match score between zebrafish ortholog-

associated phenotypes from ZFIN and the patient’s phenotypes. 

Human in-paralog: In-paralogs are genes found in the same species that are in the same gene 

family. For human patient-derived phenotypes in HPO-A, their phenotype abnormalities are 

linked through a disease term from OMIM30 or Orphanet24 (see Figure 4). Therefore, for human 

genes, instead of calculating the max Phranken score per gene, we calculated the max score per 

disease (see Supplementary Methods). For each candidate gene, we computed the Phranken 

scores for all diseases known to be caused by all human in-paralogs and picked the highest score. 

Mouse out-paralog: For each candidate gene, we collected all mouse in-paralogs of the 

candidate gene’s mouse ortholog, which are also known as mouse out-paralogs. The highest 

Phranken match score between mouse out-paralog-associated phenotypes and the patient’s 

phenotypes is picked. 

Zebrafish out-paralog: We similarly used the candidate gene’s zebrafish out-paralogs. 

Pathway: For each patient candidate gene, we collected all human, mouse, and zebrafish genes 

that are in the same Reactome31 pathways as the patient candidate gene. For human genes, we 

also collected diseases they are known to cause and their related phenotypes. The highest 

Phranken match score between the patient’s phenotypes and any pathway gene’s phenotypes for 

mouse and zebrafish genes or pathway gene’s disease phenotypes for human genes is then used. 

Interaction partner: For each candidate gene, we retrieved a set of interaction partners 

supported by both a human protein-protein interaction (PPI) BioGRID32 network and human 

anatomical localization Uberon22 data (see Supplementary Methods). Intuitively, we searched for 

genes whose protein products may interact with the candidate genes in human cells. We picked 

the highest Phranken score between the patient’s phenotypes and the phenotypes related to the 

diseases the interaction partners are known to cause. 
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Candidates in 1-hop neighborhood: For each candidate gene, we defined a 1-hop 

neighborhood as a set of genes that can be reached through 1-hop interaction links from the 

human PPI network defined above (i.e. their gene products can interact directly in human cells). 

We counted how many other candidate genes are in this neighborhood, and this count is reported 

as the “candidates in 1-hop neighborhood” feature. 

Candidates in 2-hop neighborhood: For the “candidates in 2-hop neighborhood” feature, we 

repeated the step above but looked for 2-hop neighborhood instead. The 2-hop neighborhood 

excludes all genes in the 1-hop neighborhood.  

Variant-based feature set 

M-CAPgene:  M-CAP10 is a pathogenicity score that assigns a number between 0 (likely benign) 

and 1 (possibly pathogenic) to rare human missense variants. We calculated an M-CAP-based 

feature for each gene as the maximum M-CAP score of all candidate causative variants in the 

candidate gene. A candidate variant that did not have an M-CAP score were assigned the 

maximum M-CAP score in a window of -50, +50 basepairs adjacent to that variant.  

M-CAP100: We calculated the highest M-CAP score in a window of -50, +50 basepairs adjacent 

to all candidate variants in the candidate gene, then used the maximum of those values as the 

value for this feature.  

RVIS score: This is the RVIS33 gene mutability score of the candidate gene.  

pLI score: This is the pLI34 haploinsufficiency score of the candidate gene. 

Average ExAC allele count: The average Exome Aggregation Consortium34 (ExAC) allele 

count of all candidate variants in the candidate gene is used.  

Candidate variants count: We set this to the number of variants in the candidate gene. 

For M-CAP, RVIS, pLI, and ExAC, if the original resource did not offer relevant values, we 

assigned a default “null” value (see Supplementary Methods). 

Other gene prioritization tools 

We compared InpherNet’s performance to 6 existing gene prioritization tool configurations. 

Phrank_HPOA15 and PhenIX14 are designed for clinical use and target genes that have patient-

based Mendelian disease associations, while Phevor13, Phive14 and hiPhive14, similar to 

InpherNet, use non-patient-based functional information and serve as inference tools for novel 

disease-gene candidates. Phrank_HPOA ranks candidate genes by their Phrank match score 

using gene annotations from the HPO-A database. PhenIX ranks candidate genes by their human 
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phenotypic annotations semantic similarities with the patient’s phenotypes in HPO and the 

candidate causative variants’ pathogenicity. Phevor13 combines phenotype, disease, and 

functional ontology information to rank patient candidate genes. For the comparison to 

InpherNet, we used Phevor in two ways: “Phevor_HPOA” uses only patient-based phenotypic 

annotation (HPO-A), similar to the clinical tools, and “Phevor_all” uses all available ontologies 

similar to the other inference tools. Phive ranks candidate genes using mouse phenotypic data, 

and most comparable to InpherNet, hiPhive combines functional data derived from human, 

mouse, and zebrafish genes and the candidate genes’ relatedness in a PPI network to the 

suspected causative gene to rank candidate genes. We took great care to compare the causative 

gene ranking performance of all methods on equal footing (see Supplementary Methods for more 

details). 

InpherNet training set  

In order to conserve real patient data for testing (below), we constructed a set of synthetic 

patients to train the InpherNet’s Gradient Boosting Tree classifier. For this process, we used 

2,504 sequenced individuals who are not affected by Mendelian diseases from 1000 Genomes 

Project (KGP)35, and Mendelian disease-causing variants from ClinVar36. ClinVar associates 

pathogenic variants with a disease identifier from OMIM. Further, HPO-A contains HPO 

phenotypes associated with an OMIM disease. To construct a synthetic patient, we took a KGP 

genome, added one randomly selected disease-causing genetic variant from ClinVar for a known 

OMIM disease, and associated the patient with a set of noisily sampled disease-associated 

phenotypes, mimicking imperfect clinical annotations (see Supplementary Methods). We also 

ensured that no causative gene in the training set was equal to the causative gene of any real 

patient used for testing or validating to prevent overfitting. Using this method, we generated 

2,504 different synthetic patients with an average of 9.1 phenotypes and 300.4 candidate genes 

per patient. 

InpherNet test set 

We tested InpherNet’s performance on 137 real patients with their pre-diagnosis phenotypes and 

clinician-verified Mendelian diagnoses (see Supplementary Methods). Since InpherNet is a novel 

gene function inference tool rather than a clinical tool, we created a test set containing diagnosed 

patient cases whose causative genes were incorrectly given low priority by clinical gene-ranking 

tool. This was done to illustrate InpherNet’s performance on cases where a clinician was not able 
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to find a diagnosis by examining the genes ranked highest by clinical tools, and then consulted 

an inference tool in search for novel diagnosis hypothesis (Figure 1). We first ran PhenIX and 

Phrank_HPOA on all available 255 patients to find a cohort of patients where PhenIX failed to 

rank the causative gene among its top 10 output genes (PhenIX > 10), and a cohort of patients 

where Phrank_HPOA failed to rank the causative gene among its top 10 output genes (Phrank > 

10; see Supplementary Table 2). The test cohort PhenIX > 10 contains 115 patients (with an 

average of 7.8 phenotypes and 309.0 candidate genes per patient) and the test cohort Phrank > 

10 contains 88 patients (with an average of 8.0 phenotypes and 314.4 candidate genes per 

patient). Since in the real clinical diagnosis process, the top 10 genes from these clinical tools 

would already have been scrutinized by a clinician and discarded as non-causative, we removed 

the top 10 PhenIX- or Phrank_HPOA-ranked genes from the candidate gene list for each patient 

in both test cohorts PhenIX > 10 and Phrank > 10, respectively. 

Interpreting InpherNet gene rankings 

To provide human-interpretable explanations for InpherNet’s gene rankings, we included a 

ranked list of each candidate gene’s neighbors ordered by the Phranken phenotype match score 

between the patient’s phenotypes and neighbor-associated phenotypes. This list helps researchers 

see which neighbor is phenotypically most similar to the patient’s phenotypes, and via the 

Monarch Initiative subgraph we used in InpherNet, link back to the original databases supporting 

these claims.  

Results 

InpherNet outperforms existing phenotype ranking-based methods 

The goal of candidate gene ranking tools is to rank the true causative gene at the top to allow 

clinicians find diagnoses, or enable researchers to propose a novel hypothesis, after reviewing as 

few candidate genes as possible. As such, we used the causative gene’s rank among all patient 

candidate genes to evaluate the performance of gene rankings methods (see Figure 5).  

In PhenIX > 10, the set of 115 real test patients where PhenIX ranks the causative gene 

worse than 10, InpherNet ranks the causative gene among the top 5 output candidate genes for 

68.7% of patient cases, while the 3 existing inference tools we compared to prioritize the 

causative gene in the top 5 output candidate genes in 40.9% (hiPhive), 20.0% (Phevor_All), 

9.6% (Phive) cases, and the 3 clinical tools do so in 44.3% (Phrank_HPOA), 12.2% (PhenIX), 
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and 21.7% (Phevor_HPOA) cases. InpherNet outperforms all other methods even further in 

Phrank > 10, the set of 88 real test patients whose causative gene has a Phrank_HPOA rank 

worse than 10, where InpherNet ranks the causative gene among the top 5 candidates in 68.2% of 

the cases compared to 27.3% (hiPhive), 28.4% (Phevor_All), 11.4% (Phive) by the existing 

inference tools and 27.3% (Phrank_HPOA), 27.3% (PhenIX), 27.3% (Phevor_HPOA).  

InpherNet ranks candidate genes that lack patient phenotype annotations 

Ranking candidate genes that lack any patient phenotype annotations is critical for the discovery 

of novel disease-causing genes. In our real patient test cohort Phrank > 10, an average of 77.3% 

of patient candidate genes (8,204 unique genes across all 88 patients) do not have any HPO 

annotations and are therefore automatically ranked at the bottom by methods that rely only on 

HPO-A (see Supplementary Methods). In two real diagnosed patient cases out of 88 in our 

Phrank > 10 test set, their causative genes do not have any HPO annotations. InpherNet is able 

to rank the causative gene relatively high for both cases. Phrank_HPOA ranks that causative 

gene BPTF top 190 among 311 candidate genes along with all other candidate genes lacking 

HPO annotations for Patient:131, but InpherNet ranks BPTF top 10. For Patient:092, 

Phrank_HPOA assigns the causative gene CHD8 rank 198 out of 346 candidate genes while 

InpherNet improves this rank to top 36.    

Interpretability of InpherNet’s prediction process 

All four neighbor types (orthology, paralogy, pathways, and interactions) contributed to 

InpherNet’s performance. Table 1 provides an example each where InpherNet used phenotypic 

evidence from each type of candidate gene neighbors to rank the causative gene higher than 

other gene prioritization methods.  

For example, in Patient:126, the causative gene GRIN1 is ranked at the top by InpherNet 

through its mouse ortholog Grin1. In HPO-A GRIN1 is annotated by only one broad phenotype 

term, Intellectual disability (HP:0001249), resulting in a low Phrank_HPOA rank of 45 among 

282 candidate causative genes. However, InpherNet ranks GRIN1 at the very top because its 

mouse orthologous gene, Grin1, is well annotated with relevant phenotype such as Visual 

impairment (HP:0000505).  

Similarly, InpherNet ranks the causative gene KCNA2 for Patient:137 at the top of 389 

candidate genes through information about its in-paralog, KCNA1. Human patients with rare 

variants in KCNA1 have shown phenotypes similar to this patient’s phenotypes including 
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Seizures (HP:0001250), Slurred speech (HP:0001350) and Abnormality of movement 

(HP:0100022). The patient’s actual causative gene, KCNA2, lacks motor- or speech-related 

patient-based phenotype annotations resulting in low rank (51 for Phrank_HPOA and 120 for 

PhenIX) for the clinical ranking tools, and inference tool hiPhive ranks this gene in top 31.  

In the case of Patient:132, the causative gene identified is GNB1. Phrank_HPOA ranks 

this gene at 22, and hiPhive 169. InpherNet ranks this gene at the top among 312 candidate 

causative genes predominantly through ITPR which is in the same Ca2+ pathway31 as GNB1.  

Finally, the connection between interaction partners PHF8 and TAF1 bring the correct 

causative gene PHF8 for Patient:078 to the top, while Phrank_HPOA ranks PHF8 at position 29 

and hiPhive at position 58 among 321 candidate genes. While rare mutations in both PHF8 and 

TAF1 are known to cause X-linked mental retardation in patients, the phenotypic abnormalities 

associated with each of these genes in our knowledgebase differ. The knowledgebase associates 

PHF8 with phenotypic abnormalities unobserved in this patient including Long face 

(HP:0000276) and Cleft upper lip (HP:0000204). However, its well-known interaction partner 

TAF1 is associated with much more relevant phenotypes including Microcephaly (HP:0000252) 

and Attention-deficit/hyperactivity disorder (HP:0007018). 

Discussion 

Extensive efforts are being made to diagnose the growing number of sequenced patients with 

suspected Mendelian diseases2,3,13–16. However, 70% of sequenced patients with suspected 

Mendelian diseases remain undiagnosed6, partly due to incomplete knowledge of Mendelian 

disease-causing genes. While novel disease-causing genes are continuously being identified, the 

discovery rate has been steady at around 250 genes per year for over a decade18–20. Here we show 

that InpherNet improves the ability to navigate underexplored areas in the gene-phenotype space 

by harnessing existing knowledge of four biologically significant neighbor relationships—

orthology, paralogy, pathway membership, and interaction partners—to help accelerate the 

discovery of novel disease-causing genes. These neighbors provide additional evidence that is 

not yet directly linked with candidate genes, thus suggesting appealing testable candidates.  

 InpherNet currently uses mouse and zebrafish orthologs and their phenotypic annotations 

to expand known human genes’ patient-based phenotype annotations. We show that from these 

two species, we can increase the number of phenotypically annotated human genes four-fold. 
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While we wish to include additional species in InpherNet, the next best phenotypically annotated 

species in the Monarch Initiative data, rat, only has 1,231 gene-phenotype relationships 

compared to zebrafish, 42,367 relationships, and mouse, 184,313 relationships. As additional 

species’ functional data becomes more complete, they can be easily integrated into InpherNet’s 

flexible Gradient Boosting Tree model.  

InpherNet accelerates the discovery process of monogenic disease-causing genes by 

integrating information about neighboring genes that are associated with patient-similar 

phenotypes. In contrast, clinical gene prioritization tools such as Phrank_HPOA15 and PhenIX14 

rely exclusively on human-observed phenotypes. While Phevor13, Phive14, and hiPhive14 also 

consider non-human functional annotations, we show that InpherNet improves performance 

specifically on cases where clinical tools do not bring the causative gene near the top. Although 

our performance was measured on previously diagnosed patients, we show that InpherNet also 

ranks the causative gene high for cases whose causative genes are lacking any patient-derived 

phenotype annotations. In addition, InpherNet is able to effectively rank the causative gene 

without any knowledge of candidate genes causative diseases which shows it is able to discover 

disease-causing genes. Our results also corroborate the finding from the Phrank15 paper on its 

ability to improve on PhenIX, as in more of our cases the causative gene is ranked worse than 

top 10 by PhenIX than by Phrank_HPOA. Furthermore, Phrank_HPOA ranks the causative 

genes in top 5 for most cases excluding InpherNet in PhenIX > 10, while PhenIX does not 

perform as well in Phrank > 10.  

By integrating indirect biological knowledge to infer novel gene functions and to provide 

novel hypothesis for further validation, InpherNet improves the state of the art to advance the 

forefront of clinical knowledge for Mendelian genetics. 
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Figures 

Figure 1. 

 

Figure 1. InpherNet’s role in the quest for patient diagnosis. Patient sequencing data is first 

assessed in a clinical setting, where a diagnosis most often consists of matching a candidate 

variant or gene in the current patient to previously diagnosed patients with very similar 

phenotypic abnormalities. When a clinical diagnosis cannot be found (70% of cases), the case 

moves to the research realm where indirect evidence is sought to suggest a novel causative gene 

candidate. InpherNet aims to accelerate this discovery process by offering researchers its most 

appealing testable hypothesis through indirect evidence.  
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Figure 2. 

 
Figure 2. The multi-modal biological network underlying InpherNet. We extract human-, 

mouse-, and zebrafish-based orthology, paralogy, pathway, interaction, anatomical localization, 

phenotypes and monogenic disease relationships from Monarch Initiative’s graph database and 

Ensembl.  
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Figure 3.  

 

Figure 3. The power of orthology. HPO-A contains human gene-phenotype relationships for 

about 3,400 out of 20,000 human protein-coding genes. Thus, clinical gene prioritization 

methods that only use known human Mendelian gene-phenotype associations cannot prioritize 

82.4% of human protein-coding genes. However, many unannotated human genes have 

functionally annotated orthologs in mouse and zebrafish that can be combined via Monarch 

Initiative’s Upheno cross-species phenotype ontology to triple the annotation coverage to 56% of 

human protein-coding genes compared to the original 17.5%.  
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Figure 4. 

 
 
Figure 4. InpherNet’s graph-based machine learning classifier. InpherNet aggregates a 

patient’s candidate genetic variants to a list of candidate genes. These Phranken (Phrank-

normalized) scores along with additional gene and variant level information are passed into a 

Gradient Boosting Tree classifier, which returns a score between 0 and 1 quantifying the 

candidate gene’s likelihood of being causative. InpherNet then ranks all candidate genes on this 

score. For each gene, we find its set of neighbors in one of the seven contexts, and pick the 

highest Phranken match score between a neighbor’s phenotypes and the patient’s phenotypes per 

context (or -1 when no neighbor has known associated phenotypes).  
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Figure 5. 

 
Figure 5. InpherNet outperforms existing gene prioritization methods. To mimic the clinical 

transition to the research inference realm (Figure 1), we took 255 patients with diverse pre-

diagnosed conditions and first used two human data-only based methods to attempt quick clinical 

diagnosis. For 137 out of 255 patients, the causative gene was not among the top 10 output genes 

by at least one of the two tools. (A, left) In 115 (83.9%) of 137 cases the causative genes was not 

among the top 10 PhenIX-prioritized candidate genes. (A, right) In fewer cases (88 of 137, 

64.2%), the causative gene was not in the Phrank_HPOA top-ranked 10 genes. Each case is then 

reviewed by multiple inference tools after removing the highest ranked 10 genes that were 

already determined to be not causai. (B) 7 different gene prioritization tools configurations were 

run on the remaining candidate genes (3 clinical and 4 inference tools). Since the top 10 PhenIX 

genes have been removed, PhenIX can still rank the causative gene high among the remaining 

candidate genes. However, the graph shows that most of the cases are truly difficult for the 
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clinical tools, and the causative gene is not getting ranked just beyond the top 10 limit. (C) The 

same measurements were taken following the clinical use of Phrank_HPOA instead of PhenIX. 

In both scenarios InpherNet outperforms all previous methods, ranking more causative genes 

higher based on neighbor information alone.  
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Table 1. 

Table 1. InpherNet supports each prediction with referenced observations. To allow researchers to easily evaluate its predictions, 

InpherNet outputs supporting information for each candidate gene. Here, we show examples where InpherNet outperformed all other 

tools, along with supporting phenotypic evidence and its source for its highest Phranken scoring explanatory neighbor.  

Patient ID  Patient phenotypes Number of 

candidate 

genes  

Causative gene 

& disease 

diagnosis 

Relevant causative 

gene phenotypes 

from HPO-A 

Existing tools rank: 

Phrank_HPOA/PhenIX/ 

Phevor_HPOA/ Phevor_All/Phive/hiPhive 

InpherNet 

rank 

Explanatory 

Neighbor 

Neighbor 

Gene 

Select Neighbor gene 

phenotypes 

126 

 

Trigonocephaly 
(HP:0000243), 
Global dev. delay 
(HP:0001263), 
Hypotonia 
(HP:0001252), 
Cortical visual 
impairment 
(HP:0100704), 
Metopic 
synostosis 
(HP:0011330) 
 

282 GRIN1 

MIM: 

614254 

Intellectual 
disability 
(HP:0001249) 

 

45 35 24 21 164 59 1 Mouse 

Ortholog 

Grin1 Vison/eye 
phenotype  
(MP:0005391), 
Respiratory distress 
(HP:0002098), 
Visual impairment 
(HP:0000505), 
Impaired passive 
avoidance behavior 
(MP: 0004000), 
Increased anxiety-
related response 
(MP: 0001363) 

137 

 

Motor delay 
(HP:0001270), 
Delayed speech 
and language 
dev. 
(HP:0000750), 
Intellectual 
disability 
(HP:0001249), 
Hypotonia 
(HP:0001252), 
Seizures 
(HP:0001250), 
Sensorineural 
hearing 
impairment 
(HP:0000407) 
 

389 KCNA2 

MIM: 

616336 

Intellectual 
disability 
(HP:0001249), 
Seizures 
(HP:0001250), 
Tremor 
(HP:0001337), 
Ataxia 
(HP:0001251), 
Myoclonus 
(HP:0001336) 
Epileptic 
encephalopathy 
(HP:0200134) 

 

51 120 224 143 147 31 1 Paralog KCNA1 Seizures 
(HP:0001250), 
Slurred speech 
(HP:0001350), 
Blurred vision 
(HP:0000622), 
Abnormality of 
movement 
(HP:0100022), 
Spastic gait 
(HP:0002064), 
Ataxia 
(HP:0001251)    
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25 
 

132 

 

Motor delay 
(HP:0001270), 
Developmental 
regression 
(HP:0002376), 
Progressive 
language 
deterioration 
(HP:0007064), 
Autism 
(HP:0000717), 
Intellectual 
disability 
(HP:0001249), 
tonic-clonic 
seizures 
(HP:0002069), 
Macrocephaly 
(HP:0000256) 

312 GNB1 

MIM: 

616973 

Global dev. 
delay 
(HP:0001263), 
Generalized 
hypotonia 
(HP:0001290), 
Cleft palate 
(HP:0000175), 
Intellectual 
disability 
(HP:0001249), 
Hydronephrosis 
(HP:0000126), 
Seizures 
(HP:0001250) 

22 166 174 43 246 169 1 Pathway ITPR1 Motor delay 
(HP:0001270), 
Global dev. delay 
(HP:0001263), 
Intellectual 
disability 
(HP:0001249), 
Limb ataxia 
(HP:0002070), 
Muscular hypotonia 
(HP:0001252), 
Cognitive 
impairment 
(HP:0100543), 
Scanning speech 
(HP:0002168)  

78 

 

Microcephaly 
(HP:0000252), 
Attention deficit 
hyperactivity 
disorder (ADHD; 
HP:0007018), 
Delayed speech 
and language dev. 
(HP:0000750), 
Repetitive 
compulsive 
behavior 
(HP:0008762), 
Global dev. delay 
(HP:0001263) 
 

321 PHF8 

MIM: 

300263 

Cryptorchidism 
(HP:0000028), 
Scoliosis 
(HP:0002650), 
Cleft upper lip 
(HP:0000204), 
Synophrys 
(HP:0000664), 
Pes planus 
(HP:0001763), 
Delayed speech 
and language 
dev. 
(HP:0000750), 
Long face 
(HP:0000276) 

29 29 161 161 63 58 1 Interaction 

Partner 

TAF1 Microcephaly 
(HP:0000252) 
ADHD 
(HP:0007018) 
Delayed speech and 
language dev. 
(HP:0000750) 
Global dev. delay 
(HP:0001263) 
Delayed gross 
motor development 
(HP:0002194) 
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