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ABSTRACT 

BACKGROUND Accurate measurement of the effects of disease status on healthcare cost is 

important in the pragmatic evaluation of interventions but is complicated by endogeneity 

biases due to omitted variables and reverse causality. Mendelian Randomization, the use of 

random perturbations in germline genetic variation as instrumental variables, can avoid these 

limitations. We report a novel Mendelian Randomization analysis of the causal effect of liability 

to disease on healthcare costs. 

 

METHODS We used Mendelian Randomization to model the causal impact on inpatient hospital 

costs of liability to six highly prevalent diseases: asthma, eczema, migraine, coronary heart 

disease, type 2 diabetes, and major depressive disorder. We identified genetic variants from 

replicated genome-wide associations studies and estimated their association with inpatient 

hospital costs using data from UK Biobank, a large prospective cohort study of individuals linked 

to records of hospital care. We assessed potential violations of the instrumental variable 

assumptions, particularly the exclusion restriction (i.e. variants affecting costs through 

alternative paths). We also conducted new genome wide association studies of hospital costs 

within the UK Biobank cohort as a further “split sample” sensitivity analysis. 

 

RESULTS We analyzed data on 307,032 individuals. Genetic variants explained only a small 

portion of the variance in each disease phenotype. Liability to coronary heart disease had 

substantial impacts (mean per person per year increase in costs from allele score Mendelian 

Randomization models: £712 (95% confidence interval: £238 to £1,186)) on inpatient hospital 

costs in causal analysis, but other results were imprecise. There was concordance of findings 
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across varieties of sensitivity analyses, including stratification by sex, and those obtained from 

the split sample analysis.  

 

CONCLUSION A novel Mendelian Randomization analysis of the causal effect of liability to 

disease on healthcare cost demonstrates that this type of analysis is feasible and informative in 

this context. There was concordance across data sources and across methods bearing different 

assumptions. Selection into the relatively healthy UK Biobank cohort and the modest 

proportion of variance in disease status accounted for by the allele scores reduced the precision 

of our estimates. We therefore could not exclude the possibility of substantial costs due to 

these diseases.  
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1 Introduction  

Liability to disease is influenced by a wide range of factors including environmental, social, 

economic and biological processes. This complicates attempts to attribute economic outcomes 

to specific diseases, since measurement error in diagnosis and omitted confounding variables of 

the association between disease liability and outcome can lead to spurious results. This 

pervasive endogeneity is problematic for the pragmatic evaluation of medical interventions, 

which generally require robust estimates of the long term causal effect of disease status on 

outcomes such as healthcare costs (1-3).  

 

For example, taxes on “sin goods” such as alcohol, cigarettes or sugary beverages are often 

motivated (amongst other policy rationales) by an anticipated beneficial impact on future 

morbidity, mortality and healthcare costs (4-6). Even where robust randomized interventional 

study designs have been implemented, decision-analytic models are usually needed to assess 

the long-term consequences of policies and interventions (7-14), and will typically assess future 

costs and other outcomes under different health states (1). If the estimated costs of, for 

example, coronary heart disease, are biased then robust comparisons of different types of 

interventions aimed at modifying liability to this disease will not be possible.  

 

The policy relevance of the present work is to develop and validate a method of overcoming the 

endogeneity that characterizes most or all existing analyses of the long-term impact of disease 

status on healthcare costs. In turn, our methods may improve the formulation and evaluation 

of healthcare policies with long-term consequences on healthcare costs. To this end, we report 

a novel analysis of the causal effect of liability to disease on healthcare costs using Mendelian 

Randomization (15) which can, in principle, avoid the limitations of existing research designs.  

 

Econometric identification in Mendelian Randomization relies on random perturbations to 

germline genetic variation that occur at conception. Points of the genome that vary across the 

population are known as genetic variants. A common form of genetic variation is a single 

nucleotide polymorphism (SNP) – a change in a single base pair of DNA. At each SNP, everyone 

has two alleles, one allele that was inherited from the father, one that was inherited from the 

mother. There is a 50:50 chance of each of the father’s alleles being inherited by the offspring 

and a 50:50 chance of each of the mother’s alleles being inherited. Therefore, inheritance of 

genetic variation from parents to offspring is random, conditional on parental genotype. 

 

Some of this variation is known to associate with diseases, behaviours and traits. Those variants 

known to associate with disease are promising candidates for instrumental variable analysis 

because conditionally random assignment prior to birth means that these variants are 
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independent of omitted variables that might otherwise confound associations between 

outcomes and the diseases for which they instrument. Furthermore, estimates using genetic 

variation are unlikely to be affected by reverse causation since it is generally not possible for 

the environment to affect germline genetic variation after conception.  

 

We study the costs of liability to six prevalent, chronic diseases: asthma, eczema, migraine, 

coronary heart disease, type 2 diabetes, and major depressive disorder. If the instrumental 

variable assumptions (discussed below) hold, then effects liability to disease on these outcomes 

can be interpreted as causal. Consider, for example, genetic variants that confer susceptibility 

to coronary heart disease. These variants can be used within the instrumental variables 

framework to identify the causal effect of coronary heart disease on hospital costs. Thus, 

genetic variation to higher or lower liability to incident coronary heart disease can be thought 

of as analogous to allocation to treatment in a randomized controlled trial, in which hospital 

costs are the outcome. 

 

Below, we describe in more detail each assumption necessary for valid causal inference in the 

specific context of genetic variants as instrumental variables. We apply these methods to cost 

data drawn from UK Biobank (16-18), a very large and richly phenotyped prospective cohort 

study. We also compare the findings of the instrumental variable analysis to conventional 

multivariable adjusted analyses of the association between disease status and hospital costs. 

We conclude with a discussion of whether the potential of these methods and data to improve 

policy formulation and evaluation is likely to be realized.   

 

2 Genetic variants as instrumental variables 

2.1 Instrumental variable assumptions and Mendelian Randomization  

Instrumental variables for disease liability are defined by the following assumptions: 1) they 

associate with liability to the disease of interest, 2) they are independent of all (known and 

unknown) confounding omitted variables, and 3) they influence the outcome only via disease 

liability. Instrumental variables have been examined from various perspectives informed by 

different but largely complementary approaches to causal inference. These particularly include 

potential outcomes frameworks (19-21) and from the perspective of “Do-calculus” and directed 

acyclic graphs (22-25). 

 

We unpack the assumptions for valid instrumental variable analysis requirements below for 

genetic instrumental variables using the language of potential outcomes following von Hinke et 

al (26) and also illustrate the requirements for valid inference using directed acyclic graphs in 
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supplementary material. Below, we refer to disease status as the treatment variable, and 

interpret “odds of disease” as a genetic liability (27) toward the specific disease phenotype 

modelled.  

 

RELEVANCE 

 

Valid instruments must exhibit a specific association between instrument and liability to disease. 

This is sometimes known as the relevance requirement. In terms of potential outcomes, we 

may express this relationship as the expectation that the value of the treatment variable 

(disease status in this case) differs when an instrument is “switched on” or has a higher rather 

than a lower value (in the case of the continuous instruments that we study below), so that the 

degree of liability to disease differs across values of the instrument. Defining G as the genetic 

variant (or set of genetic variants), X as the treatment variable (disease status), then G should 

associate with X: (G�X). 

 

Instrument relevance is assessed using genome wide association studies (GWASs). These 

studies examine associations between millions of genetic variants across the genome and 

phenotypes such as disease status. Humans are diploid, meaning that they have two copies of 

each chromosome. For a single variant located at a specific part or locus of the genome, an 

individual may possess no copies of the risk increasing allele, one copy of the risk increasing 

allele (only on one chromosome) or two copies of the risk increasing allele (on both 

chromosomes).  

 

For a single variant, there may be two or more alleles (genotypes). The reference allele can be 

defined as the one that confers the lowest disease risk. The other allele, the risk increasing 

allele, may confer higher risk of disease. An individual may possess no copies of the risk 

increasing allele. We can summarize the genotype – the genetic architecture at a particular 

locus – by simply counting the number of risk increasing alleles (0,1, or 2) that influence disease 

status. The specific type of variants that we study are single nucleotide polymorphisms (SNPs), 

which refer to single changes in a nucleotide base pair (adenine (A), thymine (T), cytosine (C), or 

guanine (G)) at a specific point in the genome across individuals in a population. We use the 

terms variants and SNPs interchangeably below. 

 

Disease status is considered to be binary. With a binary outcome, and j loci across the genome 

inspected for possible genetic variation, a GWAS on a binary outcome such as disease status 

amounts to implementing j separate logistic regressions to assess association. The p-values 

obtained for each measured association account for multiple testing, reflecting the number of 
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independent genetic variants across the genome. We treated p-values <5×10-8 as “genome-

wide significant” for the purposes of our analysis. 

 

In our main analysis, we use only genetic variants obtained from replicated external GWAS and 

meet this stringent multiple testing criterion. This reduces the risk of selecting variants that fail 

the relevance criterion, a problem that affected early examples of Mendelian Randomization in 

health economics, which sometimes relied on variants drawn from unreplicated “candidate 

gene” studies (28, 29).  

 

INDEPENDENCE  

 

The independence assumption requires the instrument to be independent of potential 

outcomes and potential disease status, for all possible values of the outcome and disease status. 

An intuitive interpretation of this assumption is that the instrument is “as good as randomly 

assigned”. Instrumental variables should therefore be independent of all (known and unknown, 

measured or unmeasured omitted variables (U): (G�U) 

 

Genetic instrumental variables are established at conception, and therefore occur before post-

natal events and life circumstances. However, while the inheritance of genetic variants from 

parents to offspring is almost entirely random, the distribution of genetic variants across 

parents may not be independent of the environment. One means by which the independence 

assumption may be violated is due to differential ancestry within a population (30). Genetic 

variants in a population containing several ethnicities with different allele frequencies will 

associate with any differences between the populations that may be unrelated to the outcome 

under investigation. For example, allele frequencies and genetic differences in susceptibility to 

Type 2 diabetes vary by ethnicity (31-35). This mixing of ancestries would lead to spurious 

associations due to differences between groups that differ in ancestry, rather than the effect 

only of the genetic variants under investigation.  

 

We minimize this problem by restricting analysis to relatively homogenous European ancestry 

groups (by means of self-reported ethnicity and conditioning analysis on genetic principal 

components that reflect variations in ancestry (36) (37)) and by conditioning on study centre. 

Latent population structure may remain even after these steps an (38, 39) and we consider 

possible implications in the Discussion section below. 

 

Assortative mating (40) and selection into genetic studies (41) may induce associations 

between the genetic variants and the treatment variable and outcome that violate the 

independence assumption. Assortative mating refers to non-random mating; that is, the 
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selection of partners based on particular traits. This may lead to the clustering of particular 

types of individuals in particular environments; for example, educated people are more likely to 

marry other educated people. In relation to selection bias, note that conditioning on a 

consequence (or a collider in the language of directed acyclic graphs) of both the instrument 

and the outcome can induce an association between the instrument and the outcome even if 

these are otherwise independent in the population (42, 43). This can lead to bias that can over- 

or under-state effect sizes (44). Studies necessarily condition on available participants, and if 

this set of individuals is selected rather than drawn randomly from the population then 

instrumental variable effect estimates may be biased. Again, we consider the implications of 

these kinds of potential biases in the Discussion. 

 

THE EXCLUSION RESTRICTION 

 

The third assumption is that of exclusion: this requires that the instrument is independent of 

the outcome (and all potential outcomes) and does not affect the outcome other than via 

disease status. Genetic variants G should therefore be independent of the outcome Y, 

conditional on treatment (X – disease status) and all omitted variables (U): (G�Y | X,U).  

Establishing? this independence is generally impossible since some omitted variables will not be 

known or measurable, and disease status may not be measured perfectly.  

 

The two principal means by which genetic variants can violate this assumption are linkage 

disequilibrium and pleiotropy (45). Linkage disequilibrium refers to a correlation between 

genetic variants that arises when variants located in close physical proximity to one another 

tend to be inherited together. Since variants in linkage disequilibrium are not independent, it is 

possible that correlated variants may influence outcomes other than through the disease of 

interest in violation of the exclusion restriction. 

 

Pleiotropy describes a situation where a variant affects multiple phenotypes (45-47). There are 

two types of pleiotropy: vertical and horizontal (48). Vertical pleiotropy refers a SNP that 

influences one trait, which in turn influences another. Horizontal pleiotropy refers to SNPs that 

influence traits through independent pathways. Horizontal pleiotropy will violate the exclusion 

restriction if these other phenotypes affect the outcome of interest other than via the disease 

of interest.   

 

Consider a variant associated with coronary heart disease that may also influence some other 

disease (e.g. depression). An analyst using this variant may unwittingly attribute all of the effect 

of coronary heart disease on cost to that variant, when in truth the reported effect captures the 

influence of both heart disease and depression on the cost outcome. This amounts to a 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.09.20149906doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.09.20149906
http://creativecommons.org/licenses/by/4.0/


 

 8

violation of the exclusion restriction. We consider various methods for modelling and 

overcoming these violations of the exclusion restriction in the next section.  

 

ESTIMATION 

The simplest instrumental variable estimator is the ratio of the change in the outcome for a unit 

increase in the instrument, divided by the change in the treatment variable for a unit increase 

in the instrument. This instrumental variable estimator recovers the point estimate of the effect 

and is known as the Wald estimator. It is identical to the familiar two-stage least squares (2SLS) 

estimator when a single instrument is used. The two-stage estimator predicts disease status (in 

this case) from a regression of disease status on genetic variants; the second stage involves a 

regression of the outcome on these predicted values. 

 

In practice we implemented just-identified models where we have one instrument – an allele 

score or polygenic risk score – using 2SLS, as well as overidentified models which estimate the 

causal effect using each variant independently. There are two principal reasons for this. The 

first is that the specific overidentified models that we study allow for a more robust 

interrogation of the exclusion restriction than is possible using only a 2SLS just-identified model. 

We describe these advantages below in relation to the specific estimators that we implement. 

The second is that ratio-type estimators particularly lend themselves to the analysis of 

summary data that characterize the association of genetic variants with disease and outcome at 

the level of the variant rather than at the level of the individual person.  

 

These summary data can be readily analyzed using two-sample instrumental variable methods 

(49), in which instrument-outcome and instrument-disease status are ascertained in distinct 

samples. This permits analysis of summary data drawn from large numbers of individuals 

provided that the populations of individuals in each study are similar (50, 51). 

 

We point identify our estimators by assuming that the instrument has a monotonic effect on 

the treatment variable (52, 53). This assumes that, in a hypothetical experiment, replacing an 

allele with no effect on disease liability with a liability-increasing allele would either increase 

liability or leave it unchanged. This implies that, across our study population, the direction of 

effect from modulating the value of our instrumental variables will be in the same direction for 

everyone.  

 

Monotonicity may have biological plausibility for genetic instruments (54), but this is generally 

difficult or impossible to test. Under our maintained assumption that monotonicity applies, our 

estimates represent local average treatment effects – these effects are local to those 
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individuals whose liability to disease is altered by the instrument. This group of individuals may 

comprise everyone in our sample if liability to disease is continuous.  

 

We also examine whether our instruments are weak. A weak instrument explains only a small 

portion of the variance in disease status. Intuitively, when the denominator of the ratio 

estimator is close to zero, the ratio becomes unstable and its variance becomes large. We 

examined first stage F-statistics from 2SLS allele score models to assess whether weak 

instruments were likely to be problematic.  

 

2.2 Sensitivity analysis  

Our main sensitivity analyses comprised various tests designed to assess possible consequences 

arising from violations of the exclusion restriction, but we also considered biases arising from 

differences between the samples used in the two-sample analysis.  

 

Sensitivity analysis directed at potential violations of the exclusion restriction relies on 

techniques influenced by meta-analysis (55), the motivation for which stems both from the 

independence of variants as well as from interpreting conditional random allocation of genetic 

variation at conception as analogous to a within-family randomized controlled trial in which the 

individual is allocated to higher or lower susceptibility to disease. When many such variants are 

available, we may proceed, as in a conventional meta-analysis, to summarize their effects on 

the outcome in a manner that is at least as informative as the scrutiny of any one variant. A 

variety of these techniques are applied, each with different assumptions. Similarity or 

concordance between the results in spite of different assumptions provides a degree of 

reassurance that the same causal effect is being identified, and that gross biases specific to one 

form of analysis are not influencing the results.  

 

The starting point for this analysis of individual variants is to implement an inverse variance 

weighted (IVW) random effects meta-analysis. This weights the effect sizes (i.e. the regression 

betas) by the inverse of the variance of the estimated associations between the variants and 

the outcome. Since summary causal effects are determined only by the ratio of the effect of 

variants on the outcome to effects of variants on disease liability, the exclusion restriction 

requires that there should be no effect on the outcome for any SNP that does not also affect 

the treatment variable.  

 

A random-effects meta-analysis allows some or all variants to have pleiotropic effects in 

violation of the exclusion restriction, but assumes that the effect of this pleiotropy “balances 

out” so that pleiotropy that increases the causal effect estimate is matched by pleiotropy that 
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reduces the causal effect estimate. Thus, the effect size is estimated without bias, although 

with a greater standard error than would be the case without variation induced by pleiotropy.  

 

A natural test of the assumptions of this model (embodying the assumption of no directional 

pleiotropy) is to compare this IVW effect estimate with the effect estimate for each individual 

variant. If this difference is large (in a sense defined below), then heterogeneity of effect may 

be present. Heterogeneity may indicate horizontal pleiotropy, since one mechanism to 

generate heterogeneity of this type would be the influence of a variant on the outcome 

through multiple independent channels.  

 

This can be tested formally using Cochran’s Q statistic, which measures heterogeneity by 

comparing the squared difference to the critical values of a chi-squared distribution: 

 

� � � 1
����

�	
� � 	
�����
�

��	

 

 

 

Here, we assume up to J variants, and measure effect estimates for the jth variant as 	
� and the 

overall inverse variance weighted estimate as 	
���, and measure the inverse variance 

weighting of the estimate using ����  which is the variance from the SNP-outcome 

association .The Q statistic is identical to the Sargan (56) test for overidentification when all 

relationships (SNP-treatment and SNP-outcome) are measured in the same sample (57).  

 

We estimate the Q statistic for all diseases and implemented pleiotropy-robust methods if 

heterogeneity was indicated. These were of two broad types – the first type of sensitivity 

analysis assumes that some or all variants violate the exclusion restriction but are nevertheless 

retained in the analysis. The second type of approach comprises a principled approach to 

variant outlier detection and removal, and analysis may be applied to a smaller, restricted set of 

variants. We consider each approach in turn; slightly more formal derivations are available in 

Dixon et al (58) while supplementary material provides an intuitive explanation using simple 

graphical examples.  

 

We start with estimators of the first type. Median-based estimators (59) assume that the 

median estimate, constructed by forming an empirical density of all estimates, is unbiased (i.e. 

has no horizontally pleiotropic effects). Excluding pleiotropic variants will mean that they offer 

no weight to the calculation of the overall summary effect. Thus, if at least half of the weighted 

variants do not have horizontally pleiotropic effects, this method will be asymptotically 
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unbiased. We implement a penalized weighted median estimator, in which variant-specific 

effects are weighted by the precision with which they are estimated and penalized (or “down-

weighted”) for contributing heterogeneity to the Q statistic.  

 

A related method makes an assumption that modal values of individual variants are not in 

violation of the exclusion restriction (60). This permits some SNPs, possibly most SNPs, to be 

pleiotropic and therefore in violation of the exclusion restriction, provided that the modal 

variant is, or modal set of variants are, unbiased. Again, we implement a weighted version of 

this estimator to account for the precision with which variants are estimated, and we also 

define an arbitrary bandwidth parameter to identify the modal group.  

 

We also implement MR Egger regression (61). The IVW, penalized weighted median and 

weighted mode constrain the intercept to be zero so that the regression line passes through the 

origin. MR Egger does not constrain this intercept to be zero. Instead, it is included and can be 

interpreted as the average pleiotropic effect from all variants. An intercept that is 

distinguishable from zero indicates the presence of pleiotropy, and the causal effect estimate 

from MR Egger regression is unbiased, conditional on pleiotropy (if present). This method relies 

on an assumption about independence between the direct pleiotropic effect of variants on the 

outcome (other than through liability to disease) and instrument strength – for further details 

see Bowden et al (61) and Burgess and Thompson (62).  

 

We also implement an approach, known as Radial Mendelian Randomization (63), to automate 

the identification of outlying variants. In a scatter plot of variants (see illustrations in the 

supplementary material) that plots the SNP-outcome association (y-axis) against the SNP-

disease status association (x-axis), the absolute vertical distance between a variant represented 

by a scatter point and the fitted IVW line is equivalent to the square root of that variant’s 

contribution to Cochran’s Q heterogeneity statistic. This distance can therefore be used to 

identify outlying variants that contribute relatively high amounts of heterogeneity by using a 

leave-one-out analysis of all variants. We implement all estimators described above on 

exclusion of variants identified by this process and compare results to models using the full set 

of variants.   

 

Finally, to complement the two-sample approach described above, we also performed a one-

sample analysis using data only from UK Biobank. One concern with two-sample estimators is 

that the populations in each sample should not overlap (that is, not have the same individuals) 

to avoid inducing a correlation between SNP-disease and SNP-outcome associations and biasing 

estimates towards the non-IV estimate. However, the two samples should be drawn from the 

same population, even if the set of individuals in each sample is disjoint. The simple rationale 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.09.20149906doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.09.20149906
http://creativecommons.org/licenses/by/4.0/


 

 12

for this is to avoid bias caused by associations estimated on samples that differ in the types of 

individuals included. Similarity may be assessed in relation to distributions of age and sex, 

similarity of association between SNPs and the phenotype, and the mean and variance of the 

phenotype distribution (50). 

 

We split UK Biobank into two random, non-overlapping samples for this sensitivity analysis. This 

approach eliminates any biases caused by sample heterogeneity between the UK Biobank 

cohort and external GWAS source data. We conducted a de novo GWAS for each of the six 

diseases on each split sample. The result of each GWAS was used to identify SNPs for the 

alternative sample. We estimated just-identified allele score models using each sample, and 

then used fixed effect meta-analysis on these separate results to give a single estimate.  

 

2.3 Issues of interpretation 

The definition of disease reflects a binary classification of individuals as cases (those identified 

as having the condition) and controls (those without). The interpretation of our results differs 

according to the type of instrumental variable models used – those that use a single allele score 

and those that use each SNP as individual instruments. 

 

The interpretation of the allele score instrumental variable models reflect the genetic liability of 

changing from control to case across the population. Put differently, these models may be 

interpreted as the average per person change in hospital costs caused by a (genetically 

influenced) change in case status in this population. These models are estimated using 2SLS. 

Denoting individuals i=i…N, k=1…K instruments (G=g1,…,gk) and disease X=x1,…,x6 the first stage 

of a 2SLS model is: 

 



 � �� � � ���
�
�

� �

  
 

This yields predicted values of disease status:  
�
 � ��� � ∑ ����
�� , which enter the second 

stage regression for outcome Y=y1,…,yi:  

 

�
 � 	� � 		
�
 � ��
  
 

The  		 coefficient represents the estimated effect of a change in disease status.  

 

The interpretation of the models that use summary data is different. An intuitive way of 

understanding this difference is to consider a simple ratio estimator for instrumental variables. 
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The instrumental variable point estimate may be obtained as the change in the outcome (Y) for 

a unit increase in the instrument (G), scaled by the change in disease status (as the treatment 

variable) for a unit increase in G: 

 

	
�|�
	

|�

 

 

The interpretation of Mendelian Randomization models using each SNP as an individual 

instrument therefore reflects the measurement scale used in the source GWAS, in contrast to 

the just-identified allele score models estimated using 2SLS. Since the GWASs we used analyzed 

outcomes using logistic regression, our over-identified models using each SNP as an instrument 

therefore measure the ratio of the effect of the change in costs per unit change in the log-odds 

of disease status.  

 

This type of association can be difficult to interpret in terms of causal effects since a unit 

change in a binary disease status variable will be on the log-odds scale. A unit change is 

therefore exp(1), corresponding to a 2.72-fold (since the scale is multiplicative) change in the 

odds of the treatment variable. Following Burgess and Labrecque (64), we re-express 

associations estimated from models relying on individual variant data to aid interpretation. We 

interpret “odds of the treatment variable” as a genetic liability (27) toward the specific disease 

phenotype modelled. We calculate causal effects in terms of a doubling in genetic liability (ln2) 

and a 10% increase (ln 1.1). In the main text we report estimates according to a doubling in 

genetic liability; inverse variance weighted estimates of the effect of a 10% relative increase are 

reported in the supplementary material.  

 

Estimates on the relative scale may therefore be interpreted as, for example, the causal effect 

on inpatient hospital costs of a doubling in genetic liability to coronary heart disease. Note that 

this is a relative rather than absolute increase, where the relative increase can be understood 

as an increase from possessing some risk-increasing alleles to more risk-increasing alleles.    

 

2.4 Data 

The principal source of our data is the UK Biobank, a large population-based prospective cohort 

that recruited over 500,000 adults aged between 39 and 71 over the period 2006-2010 (13–15). 

Participants provided data on demographic features such as date of birth, sex as well as a wide 

variety of phenotypic data. Approximately 9 million individuals registered with the National 

Health Service were invited to participate (16, 17). The participating cohort of over 500,000 
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individuals is generally “healthier and wealthier” (16, 41, 65) than the general UK population. 

We discuss some of the consequences of this feature of the UK Biobank cohort below.  

 

These data were linked to records of inpatient hospital care. We ascertained disease status 

(other than depression – see below) from self-report at recruitment interview (including of the 

general form “Has a doctor ever told you that you have had any of the conditions below?”) and 

from a review of ICD-9 and ICD-10 codes coded against inpatient hospital encounters that took 

place before the baseline visit. The diabetes cases were only those known to have Type 2 rather 

than Type 1 diabetes (66). 

 

The depression cases were defined (as in Tyrrell et al (67) and in Harrison et al (66)) as 

participants who self-reported seeing a doctor for nerves, anxiety or depression for a duration 

of at least two weeks, or who had ICD-9 or ICD-10 codes for depression. Only ten recruitment 

centres asked questions related to depression, and this reduced the size of the available sample 

(see Results below) relative to the other conditions. 

 

We studied non-cancer diseases with known genetic determinants, for which prevalence was at 

least 2% in the UK Biobank, and which accounted for at least 100 disability-adjusted life years 

lost per 100,000 adults in the UK (68). Diseases with less than three genome-wide significant 

SNPs were excluded from consideration, which resulted in the exclusion of osteoarthritis. The 

final set of diseases resulted in analysis sample comprising the following six diseases: asthma, 

eczema, migraine, coronary heart disease, type 2 diabetes and depression.   

 

Our outcome measure is inpatient hospital costs, for which a median of 6.1 years of follow-up 

was available. Episodes of hospital care were converted into healthcare resource groups, which 

are summary codings that group together similar types of care received. These codings account 

for diagnosis, procedures and complexities such as complications and comorbidities. Healthcare 

resource groups were calculated using an NHS algorithm (69) used for the remuneration of care 

provided in the public healthcare system. The healthcare resource groups so created were 

linked to published data on the per unit cost of each such group, allowing a per patient, per 

year hospital cost figure to be generated. Further details on this process are available in Dixon 

et al, (70, 71).  

 

We examined previous GWAS for data on variants associated with disease at genome-wide 

significance (P ≤ 5 × 10-8). The source GWAS data for each condition was as follows: asthma 

(Moffatt et al, (72)), coronary heart disease (Schunkert et al, (73)), major depressive disorder 

(Wray et al, (74)), Type 2 diabetes (Morris et al, (75)), eczema (Pasternoster et al, (76)), 

migraine (Gormley et al, (77)). The Wray et al (74) GWAS included individuals from the pilot 
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sample of UK Biobank, and we excluded these individuals in the two-sample analysis to avoid 

overlap between the GWAS and analysis samples.  

 

We cross-checked genome-wide significant variants against those measured in the UK Biobank 

cohort. In some cases we did not locate in UK Biobank the precise variant used in the external 

GWAS – the difference between the precise variant used typically arises because of the 

different technologies used to genotype different cohorts, and the areas of the genome 

searched. Where the genetic variant was not available in UK Biobank, we used a substitute 

variant with a high (R2>0.6) degree of correlation with the missing variant, or if no substitute 

could be found, we excluded the missing variant.  

  

We also created allele scores for each condition, also sometimes known as polygenic risk scores. 

The number of disease-increasing alleles was counted for each individual, then multiplied by 

the effect size, determined in the respective GWAS, for each allele a weighted per-allele effect 

was summed. This gives a weighted allele score, where the weights reflect the effect size of 

each allele.  

 

To avoid bias induced by differential ancestry,. For all models, we condition on sex, age and the 

first forty genetic principal components. The analysis sample was restricted to individuals of 

white British or closely related ancestry (determined by self-report and by examination of 

genetic principal components) to avoid bias from differential ancestry. Analyses were 

conducted in R (including with MR Base package (78)) and in Stata version 15.1 (StataCorp, 

College Station, Texas). Analysis code is available at github.com/pdixon-econ 

 

3 Results  

3.1 Introduction 

Up to 307,032 individuals were available for inclusion in the inferential analysis, of whom 54% 

were female (n=164,985). Mean age at recruitment in this sample was 57 years (SD = 8.0 years). 

The actual numbers available for the analysis of each specific condition were slightly lower than 

the overall total given the completeness of data on self-report of disease history at baseline and 

information available to identify cases in linked hospital records.  

 

Multivariable models, estimated using linear regression and adjusted for age, sex and study 

centre but without any genetic information, indicated substantial impacts on inpatient hospital 

costs of most diseases. This is summarized in Table 1. The coefficients represent the association 

of disease status with hospital costs. 
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Table 1 Multivariable estimates of association between disease status and 

annual inpatient hospital costs  

Effect estimate for change in 

disease status 

 

 

95% confidence interval 

Disease phenotype 
Asthma £137 £125 to £149 
Eczema  £5 -£21 to £30 
Migraine £45 £21 to £68 
Coronary heart disease £496 £477 to £516 
Type 2 diabetes £327 £308 to £347 
Depression £142 £122 to £162 
Note to table: These models adjust for age, sex and recruitment centre only.  

  

With the exception of eczema, all disease phenotypes are associated with material impacts on 

annual per-patient inpatient hospital costs. We emphasize that these models are minimally 

adjusted (accounting only for age, sex and centre) but the scale of some of these effects 

(particularly for coronary heart disease) is large relative to median (£88) and mean (£479) 

annual per-patient inpatient hospital costs. 

 

These estimates are likely to be confounded in various ways, particularly by omitted variables 

that influence both hospital costs and disease status. This possibility of confounding constitutes 

our motivation for considering more robust causal methods using genetic liability to disease, to 

which we now turn.   

 

We begin by considering the proportion of variance in the disease phenotype explained by 

respective allele scores (measured by pseudo-R-squared statistics obtained from unconditional 

logistic regressions) summarized in Table 2.  

 

Table 2 Cases, number of SNPs and strength of instruments 

 

N  

 

 

N of cases 

(%) 

N of 

SNPs 

% of variance 

explained by 

allele score in 

disease status 

F-statistic from first 

stage of 2SLS allele 

score model 

Disease phenotype  

Asthma 306,245 39,159 (12.8%) 8 0.53% 1,242 
Eczema  306,245 8,017 (2.6%) 12 0.37% 270 
Migraine 306,245 9,782 (3.2%) 33 0.54% 484 
Coronary heart disease 306,245 14,261 (4.7%) 15 0.43% 520 
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Type 2 diabetes 304,885 13,444 (4.4%) 13 1.1% 1,274 
Depression 92,830 18,760 (20.0%) 36 0.10% 93 
Notes to table: Depression is reported for fewer individuals than other phenotypes because not all Biobank 

recruitment centres asked individuals about depression and also because the principal source for these data (Wray 

et al (74)) included the UK Biobank pilot sample, information from which we have excluded to ensure 

independence of GWAS and analysis samples. Diabetes cases were limited only to those with Type 2 rather than 

Type 1 cases.  

 

Table 2 makes clear that the proportion of variance explained by available SNPs is modest, 

being less than 1% in all cases. However, the associated instrumental variables are unlikely to 

be affected by weak instrument bias given that the p-values associated with the first stage F 

statistic were <0.0001 for all diseases. Allele scores for each condition were not strongly related 

to sex for any condition, and only the type 2 diabetes score showed possible evidence of an 

association with age at recruitment (p-value=0.04).  

 

3.2 Main results 

Table 3 summarises the causal effect estimates and associated 95% confidence intervals for all 

six disease phenotypes as estimated using just-identified allele score 2SLS models. The betas in 

Table 3 reflect inpatient hospital costs per person per year of a (genetically influenced) change 

in case status from control to case.  

 

Table 3 2SLS allele score estimates  

 

    Beta   95% confidence interval 

Disease phenotype   

Asthma -£30 -£222 to £161 
Eczema  £621 -£239 to £1,482 
Migraine £786 £199 to £1,373 
Coronary heart disease £712 £238 to £1,186 
Type 2 diabetes £173 -£132 to £479 
Depression -£348 -£997 to £300 

 

Estimates for asthma, eczema, Type 2 diabetes, and depression were consistent with the null. 

Migraine and coronary heart disease were consistent with a large positive effect on costs. It is 

notable that confidence intervals are wide in all cases, reflecting the modest proportion of 

variance in disease status that is explained by each respective score.  

 

Stratification of the 2SLS allele score models by sex did not reveal any material differences to 

unstratified 2SLS models (Figure 1), although it is notable that effects for migraine may be most 

influenced by females cases, and effects for coronary heart disease by male cases.  
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Figure 1 2SLS allele score estimates stratified by sex  

 

 
 

 
 

  

Cochran’s Q statistic revealed some evidence of heterogeneity for all diseases, although the 

evidence for asthma is relatively weak. 

 

Table 4 Cochran’s Q statistic and heterogeneity by phenotype 

N of SNPs Q statistic 

 

 

Q p-value 

Disease phenotype   
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Asthma 8 8.6 0.28 
Eczema  12 16.9 0.11 
Migraine 33 38.2 0.09 
Coronary heart disease 15 26.7 0.02 
Type 2 diabetes 13 19.3 0.02 
Major depressive 

disorder 
                   36 

48.7 0.02 

 

Inspection of forest plots measuring the causal effect of each SNP for each condition reveals 

this heterogeneity. In Figure 2, heterogeneity is indicated by asymmetry about the lines of null 

effect. Some differences in the magnitude of effect are expected due to sampling variation, but 

more substantial heterogeneity is apparent.   

 

Figure 2 Forest plot of genome-wide significant SNPs for all conditions (scaled to reflect 

a 100% relative increase in genetic liability)  

 

 
 

Costs (£) per person per yearCosts (£) per person per year Costs (£) per person per year

Asthma Eczema Migraine
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To avoid imposing a sharp cut-off for “significant” evidence of heterogeneity, we conservatively 

apply various forms of pleiotropy-robust sensitivity analysis to all phenotypes. Consistency 

among estimators, and between the types of sensitivity analysis, offers some reassurance that 

similar causal effects are identified, irrespective of the type of assumptions made regarding 

violations of the exclusion restriction. Supplementary material presents scatter plots for all 

variant and conditions.  

 

Figure 3 summarises the results of for all conditions using all pleiotropy-robust methods. These 

forest plots contain point estimates and 95% confidence intervals on a condition-by-condition 

basis for the six diseases. These include both the full set of SNPs and restricted SNPs following 

removal of outliers identified by the radial methods described above.  

Figure 3 Comparison of summary estimators  

 

 
 

Costs (£) per person per year Costs (£) per person per yearCosts (£) per person per year

Coronary heart 

disease

Type 2 diabetes Depression
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Note to figure: IVW – inverse variance weighted.  

 

It is notable that effect estimates are similar within each disease regardless of whether some or 

all SNPs are included in conventional or radial Mendelian Randomization models. These 

estimates reflect per person, per year inpatient hospital costs on a relative scale: all estimators 

for all conditions imply modest effect sizes per doubling of relative genetic liability. The 

estimates of coronary heart disease are again more precise than for other disease.  

 

The split sample results for the allele score models are presented in Table 5. We did not identify 

sufficient genome-wide significant SNPs to calculate allele scores for depression.  

 

Table 5 2SLS allele score estimates from split sample analysis  

Beta 

 

 

95% confidence interval 

Disease phenotype   

Asthma £87 -£26 to £199 
Eczema  £510 -£50 to £1,069 
Migraine £116 -£610 to £841 
Coronary heart disease £1,123 £672 to £1,573 
Type 2 diabetes £222 -£25 to £470 
 

Comparisons between the results of the split sample with those of the main analysis are subject 

to a number of qualifications, particularly because these models comprise different sets of 

individuals. Confidence intervals for each phenotype overlaps in each analysis. Asthma has the 

smallest effect size in both the main analysis and the split sample analysis, while coronary heart 

disease has the largest effect size in the split sample analysis but only the second largest in the 

main analysis. We cannot calculate a Cochran Q value for the meta-analyzed split sample data 

given the differences in the SNPs identified as genome-wide significant in each sample. Overall, 
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there is little evidence of any gross difference between the split sample allele score results and 

those of the primary analysis.  

 

4 Discussion  

Our analysis was motivated by the important observation that the long-term consequences of 

various types of intervention can only be evaluated if the cost data used in those evaluations is 

unbiased. Confounding by omitted variables that jointly influence disease status and healthcare 

costs is likely to be the principal source of bias that affects existing methods for understanding 

these relationships. If the instrumental variable assumptions hold, our methods will produce 

unbiased estimates of the cost of increasing genetic liability to disease.  

 

We used the largest available genome-wide association studies to identify SNPs related to six 

prevalent chronic diseases that are each associated with substantial morbidity in the general 

population. Effect sizes estimated using Mendelian Randomization models of genetic liability to 

disease were larger than those obtained from simple linear models and were roughly 

concordant across different types of sensitivity analysis but were substantially more imprecise. 

The similarity of results obtained from different Mendelian randomization estimators offers 

some reassurance that the same causal effect was being identified even when assumptions 

regarding violations of the instrumental variable assumptions differed.  

 

We emphasize that our causal estimates are most appropriately interpreted as relating to 

liability to disease. It is possible in some cases that effect of liability on healthcare costs will be 

most relevant to a particular use of these findings; in other cases it may be less so. Nevertheless, 

there is an important direct link between disease liability and ultimate disease status. 

Interventions that reduce liability to the six diseases we study may reduce healthcare costs; for 

example, smoking cessation interventions may ultimately reduce the costs associated with 

liability to incident coronary heart disease, even in those individuals who do not develop that 

disease.  

 

Estimates were imprecise when considering either the just-identified allele score models, or the 

summary sensitivity analyses that rely on over-identified models using data on many individual 

genetic variants (including over-identified models that removed outliers), and in both the main 

analysis and the split-sample analysis. There was strong evidence of a substantial and 

economically meaningful impact of coronary heart disease status on costs, but much less clear 

evidence for the other disease phenotypes. No differences were apparent when 2SLS allele 

models were stratified by sex.  
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Confidence intervals were wide for most diseases and were consistent with both substantial 

positive and negative effects. This may be because of the modest proportion of variation in 

disease status explained by available SNPs (79). This contrasts with other work using continuous 

exposures in relation to hospital costs, for which statistical power will be greater, such as body 

mass index (58). Further GWASs to increase the number of SNPs and proportion of variance 

explained in these disease phenotypes will increase the power of this analysis, as will even 

larger data resources that link to resource use and cost data. Future studies with improved 

precision will clarify whether Mendelian randomization estimates do indeed imply larger effect 

sizes than those from the conventional multivariable adjusted models.   

 

A second mechanism that may have affected the size and precision of effect estimates is 

selection (41) into UK Biobank. This cohort is more educated, wealthier and has a more 

favourable risk profile for adverse health outcomes than the general UK population from which 

the study population was drawn. We cannot quantify the extent of this bias without knowledge 

of selection mechanism itself. Analyses of selection bias in (41, 42) in Mendelian Randomization 

studies suggest that other sources of bias (such as pleiotropy) will be more consequential, 

although relative magnitudes of bias will depend to some extent on study context.   

 

A further source of potential bias is geographic stratification in allele distributions that is not 

removed by conditioning on genetic principal components (38, 80). This can lead to 

confounding associated with environmental factors that differ by region. Again, the precise 

extent of this influence on our results is unknown, but merits consideration in their 

interpretation. Recent evidence on these magnitudes suggest that bias is likely to be modest 

given recent evidence indicating an absence of geographic structure in allele scores for all 

diseases other than coronary heart disease (81).  

 

The random allocation of genotypes that is the foundation of Mendelian Randomization is 

conditional on parental genotype, meaning that the randomization occurs within the family unit 

(15, 82-86). Dynastic effects (29) arise when the expression of the genetic variants in the 

parents affects disease status in the offspring independently of the child’s genome. For 

example, it could be the case that genetic associations of asthma are influenced by parental 

smoking behaviour. Causal analysis relying on these SNPs would wrongly attribute causal 

effects to the asthma SNPs alone, when in truth the effects of the environment were also 

material to the outcome.  

 

Within-family studies would offer the best source of evidence on possible dynastic effects. 

However, there are far fewer available samples of siblings meaning that within-family estimates 

are unlikely to be informative because statistical power would be much reduced relative to the 
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analysis of unrelated individuals that we report for our main analysis (87) (82). Likewise, data 

on family trios (parents and offspring) would help assess whether assortative mating is likely to 

bias (40) our Mendelian Randomization analyses of unrelated individuals. In practice, biases of 

this type may be less plausible for the types of diseases we study compared to traits such as 

BMI (88, 89) and education (90), for which some evidence of these types of effect has been 

identified.  

 

Our instrumental variable models estimated local average treatment effects of random 

allocation to lifelong liability to each of six diseases. Note also that Mendelian Randomization 

analyses may not comply with the stable unit treatment value assumption (SUTVA) of causal 

inference (19), which requires that there is a single version of the treatment analyzed. 

Treatment, in the present context, refers to liability to disease, and the assumption is violated 

because we do not know if a (hypothetical) manipulation of in individual’s genome to alter 

liability has an identical effect to other means of managing disease liability. For instance, 

various behavioral and socioeconomic factors are implicated alongside genetic influences in the 

etiology of coronary heart disease (91, 92). Our results estimating the causal effect form SNPs 

implicated in this disease do not necessarily correspond to the results that might be obtained 

from a hypothetical manipulation of these other risk factors through, for example, taking 

statins to manage the risk of heart disease.   

 

5 Conclusion  

We report a novel Mendelian Randomization analysis of the causal effect of liability to disease 

on healthcare cost. Our analysis demonstrates that this type of analysis is both feasible and 

informative in this context. Results were consistent with both large and small effects of disease 

on inpatient hospital costs. There was concordance across data sources and across methods 

bearing different assumptions. The modest precision of available data indicating genetic liability 

to prevalent long-term health conditions, and selection into the relatively healthy UK Biobank 

cohort, is likely to explain the imprecision, suggesting the absence of evidence rather than 

evidence of absence. These considerations will challenge future work research using data from 

these and similar cohorts, but nevertheless indicate the rich potential for future work.   
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