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Abstract 

Countries across the world are in different stages of COVID-19 trajectory, among which many 

have implemented the lockdown measures to prevent its spread. Although the lockdown is 

effective in such prevention, it may put the economy into a depression. Predicting the epidemic 

progression with government switching the lockdown on or off is critical. We propose a transfer 

learning approach called ALeRT-COVID using attention-based recurrent neural network (RNN) 

architecture to predict the epidemic trends for different countries. A source model was trained on 

the pre-defined source countries and then transferred to each target country. The lockdown 

measure was introduced to our model as a predictor and the attention mechanism was utilized to 

learn the different contributions of the confirmed cases in the past days to the future trend. Results 

demonstrated that the transfer learning strategy is helpful especially for early-stage countries. By 

introducing the lockdown predictor and the attention mechanism, ALeRT-COVID showed a 

significant improvement on the prediction performance. We predicted the confirmed cases in one 

week when extending and easing lockdown separately. Results showed the lockdown measures is 

still necessary for a number of countries. We expect our research can help different countries to 

make better decisions on the lockdown measures. 

Introduction 

The world is going through the COVID-19 pandemic. As of June 21, the cumulative case number 

has reached 8,952,419 and the total death number is up to 468, 392 around the globe1. The 

COVID-19 pandemic hit China in the late December of 2019 and then spread to countries in 

Europe and America2,3. Now it is accelerating in densely populated developing countries in Asia, 

Africa and South America. The current COVID-19 epidemiological situation alterts the world to 

be prepared for the global health crisis. Many countries have implemented lockdown measures to 

control the epidemic progression4–6 at different time (Fig. 1). Specific lockdown7–10 measures 

adopted included closing schools, churches, bars and other social venues, limiting travel and 
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public gatherings and even shutting down factories and business and staying at home. These 

interventions helped these countries reduce case numbers and mortality rate at different levels. 

Under the economic pressure11,12, some countries have lifted the lockdown measures and some are 

planing to. However, the epidemic progression may rebound once these controls are lifted. 

Therefore, forecasting the epidemic progression when the interventions start to be implemented or 

lifted is of crutial importance. Such prediction can provide valuable information for better 

understanding the current situation and help policy makers and health authorities make appropriate 

plans to manage the country. However, the challenge lies in making predictions for the countries 

in the early-stage of the COVID-19 pandamic, which are with too scarce data to train an accurate 

prediction model. 

There have been existing studies on predicting the spread of COVID-1913–17. Traditional 

epidemiology models, such as susceptible–infected (SI)17,18, SI recovered (SIR)19, and 

susceptible–exposed–infected–recovered (SEIR)20–23, analyze the infection rate based on the 

dynamic change in the number of infections and subsequently predict the spread and development 

trend of the epidemic. However, these models made strong assumptions on the infection dynamics 

and are appropriate to predict the long-term trend of the epidemic. Time series analysis models, 

such as autoregressive integrated moving average (ARIMA), have also been applied to predict the 

epidemic trends. ARIMA model can cover a wide range of patterns stationary to non-stationary 

and seasonal (periodic) time series, but their prediction performance is limited by their reliance on 

the prior knowledge of model parameters or inherent time-lags. Furthermore, these models do not 

account for additional factors that can impact the development of infectious diseases24. Recently, 

deep learning algorithms, such as recurrent neural network (RNN), have also been aplied to 

predict the epidemic progression15,21. These models are completely data-driven and do not reply 

on any prior assumptions. Although they have been demonstrated to be able to achieve prediction 

performance, they so require a large number of training samples due to their complex 

architectures25,26. The countries at early stage of COVID-19 only have limited data points, which 

makes it difficult to train a deep learning model sufficiently and achieve satisfactory performance.  

To control the spread of the epidemic, lockdown measures have been proven to be effective4,5,10. 

After the lockdown starts, its influence on the spread of the COVID-19 will change over time. In 

particular, during the first several days of lockdown, the trend of the epedemic may not change 

because of the existence of the incubation, after which the change will take place and become 

more and more obvious27. This means that different attentions should be paid to the lockdown at 

different time points. However, few prediction models have considered such time-varying impact 

of the lockdown, which results in poor performance.  

Our study in this paper is focusing on predicitng the epidemic spread trends in different countries 

with the governments switching the lockdown measurements. Specifically, we developed an 

attention-based RNN framework named ALeRT-COVID with transfer learning to to achieve the 

goal. We used the countries with rich data to build a source model (Fig. 2a) and transferred it to 

other target countries (Fig. 2b). Therefore, the prior knowledge learned from the source countries 

is transferred to complement the prediction for target countries. The attention mechanism was 

utilized to learn the time-varying impact of the previous case numbers on the final prediction. We 

evaluated the proposed model using mean absolute percentage error (MAPE) (Fig. 2c) and the 
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results demonstrated our method can make more accurate prediction compared with other baseline 

models. Our work can help different countries to make decisions on whether the lockdown could 

be lifted or extended (Fig. 2d).  

Figure 1. Timeline of COVID-19 dispersion of different countries and government responses. The start point 

of the X-axis is the date when China reported a cluster of COVID-19 cases in Wuhan, Hubei Province 

(2019-12-31). The length of the green bar denotes the days from 2019/12/31 to the date of the first reported cases 
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in each specific country. The length of the light pink bar denotes the days from the 1st case to reaching 1 case per 

million in each country. The dark pink bar denotes the days from the date of reaching 1 case per million to May 31. 

The x-coordinate of the black dot means the days from the start point to the start date of the lockdown measure. 

The x-coordinate of the black triangle means the days from the start point to the end date of the lockdown measure. 

Among the countries which were still under lockdown before May 31 (no triangle presents in the corresponding 

panel), Indonesia, Singapore and United States had announced their lockdown end date as July 31, June 1 and June 

1 respectively. 

 

Figure 2. Schematic representation of the computational steps of ALeRT-COVID. a, The source model was 

trained on the source set constructed from the source countries. b, The source model was fine-tuned on each 

training set contructed from the correspomding target country. c, The fine-tuned model (target model) was 

validated on each test set contructed from the correspomding target country. d, The target model was utilized to 

predict the future CCPM (Confirmed Cases per Million) for the countries once the goverments switch the 

lockdown measures.  
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Result 

Data Description 

The data sources used in our study include the daily reported COVID-19 cases28 (update on 

May 31), the lockdown timeline29 and populations30 of 83 countries all over the world. These 

data were last updated on May 31, 2020. As the population sizes in different countries vary by 

a large range, we used the confirmed cases per million people (CCPM) in each country to 

estimate the severity of the epidemic. The date when the cumulative CCPM number reached 

one was used as the starting date for each country in our experiment. As the trends of Hubei 

and other parts of China displayed very different patterns, we treated them as two different 

areas in our data. For the countries reporting negative new daily cases due to the updated 

diagnositic critiera, we flatten their curves by using the average number of the neigbouring 

days.   

The timeline of the COVID-19 progression for the 83 countries is illustrated in Fig. 1. As of 

May 31, the days since these countries announced the first COVID-19 cases range from 60 to 

152 with an average number of 98. These countries implemented the lockdown measure at 

different periods, ranging from -7 to 82 with an average value of 27 days from the date of the 

first case in each country. Specially, the negative value -7 is corresponding to El Salvador, 

which started lockdown before the start of the epidemic. For the countries which had lifted 

lockdown as of May 31, the average length of the lockdown period is 47 days (min: 4 days; 

max: 127 days). Twenty countries are still under lockdown by May 31, among which 17 

countries had not announced the date for lifting the lockdown.   

The source countries are defined in our study as they have suffered from the epidemic for 

more than 84 days and lifted lockdown for more than 14 days. Finally, twelve trends of eleven 

countries, including Austria, China (except Hubei province), Hubei province, Croatia, 

Germany, Italy, Japan, Lebanon, Monaco, Norway, Oman and United Arab Emirates meet this 

criteria. Then the source set was constructed from these source countries and the 72 target sets 

are constructed from the other 72 countries (detailed in methods).  

Overall Predictive Performance of ALeRT-COVID 

ALeRT-COVID first built the source model based on the CCPM sequences constructed from 

the source countries (detailed in Methods). Then the source model was transferred to each 

target country through a fine-tuning process. In order to evaluate the benefits of the three 

components in ALeRT-COVID, which are and 1) transfer learning 2) the lockdown 

information, and 3) attention mechanism, we also developed four baseline models for each 

target country.  

• Linear regression model: A linear regression model with 7 predictors taking the 

cumulative CCPM values of the previous 7 days as input.  

• Model A: using only the previous cumulative CCPM (confirmed cases per million 

people) as the predictor and training it directly on each country without transfer 
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learning;  

• Model B: using only the previous cumulative CCPM as predictor and fine tune the 
transferred source model;  

• Model C: add the lockdown measure as an additional predictor for model B; 

Mean absolute percentage error (MAPE) was utilized to evaluate the prediction performance. 

The most recent 20% cumulative CCPM numbers of each target country was used as the test 

sets to calculate the MAPE. Table 1 listed the overall MAPE scores on the 72 target countries. 

The mean MAPE was 0.118 (s.d. = 0.298) for the linear regression model. The standard 

deviation was large because the COVID-19 dispersions of some countries went far away from 

the linear pattern, which disagreed with the assumption of linear regression. The linear 

regression model therefore performed significantly worse for these countries. The mean 

MAPE was 0.100 (s.d. = 0.087) for model A (no transfer). The models using transfer learning 

(B, C and ALeRT-COVID) achieved improved predictive accuracies compared to model A. 

Among them, ALeRT-COVID, achieved the least mean MAPE score of 0.050 (s.d. = 0.040). 

Among all 72 target countries, 88.9% obtained MAPE scores less than 0.1 by ALeRT-COVID. 

These results demonstrated that the three components in ALeRT-COVID all helped enhance 

the prediction performance.  

Table 1. Summary Statsitics of MAPE on the test sets of 72 target countries by different 

models 

 Linear regression model A model B model C ALeRT-COVID 

Mean 0.118  0.100  0.077  0.060  0.050  

STD 0.298 0.087 0.088 0.057 0.040 

# MAPE<0.1 53 49 55 58 64 

Prediction accuracies for countries lifting lockdown at different time 

We selected three representative countries which lifted lockdown at different time periods to 

further demonstrate the effectiveness of adding the lockdown variable into the trend prediction 

model (Fig. 3). For Netherlands, their authorities have announced easing lockdown from May 19 

(Fig. 3a), ALeRT-COVID yielded the best MAPE (0.007) compared to the other three models 

(model A: 0.020; model B: 0.02; model C: 0.033) on the test set. The predicted cumulative CCPM 

on May 31 by the model A (no transfer) and B (transfer) was much smaller than the ground truth. 

This was mostly because the model A and B did not consider lockdown and thus could not deal 

with the situation once the lockdown measure changes. In contrast, ALeRT-COVID and model C 

have incorporated the lockdown information, and thus produced much more precise predictions. 

Furthermore, ALeRT-COVID can predict better than model C, which suggests the benefits from 

the attention mechanism. For Singapore (Fig. 3b), although it announced lifting lockdown on the 

June 1, one day after May 31, ALeRT-COVID still yielded the best MAPE (0.034) compared to 

the other three models (model A: 0.259; model B: 0.062; model C: 0.058) on the test set. These 

result suggested that ALeRT-COVID could capture the pattern of the CCPM trend more precisely 

for countries lifting lockdown at different time periods.   
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Fig. 3 | Prediction of the cumulative CCPM on May 31 for two representative countries that had 

announced the final date of the lockdown measure. The red points were the true cumulative CCPM 

on each day. The dashed vertical line represented the end date of the lockdown. The cumulative CCPM 

values and the lockdown information during May 18 to May 24 were input to the fine-tuned target 

model to predict the cumulative CCPM in seven days (May 31). The green, yellow, orange and blue 

points denoted the predictions of four different models.  

Predicting the change of the new case number when the lockdown measure is 
switched 

We also used ALeRT-COVID to estimate the change of the new case number within 7 days by 

switching the lockdown measures. Specifically, for each specific country, we predicted two new 

case number during the period between June 1 to June 7: one was based on the actual lockdown 

measure ������������  and the other was based on the switched lockdown measure 

(���������	
��. The change of the new case number within 7 days by switching the lockdown 

measures was calculated as 

��	
�� �  ����������	
� � ����������
� ����������
⁄  
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We chose two kinds of countries to do this analysis. The first group was composed of the countries 

that were still under lockdown until May 31 (Fig. 4a,b). The second group consisted of the 

countries that had lifted lockdown before May 25(Fig. 4c,d). The result demonstrated that the new 

case number from June 1 to June 7 of these target countries would increase or decrease to 

different extents.  

For those still under lockdown (Fig. 4b), once reopening, the new case number would raise. 

Specially, Brazil and Chile may suffer a doubled number of new cases in one week once the 

lockdown was lifted. This was mostly because these countries were in the rapid-growth phase 

of the epidemic (Fig. 5a,b). Lockdown measure took a crucial effect on controlling the 

epidemic progression. In constrast, lifting lockdown took moderate effect on some countries 

such as Israel and Luxembourg (Fig. 5c,d), because the new case number per day of these 

countries had decreased for a while.  

For countries that had already lifted lockdown before May 25 (Fig. 4d), resuming or 

extending the lockdown measure could reduce the new case number. Particularly, the new 

case number of Nepal and Boliva between June 1 to June 7 might decrease by half if they 

remained lockdown. This is mostly because the cumulative CCPM of both countries 

continued steady increase (Fig. 5e,f). Lockdown measure still helped to large extent in 

controlling the spread of the COVID-19. On the contrary, for countries like Australia and 

Thailand (Fig. 5g,h), as the new case per day was decreasing, there were no big difference 

between extending and lifting the lockdown in our predictions.  
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Fig. 4 | Change of the new case number in one week brought by switching the lockdown 
measure. a) Increasing percentage of the new case number in one week (June 1 to June 7) 

brought by lifting lockdown from May 25. b) Decreasing percentage of the new case number 

in one week (June 1 to June 7) brought by keeping lockdown during May 25 to May 31. The 

color of the cell in the heatmap represented the predicted new CCPM during June 1 to June 7 

by ALeRT-COVID given the actual lockdown information. (����������: predicted new case 

number based on the actual lockdown; ���������	
� : predicted new case number based on 

switched lockdown;) 
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Fig. 5 | Cumulative CCPM Curve of eight countries. (a,b,c,d) Brazil, Chile, Israel and 

Luxembourg, which were under lockdown during May 25 to May 31. (e,f,g,h) Nepal, Bolivia, 

Thailand, Australia, which reopened during May 25 to May 31. Darker color of the point 

denoted larger new CCPM per day. 

Discussion 

We proposed a deep learning approach named ALeRT-COVID to predict the COVID-19 

spread trend of different countries around the globe. There were three main novelties in our 

approach. First, we utilized transfer learning31 to deal with the insufficient-data problem of the 

countries in the early-stage of the COVID-19. Second, we added the lockdown information 

into the predictors of the proposed model. This enabled ALeRT-COVID to capture the effect 

of the lockdown measure and more precisely forcast the change of the future case number 

when the lockdown measure switches. Third, ALeRT-COVID utilized the attention 

mechanism32 to capture the contribution of previous CCPM numbers on the trend, which greatly 
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enhanced the model as reflected on the improvement of its prediction performance. In the 

following we expand these three points with more details. 

Transfer learning31 can help enhance the deep learning based prediction models especially for 

countries without sufficient data due to the early-stage epidemic. There have been existing studies 

applying deep learning algorithms to predict the epidemic progression in specific countries15,21,33. 

However, they all trained the model directly on the data from these countries. Although deep 

learning models can achieve much more accurate results, they often require a large amount of data 

points to train the model, which is difficult for the early-stage countries who just started the 

COVID-19 crisis for a short time. In contrast, transfer learning mechanisms built the source model 

based on the source countries with enough training points and then fine-tuned its parameters to 

better fit the specific target country, which greatly reduced the amount of required training data 

samples from the target countries with the prior knowledge learned from the source countries31,34. 

As an example in our results, among the early-stage countries, Sierra Leone underwent the 

epidemic for 52 days from the date when the cumulative CCPM reached 1, with inadequate 

samples in the training set. It gained a MAPE score of only 0.202 for models without transfer 

learning, while transfer learning improved the performance significantly (model B: 0.058; model 

C: 0.047; ALeRT-COVID: 0.041).  

Lockdown measures have been proved to play an important role in controlling the rapid growth of 

CCPM 8,35,36
 Adding the lockdown information could boost the model performance especially for 

the time points after lifting the lockdown measures. As illustrated in our results, model A and B, 

which did not use the lockdown information, predicted significantly lower CCPM values than the 

ground truth for Canada and Netherlands after they lifted the lockdown measure on May 4 and 

May 19 respectively (Fig. 3a, b). As most of the training data of model A and B was from the 

previous CCPMs under the lockdown, the model trained on them were unable to learn the logical 

trend when lockdown has been lifted. Consequently, their predictions still followed a slow growth 

course even the country has lifted lockdown already for more than ten days. In contrast, Model C 

and ALeRT-COVID, which incorporated the lockdown infromation could produce much closer 

predictions to the ground truth.  

In addition, ALeRT-COVID added the attention mechanism to better capture the contribution of 

the previous CCPM numbers on the future trend. In our expereriments, we utilized the cumulative 

CCPM of the last seven days to predict the CCPM in one week. In real world situations, the 

previous case number and the lockdown measure in the past days have different impact on the 

epidemic progression. Without the attention mechanism, the previous case of each day are 

assumed to have the same effect on the future trend, which may not be true. The attention 

mechanism allows these previous case numbers to have differential impact on the future 

predictions, which makes the model more flexible and thus leads to more accurate predictions. 

More importantly, having the lockdown measure can also help predict the impact on the epidemic 

progression by changing such control policy. We used ALeRT-COVID to predict the new CCPM 

for certain countries from June 1 to June 7 supposing if they have released the lockdown (still 

under lockdown in fact) or extended lockdown (reopening already in fact) during May 25 to May 

31 respectively.   
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Once lockdowns have been lifted, we found that the new case number in one week would increase 

significantly for countries such as Brazil and Chile. They would suffer a double number of new 

cases in 7 days once the lockdown was lifted. This is mostly because the epidemics in these 

countries are still in rapid growth. Because of the critical role of lockdown in controling the spread 

of COVID-19, these countries should consider extending their lockdown measure for a longer 

time. In contrast, lifting lockdown would not cause a significant increase to the COVID-19 spread 

for countries like Israel and Luxembourg because the epidemics in these countries had already 

entered into a gentle phase. In other words, the number of new cases per day had been decreasing 

for a while. It is safer for these countries to consider releasing the lockdown measure shortly to 

recover the economy. Similar patterns were presented in the countries which had lifted the 

lockdown as of May 25. For countries like Nepal and Bolivia, although they were still 

undergoing a fast increase of the number of cases, the lockdown had been lifted on May 7 and 

May 10 respectively. From our prediction, the number of new cases within seven days could be 

reduced to about fifty percent if these countries remained lockdown. For countries such as 

Thailand and Australia, whose COVID-19 spread trends had already entered into a gentle phase, 

showed no significant decrease of the new case number when extending the lockdown measure. 

Therefore, our results indicate that it is important to keep the lockdown for the countries that still 

undergoes a rapid gowth of the case number, it may be a better choice to extend or resume the 

lockdown measure, and it is relatively safer to release the lockdown measure for the sake of 

economy recovery for the countries with decreasing number of new cases. 

There are several limitations of our research. First, the lockdown measure was modeled as a 

binary variable representing the lockdown is on or off. However, different countries conducted 

different levels of the lockdown. Even within the same country, such as United States, different 

states had different lockdown measures. A more fine-grained quantification of the lockdown 

measures may enhance the prediction performance. In addition, more related information could be 

introduced to the model such as the number of recovered cases, death cases, available healthcare 

resources, etc. Although the proposed method aims at predicting the cumulative case numbers, the 

prediction targets can be conveniently changed to the number of recovery or death cases.  

In conclusion, our predictions provide valuable data-driven insights for better understanding the 

current situation and could help policy makers and health authorities make plans to manage the 

future situation. 
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Figure 6. Architecture of ALeRT-COVID. 

Methods 

Constructing source and target sets 

We denote the orginal data set associated with each specific country i as , C stands 

for the cumulative CCPM data and L represents the lockdown data. , , 

. corresponds to the date when the cumulative CCPM number reached 1. 

 equals to the number of days from date of t=1 to May 31 in our experiment. Given an 

observation window W and a prediction window P, ALeRT-COVID takes 

 as input and predict the output value , 

. We construct } for each specific country. 

Specifically, we set both the W and P to 7 days in our paper but they can be changed to other 

values. 

The source set  is obtained by merging the  from all source countries or area (Austria, China 

(except Hubei province), Hubei province, Croatia, Germany, Italy, Japan, Lebanon, Monaco, 
Norway, Oman and United Arab Emirates). The target set  is constructed from the target 

country . Finally, we construct one source set composed of 893 samples and 72 target sets 
consisting of different number of samples ranging from 32 to 104.  
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Architecture of ALeRT-COVID 

The architecture of ALeRT-COVID is illustrated in Figure 6. There are two main components 

in ALeRT-COVID, aiming to encode the previous CCPM sequence and incorporate the effect 

of the lockdown measure into the prediction respectively. In the following descriptions, we 

omit the country index i as the superscript for notation simplification.  

The standard Long-Short-Term-Memory (LSTM)37 is employed to encode the CCPM 

sequence data. More specifically, LSTM generates hidden states �� based on the history �����,�� for any � � �� � 	, ��, where � � �	, �	
� � 
�. The hidden states ����
,�� are 

then sent into MLP to learn the attention32 weights ����
,�� for identifying which time steps 

influence most on the final prediction. The encoded CCPM sequence is thus obtained by ∑ ��� � ���� ����
,�� . 

The effect of the lockdown measure on the final prediction is learnt by an MLP taking both 
the lockdown sequence ����
,�� and the CCPM sequence ����
,�� together as input. The 

output of the MLP is denoted as ��.  

Then the final output is ∑ ��� � ���� ����
,�� � ��. We use the mean square error (MSE) to 

calculate the final loss. 

� � � � � ��� � ���
� ����
,��

� �� � �����
�

�

��


 

where � �  �	
� � 
.  

Model configurations and Training details 

Source model 

Given the observation window W=7 days, we train an LSTM of length 7. We explored different 

hyperparameters. We tried different number of LSTM layers from {1, 2, 3}. We also explored 

different numbers of nodes in the LSTM cell that gradually increases from 2,4 to 10. The 

activation functions of the LSTM include hyperbolic tangent (tanh) and rectified linear unit 

(ReLU). The number of attention layers is set to 1. The activation function is softmax. The 

number of layers of the MLP for lockdown effect is set to 1 and the activation function is 

selected from {tanh, ReLU}. Particularly, we use the “weight constraints” in Keras38 to force 

the weights corresponding to the lockdown vector to be non-positive. We do this because the 

positive weight of the lockdown vector demonstrates that implementing the lockdown measure 

will raise the future CCPM number, which is unlikely to happen in reality. The optimizers 

include ADAM39, Stochastic Gradient Descent40and RMSProp41. The batch size varies from 16, 

32, and 64. For the source model, we use 5-fold cross validation on the source set to find the 
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optimal hyperparameters from the above settings. Finally , the source model uses ADAM 

optimizer, ReLU activation in LSTM, ReLU activation in MLP for lockdown effect and batch 

size of 32.  

Target model 

Each of the target set is split into a training part (first 80%) and a validation part (last 20%). 

After training the source model on the source set, we adapt it to each target training set. The 

architecture of the source model remains the same during transfer learning. We freeze the 

LSTM parameters in the source model and re-trained (fine-tuned) other paramters in the MLP 

for lockdown effect and the attention layers on the training part of ��. We use the ADAM 

optimizer and batch size of 4. 

Baseline Models 

Here we present the architecture of the baseline models we compared in our experiments. 

• Model A: LSTM with a fully-connected layer as the output layer. The architecture of the 

LSTM is the same with that in ALeRT-COVID. The input of model A for a specific country i 

contains only the CCPM sequence ��
����,��. The model is trained directly on the training part 

of the target set without transfer learning. 

• Model B: LSTM with a fully-connected layer as the output layer. The architecture of the 

LSTM is the same with that in ALeRT-COVID. The input of model B for a specific country i 

contains only the CCPM sequence ��
����,��. Transfer learning is utilized. A source model is 

constructed first on the source set and an target model is obtained by fine-tuning the parameters 

of the last fully-connected layer on the training part of the target set. 

• Model C: LSTM with a fully-connected layer as the output layer. The architecture of the 

LSTM is the same with that in ALeRT-COVID. The input of model C for a specific country i 

contains both the CCPM sequence and the ���
����,�� , ��

����,���. Transfer learning is utilized. A 

source model is constructed first on the source set and an target model is obtained by 

fine-tuning the parameters of the last fully-connected layer on the training part of the target set. 

Model Evaluation  

All the compared models are evaluated on the validation part of each target set by the mean 

absolute percentage error (MAPE), which is defined as follows, 

��
 � 1�	
� � 
 � 	 � 1 � |#$%&��� � ����| ����⁄
���
,�������

 

where #$%&��� is the predicted cumulative CCPM at the time point t+P, ���� is the ground 

truth. 
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Data & Code availability 

Data & Code for the ALeRT-COVID model is available at 

https://github.com/wcmwanglab/ALeRT-COVID.The data sets of all the source countries and 

several sample target countries can be obtained from the GitHub link. All other data may be 

obtained upon request to the authors or downloaded from 

https://www.worldometers.info/coronavirus/#countries. 
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