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ABSTRACT 

The field of radiomics is at the forefront of personalized medicine. However, there are concerns 

regarding the robustness of its features against multiple medical imaging parameters and the 

performance of the predictive models built upon them. Therefore, our review aims to identify 

image perturbation factors (IPF) that most influence the robustness of radiomic features in 

biomedical research. We also provide insights into the validity and discrepancy of different 

methodologies applied to investigate the robustness of radiomic features. We selected 527 

papers based on the primary criterion that the papers had imaging parameters that affected the 

reproducibility of radiomic features extracted from computed tomography (CT) images. We 

compared the reported performance of these parameters along with IPF in the eligible studies. 

We then proceeded to divide our studies into three groups based on the type of their IPF: (i) 

scanner parameters, (ii) acquisition parameters and (iii) reconstruction parameters. Our review 

highlighted that the reconstruction algorithm was the most reproducible factor and shape along 

with intensity histogram (IH) were the most robust radiomic features against variation in imaging 

parameters. This review identified substantial inconsistencies related to the methodology and 

the reporting style of the reviewed studies such as type of study performed, the metrics used for 

robustness, the feature extraction techniques, the image perturbation factors, the reporting style 

and their outcome inclusion. Finally, we hope the IPFs and the methodology inconsistencies 

identified will aid the scientific community in conducting research in a way that is more 

reproducible and avoids the pitfalls of previous analyses. 
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INTRODUCTION 

Computed Tomography (CT) is the modality of choice for the depiction, diagnosis and 

monitoring of many diseases in the body. Having the ability to provide consistent high-resolution 

images ushers the way for CT to have extended applicability in medicine such as diagnostic, 

prognostic, quality assessment (QA), and dose calculation in radiotherapy (Liguori et al. 2015). 

Moreover, the number of possible applications continues to grow because of the innovative 

ways researchers have designed to extract new, potentially clinically-relevant features from 

radiological images (Liu et al. 2019). 

Advances in the field of artificial intelligence resulted in introducing decision support 

based on quantitative image descriptors, as a new tool to assess medical images beyond the 

narrow visual inspectors. The main idea behind this new research field, called radiomics, is that 

advanced analysis of images can noninvasively amplify clinical prognostic nomographs, 

correlate imaging phenotypes with genomic and proteomic signatures, and subsequently reform 

clinical decision making. Although several challenges remain for bringing radiomics into daily 

clinical practice, radiomics signatures increasingly become a critical component of precision 

medicine for the integration of image-driven data towards a more personalized treatment in the 

near future. (Afshar et al. 2019; Hosny et al. 2018). 

As the radiomics field matured, it became apparent that the main drawback of radiomic 

features is their low reproducibility to variation in acquisition and reconstruction settings which 

may affect the generalizability of any models built upon those features (Duda, Kretowski, and 

Bezy-Wendling 2013; Kumar et al. 2012; Zhao et al. 2016; Traverso et al. 2018; Solomon et al. 

2016; Yamashita et al. 2019). The effect of variation of image acquisition on the reproducibility 

of radiomic features has been found greater than that of segmentation (Yamashita et al. 2019) 

and interobserver variability (Choe et al. 2019). This variation affects the information being 

extracted by image feature algorithms, which in turn affects classifier performance and is of 

paramount importance to ensure the successful application of CT-derived radiomics in the field 

of oncology (Shafiq-Ul-Hassan et al. 2018; Park et al. 2020). Consequently, we must treat the 

reported performance of radiomics-based models with caution (Mackin et al. 2015) and 

quantitative changes may be primarily due to acquisition variability rather than from real physio-

pathological effects (Andrearczyk, Depeursinge, and Müller 2019). CT-derived radiomic features 

have intrinsic dependencies on voxel size and number of gray levels, which shows their 

application is highly dependent on careful selection of the nominal voxel size and the number of 

intensity bins (Shafiq-Ul-Hassan et al. 2017 (1); Larue et al. 2017; Lee et al. 2019). For 
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instance, the type of binning and number of bins significantly affected radiomic parameters 

extracted from coronary artery plaques (Kolossváry et al. 2018). In other words, post-processing 

setting, i.e bin size in intensity normalization or voxel size in voxel rescaling, should be adjusted 

depending on the type of radiomic feature, imaging factor, organ and clinical outcome. In 

addition, the numerical values of radiomic features showed to be highly correlated with tumor 

volume and voxel resampling was not sufficient to remove this correlation (Shafiq-Ul-Hassan et 

al. 2017). One can eliminate this dependency only by including the number of voxels in feature 

definitions (i.e., feature normalization) (Shafiq-Ul-Hassan et al. 2018). One possible solution 

would be to focus on the imaging parameters that affect the robustness of radiomic features. 

We refer to these non-reproducible imaging factors as imaging perturbation factors (IPFs). 

Having known the IPFs, we must select the radiomics features robust to them. However, this 

action requires deep knowledge about these IPFs and their related robust features. In this 

review, we investigate the IPFs, as well as the least and the most affected radiomic features 

associated with them. This review aims to provide insights into the validity and the discrepancy 

of different methodologies applied to investigate the robustness of radiomics features.  

 

 

MATERIALS AND METHODS 

 

Literature Search 

We conducted this review from April to July 2020. Reporting complies with the PRISMA-

P Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (Moher et al. 

2015). The articles included met all the eligibility criteria given in the subsequent paragraphs. 

We included only peer-reviewed English full-text reports available in journals that presented full 

results of reproducibility tests on radiomic features. We intend to have all the articles that match 

the inclusion criteria, defined in the material and methods section, presented in a statistical 

analysis of reproducibility study of just CT-based radiomics models. We only included articles 

that had at least one of the following search words in their titles or abstracts: Radiomics AND 

(Repeatability OR Reproducibility OR Robustness OR Stability OR Perturbation factor OR 

Perturbation parameter) specified in their search string. We admitted all PubMed search results 

up to July 2020.  
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Eligibility Criteria and Study Selection 

The included articles must include the following eligibility criteria: have radiomics 

features extracted from CT images, be reproducibility studies, and focus on the reproducibility of 

image perturbation factors. We excluded 558 studies for reasons such as: being review articles 

or the studies using other imaging modalities other than CT. Furthermore, we excluded 

repeatability or test-retest studies because they do not evaluate inter-scanner dependency or 

the impact of imaging parameters, either of which could affect the results of the study. We also 

included features or feature sets that were found to be (non)robust in regards to the factors 

under study. The studies included also had to report at least one or more of the following 

quantitative outcomes of interest: variability of radiomic features with respect to Image 

acquisition parameters, scanner type, and Image reconstruction.  

We also screened the Cochrane Database of Systematic Reviews for any previous 

systematic reviews addressing the reproducibility of CT-based radiomic features. For all the 

articles obtained where we used the full text for data extraction, we screened the bibliographic 

references within them for potentially eligible studies. The researchers downloaded these 

electronic full-text articles using university library subscriptions. 

 

Data Extraction and Synthesis 

We extracted information in the studies, including the subject (patient or phantom), the 

number of cases, the type of organ, the clinical implications for human studies and the type of 

phantom for phantom studies. We noted the study type (retrospective or prospective) and the 

model of CT scanner used as well as any image acquisition and reconstruction parameters 

explicitly stated in the text. We noted the total number of radiomic features tested and grouped 

these features according to their Shape features, Intensity histogram (IH), higher-order textural 

features (GLCM, RLM, GLSZM, GLDZM, NGTDM, NGLDM) and their transformation (LoG, 

wavelet, Gabor, Sobel, Law). Complete list of the abbreviations used in this article has been 

presented in supplementary table 1. We also classified features based on 2D or 3D extraction. 

Within our classification, we considered features like ROI size (e.g., volume), shape (e.g., 

eccentricity, compactness), boundary shape (e.g., shape index), sharpness (e.g., sigmoid slope) 

as shape features. In addition, we also recorded the details of the software used to 

quantitatively extract radiomic features, as well as the statistical methods used. We extracted 

information regarding the type of metric used to report feature robustness. Three main metrics 

are intra-class correlation coefficient (ICC), concordance correlation coefficient (CCC), and 

Coefficient of Variation (COV). COV is the ratio of the standard deviation to the mean. ICC and 
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CCC are very similar metrics. ICC evaluates the clustering of features from several classes 

using the correlation of features within classes and CCC measures the agreement between two 

variables.  

 

 

 
Figure 1. The PubMed search yielded 597 abstracts for screening against our selection criteria, 

reduced to 38 eligible for full text. The full text was retrieved for 37 abstracts deemed suitable for in-
depth evaluation, including 5 that were located in the references of retrieved studies 

 

 

RESULTS 

The PubMed search yielded 597 abstracts, including 38 eligible studies that reported the 

effect of imaging parameters on the reproducibility of radiomic features extracted from CT 

images and/or features or feature sets found (ir)reproducible to the factors under study. We 

retrieved the full text for 42 abstracts deemed suitable for in-depth evaluation, including 4 

located in the references of retrieved studies (Figure 1). After full-text evaluation, 7 studies were 

further excluded because, despite their title and abstract, they did not meet the inclusion criteria. 

We derived a qualitative synthesis from 35 studies, of which 20 studies used retrospective 

human data, and 15 used prospective phantom data.  

The vast majority of retrospective human studies addressed the reproducibility of CT-

based radiomic features in cancers such as lung (76%), liver (12%), head and neck (4%), rectal 

(4%), and pancreatic (4%) (Figure 2A). The number of patients reported in the retrieved studies 
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ranged from 10 to 104, however on average, the studies included 40 patients. Amongst these 

studies, only one used cone-beam CT (CBCT); all others used planning or diagnostic CTs. All  

 
Figure 2. Reviewed studies based on type of organ studied in human studied (A), common phantom 
type in phantom studies (B), software used for feature extraction (C), metric used to report features 

reproducibility( D), distribution of the total number of features extracted (E) and feature dimensions (F) 
 

 

prospective studies used different types of physical radiomic phantoms. Amongst the 15 

prospective phantom studies, Credence Cartridge Radiomics (CCR) Phantom developed by 

Mackin (Mackin et al. 2015) was the most common phantom used (58%) followed by 

Anthropomorphic (30%), CT texture analysis (CTTA) (6%) and water phantom (wp) (6%) (Figure 

2B).  

 

Image perturbation factors 

We grouped the Image perturbation factors (IPF) into 3 classes: (i) scanner; (ii) 

acquisition (including patient-related parameters); and (iii) reconstruction (Supplementary Table 

2). The frequency of reporting a specific imaging parameter was depicted in figure 3.  The 

scanner studies are those studies that only focused on the effect of different CT scanners 

disregarding any specific acquisition or reconstruction parameter. Out of the selected studies, 

17 publications investigated the effect of reconstruction factors alone or in combination with 
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acquisition parameters and manufacturer dependency (Supplementary Table 3). We then 

evaluated the acquisition parameters in 4 of the studies. Similarly, another 3 studies evaluated 

scanner dependency (Table 3). None of these studies were prospective because of concerns 

over repeated patient exposure to radiation without expected therapeutic benefits. 

The studies reported some features individually against specific imaging parameters: 

GLSZM-SAE (slice thickness) (Larue et al. 2017), GLRLM-SRE (respiration) (Lafata et al. 

2018), GLCM-dissimilarity (slice thickness), IH-Kurtosis, LGRE(mAs), IH-Correlation 

(reconstruction kernel) (Midya et al. 2018), gray�level GLRLM-nonuniformity(motion), IH-

skewness(Scatter) (Fave et al. 2015), GLCM-sumAverage(slice thickness) (Duda, Kretowski, 

and Bezy-Wendling 2013). A short list of recommended features deemed robust against the 

imaging parameter under investigation is reported on the supplementary table 4. Among the 

imaging factors, reconstruction algorithm (5 out of 7 papers) and slice thickness (3 out of 5 

papers) were both reported to be mostly reproducible against the other factors under study. 

Pitch and mAs were each reported once to be both reproducible and non-reproducible. Within 

the reported factors the majority were non-reproducible most of the time (reconstruction kernel) 

or at least once (KVp, noise, respiration, FOV, windowing, injection, and pixel size) in the 

reviewed studies. The following sections discuss details of each groups of IPF separately: 

Scanner dependency was evaluated only on two phantom studies. In these studies, the 

researchers used CCR phantom images from different scanners by different manufacturers with 

various tube voltages, tube currents (Yasaka et al. 2017), pixel spacing, pitch thickness, slice 

thickness, reconstruction kernel and dose level (Mackin et al. 2015) to mimic routine imaging 

protocols. These studies used different feature extraction software (IBEX (Zhang et al. 2015) vs. 

TexRAD™(Feedback plc, Cambridge, UK)), evaluation metrics (ICC vs mean and SD of the 

HU) and feature sets (first-order statistics alone vs first-order statistics plus NGTDM texture 

features). They concluded that they should consider scanner dependency since most features 

have significant scanner dependency and they have to consider and minimize their effects in 

future radiomics studies. The variation of these features in the phantom images are due to 

fundamental design differences of the scanners and/or differences in acquisition parameters. It 

is noteworthy to mention that different CT scanners have been proven to have variation in their 

Hounsfield units even with the same acquisition parameters (Varghese et al. 2019; Shafiq-ul-

Hassan et al. 2017). Perrin et al. showed that utilizing images from different scanners reduced 

the number of liver tumor-derived robust features (CCC>0.9) from 75 to 35 (out of 254) (Perrin 

et al. 2018). However, Mackin et al. reported that variations of radiomic features among different 

scanners were found to be similar to their variation among 20 NSCLC patients stating 
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Busyness-NGTDM and strength-NGTDM the most and least robust features respectively 

(Mackin et al. 2015). NGTDM textural  

 

 
Figure 3. Distribution of image perturbation factors have been studied. Thickness of edges is showing 

the frequency of each parameter studied. Abbreviations are explained in supplementary 

 

features reflected the intensity differences between a voxel and its neighboring voxels 

(Amadasun and King 1989).  

Acquisition parameters include scan type (helical vs axial), slice thickness, exposure 

time, exposure (mAs), tube current (mA), tube voltage (kVp), pitch, the field of view (FOV), dose 

index and focal spot size. In 11 studies researchers investigated one or more of these factors. 

Amongst these 11 studies,  9 used phantoms and 2 used retrospective human datasets to 

evaluate dose (Solomon et al. 2016) and slice thickness (Duda, Kretowski, and Bezy-Wendling 

2013). The focus of the latter study was on the influence of different liver perfusion imaging 

(arterial vs. portal). Amongst these imaging parameters, the least problematic imaging factors 
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stated were pitch (Berenguer et al. 2018) once and mAs (Mackin et al. 2018; Lo et al. 2016; 

Shafiq-ul-Hassan et al. 2017; Midya et al. 2018) four times. In contrast, FOV (Varghese et al. 

2019), pitch (Shafiq-ul-Hassan et al. 2017), and the windowing (Y. J. Kim et al. 2019) have all 

been reported as low reproducible factors (Figure 4).  

Patient-related parameters include the influence of the scatter as a result of the 

patient's weight (size), contrast dose, injection rate, respiration, and type of perfusion. Amongst 

those factors, we found respiratory motion studied in three studies and contrast injection rate 

along with patient-related scatter investigated each in only one study (Figure 2). In some 

papers, they did not state the effect of respiratory motion on feature robustness explicitly, but 

the superiority of using average intensity projection (AIP) images for radiomic studies over those 

taken with free-breathing (FB) has been shown (Huynh et al. 2017). Using scans at the end of 

the exhalation (EoE) phase of a 4DCT acquisition (Choe et al. 2019) has been shown to yield 

more robust radiomics features (CCC > 0.85). Another study stated that the considerable effect 

of respiration on feature robustness and they suggested applying 4D stability as a feature 

selection to reduce feature variability (Du et al. 2019). The reviewed studies reported Shape 

features (Huynh et al. 2017; Du et al. 2019) and Short-Run Emphasis (Lafata et al. 2018) as the 

Radiomic features most robust to respiration. Although 4D features were more robust, there was 

no significant correlation between feature robustness and prognostic value (Figure 4). In 

another study, contrast enhancement in the delayed phase of CT images for NSCLC patients 

affected some of the radiomic features and the variability of radiomic features due to contrast 

uptake was found to be dependent largely on the patient characteristics (Kakino et al. 2020). 

 

Reconstruction parameters include reconstruction algorithm, reconstruction 

(convolution) kernel, reconstruction diameter and pixel size. Fourteen studies ー alone or in 

combination with other factors ー focused on the influence of reconstruction parameters (Figure 

2). Reconstruction algorithm (7 papers), reconstruction kernel (6 papers) and slice thickness (6 

papers) were the most frequent factors which were studied in this group (Table 3). Two studies 

investigated the effect on the noise index resulting from reconstruction algorithms (H. Kim et al. 

2016; Midya et al. 2018). One paper studied the effect of intensity windowing (H. Lu et al. 2019). 

Reconstruction algorithms were the most robust parameter in five papers (Solomon et al. 2016; 

Zhao et al. 2016; Midya et al. 2018; Lo et al. 2016; Kolossváry et al. 2018) and the least 

reproducible imaging parameters in two others (Berenguer et al. 2018; H. Kim et al. 2016). 

Another parameter reported was the reconstruction kernel which was the most reproducible 
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parameter in two papers (Shafiq-Ul-Hassan M(2), Li Yajun) and the least reproducible 

parameter in another three papers (Choe J, Kim Y, Lu L). 

 

 
Figure 4. Distribution of most and least reproducible factors reported. Number on the scale shows the 
quantity of paper reported as the adjacent factor as most or least reproducible factor against the other 

factors studied. 
 

Variation in methods 

Selected studies varied significantly in terms of the software used for feature extraction, 

the number of extracted features, and the metrics used for reporting reproducibility. The 

distribution of studies according to the above discrepancies are as follows: 

Software details (application framework used for analysis, programming language, and 

version) were not reported in the majority of studies (Figure 2C). The majority of studies 

described their software as in-house software mostly based on MATLAB® (The Mathworks®, 

Natick, MA) (“MathWorks - Makers of MATLAB and Simulink” n.d.). PyRadiomics (Python) (van 
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Griethuysen et al. 2017) and IBEX (Matlab) (Zhang et al. 2015) were the second and third most 

used feature extraction software respectively. 

The total number of features extracted was different in these studies. The range of the 

total number of features was from 5 to 1,695 and the majority fell between 5-100 (45%) (Figure 

2E). Intensity histogram, Gray level co-occurrence matrix, Run-length Matrix and Shape 

features were the most common feature types used. One ambiguity in the feature calculations 

was the feature dimension. The majority of studies (40%) did not mention the dimension of 

feature extraction. However, in 25.7%, 22.9%, and 11.4% of studies that stated their features 

they used 3D, 2D and 2.5D (averaging 2D features over the slices that cover the segmented 

ROI instead of real 3D calculation) features respectively (Figure 2F). 

Reproducibility metrics strongly differed across studies. The metrics encountered were 

the CCC in 27.8% of studies, ICC in 22.2% of studies and COV in 19.4% of studies. 30% of 

studies used other metrics such as variability index, interquartile range, proportional difference, 

absolute difference, or linear mixed-effects models. Some studies reported more than a single 

metric (Brenquer). However, the specific cut off values used to segregate stable from unstable 

features were not always stated and some studies just reported the percentage of robust 

features with different cut off values regardless of which cut off value was suitable. Among the 

14 studies using the CCC or (and) ICC metric, the most common cut off values were 0.8 (6), 0.9 

(5), and 0.85 (3). For COV, cut off values included 1% ,5% ,10% and 20%. Also, the clustering-

based metrics have some limited usage such as the Gaussian mixture model (GMM) 

homogeneity, completeness, and the  V-measure (Andrearczyk, Depeursinge, and Müller 2019). 

Clinical outcome of feature robustness was only investigated in 2 studies. In those 

studies, we assessed the influence of the robust features on the model’s performance while 

applying different imaging parameters. In (Li et al. 2018) the model trained over uniform imaging 

parameters to predict EGFR mutation in lung adenocarcinoma patients. This study concluded 

that an imaging dataset with uniform imaging parameters is considerably more efficient than 

building a model upon robust features extracted from a dataset with non-uniform imaging 

parameters. Also, (Duda, Kretowski, and Bezy-Wendling 2013) showed that models trained and 

tested on the same slice thickness had better accuracy over the models that they had trained 

and tested over data with heterogeneous slice thickness or even trained with one slice thickness 

and tested over data with different slice thickness. That study recommended that any research 

concerning the robustness of radiomics features should be followed by outcome prediction. This 

will help to investigate how useful the robust features are in that specific outcome prediction. In 

another study multi-window CT based radiomics features out-performed single CT window 
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settings to predict growth patterns of lung cancers (H. Lu et al. 2019). These results confirmed 

that applying different CT windowing (i.e intensity clipping) would result in selecting different 

radiomic features which may have different prediction efficacies.  

 

 

DISCUSSION 

This review investigates the robustness of hand-engineered radiomic features in the 

context of varying imaging parameters through a deep-dive literature review. In order to make 

this feasible, imaging parameters, which affect the feature robustness, were also collected and 

grouped into the most and the least reproducible parameters. 

Overall, the number of studies addressing the effects of CT imaging factors on feature 

robustness is low with the majority of them being phantom studies or retrospective human 

studies. Although phantom studies are a good guide to conduct prospective studies, many 

feature values are different between human tissue and phantom material. Even features that we 

acquired under similar acquisition conditions (such as uniform water phantom) are different from 

human tissues (Lo et al. 2016). Moreover, there is a lack of comprehensive prospective human 

studies. This is particularly true when it is in regards to investigating the effects of image 

acquisition parameters. This is due to our inability to rescan patients in absence of a clinical 

indication. The differences in the scan parameters have significant effects on almost all 

radiomics features in all studies. Nevertheless, Shape (Berenguer et al. 2018; Yasaka et al. 

2017; H. Kim et al. 2016; Zhao et al. 2016; L. Lu et al. 2016) and FO (Berenguer et al. 2018; Lo 

et al. 2016; Mackin et al. 2018; Choe et al. 2019) features were the most robust feature classes 

across the reviewed papers. This is logical because features rely on the segmented tumor 

boundaries and/or because features have low-frequency change components, such as shape. 

They are also less dependent on the imaging parameters than the feature groups that are 

characterized by the high-frequency change components like texture. In one study, GLRLM was 

found to be robust against the reconstruction algorithm (Kolossváry et al. 2018). Previous 

studies have shown that pre-processing reduces the effect of image parameter variation on 

feature robustness (Larue et al. 2017; Shafiq-Ul-Hassan et al. 2018). However, there is no 

universal agreement about the type and the details of the preprocessing setting. In a study to 

evaluate the radiomic feature stability in lung cancer, the researchers found that down-sampling 

small voxels to large voxels, and thus, creating simple averaging, the process became more 

desirable compared to up-sampling large voxels to small voxels. The rationale behind this is due 

to the process potentially involving interpolation with bias (Lee et al. 2019). These findings 
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suggest that post-processing could affect reproducibility. They also suggest more precise 

techniques may be required to ensure optimal pre-processing settings. As shown in previous 

sections, the robustness of radiomic features depends on the imaging parameters as well. It 

means global pre-processing settings would not be effective in removing dependencies for all 

imaging parameters. Although imaging parameters will remain the main reason for feature 

robustness, there are other unseen factors which make this even more complex. One of these 

factors is the intrinsic intra-patient variation of radiomics features. It was shown that the number 

of robust features between normal tissue-derived and tumor-derived features within the same 

patient is different even with the same imaging parameters (Yamashita et al. 2019; Perrin et al. 

2018). The other interesting factor is patient age, which is worth paying more attention to, for 

future studies to evaluate the severity of the mentioned factors (Boughdad et al. 2018). Lastly, 

the sensitivity of radiomic features to imaging parameters was shown to be inherently organ 

dependent (Mahon, Hugo, and Weiss 2019; Mackin et al. 2018; Fave et al. 2015; Berenguer et 

al. 2018) or patient-specific (Kakino et al. 2020).  

The main objective of this review was to collect a list of robust features and the most 

reproducible imaging factors. We assumed that the resulting list would help direct future 

radiomics studies. However, this review came short on that front due to the substantial 

inconsistencies related to the methodology and the reporting style of the reviewed studies. We 

summarized some of these discrepancies as follows: 

Type of studies: The prospective studies were mostly conducted using phantoms. 

Phantom-based studies have been done to remove the need for additional exposure to radiation 

to the patients. However, the applicability of these studies is limited because of the inherent 

significant difference between phantom material and human tissue. Most human studies were 

retrospective with a select few prospective patient studies done on reconstruction parameters. 

The drawbacks of the retrospective studies are that the investigators did not have control over 

the factors studied and the scan acquisition parameter variations range were limited to those 

used in imaging patients. Presently, studying the effects of image acquisition parameters in a 

prospective patient study is not feasible. It is without a doubt that prospective studies would be 

most optimal to evaluate radiomic feature reproducibility and repeatability.  

Metric for robustness: We found the current literature varied with regards to the 

optimal metric to use for analysis. Nevertheless, There was no statistically significant difference 

when using either the CCC or the ICC metric (Hu et al. 2016). However, Brenquer found that the 

choice of metric as well as the threshold influenced the results. Thus, one should give careful 

attention when choosing a metric and a threshold (Berenguer et al. 2018). 
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Feature extraction: Across the papers analyzed for this study, there was heterogeneity 

in the total number of features calculated, the type of features, and the feature dimensions. In 

addition, they used a wide variety of software for image processing and feature extraction. 

Different software platforms have also shown a significant effect on the statistical variation of 

Radiomic features (Fornacon-Wood et al. 2020). The other issue regarding feature extraction is 

the feature dimensions. Zhao et al. compared a shape feature and the histogram-derived 

density statistical features computed from 2D and 3D images and found that the 3D features 

were more robust than the 2D features across all imaging settings (Zhao et al. 2016). This issue 

has been stated in another study (Ng et al. 2013).  

Imaging Factor: The studies in this review did not cover all the available and effective 

imaging factors such as focal spot, scan type, patient positioning, etc. They had also selected 

different ranges of values for the same imaging factor in different studies. Another issue is that 

different scanners do not use the same acquisition settings and therefore it is not possible to 

compare some parameters such as dose and noise index against one another. Therefore, 

having the unique index to unify the setting like CTDI among different scanners would be 

desired. Unfortunately, this approach is not practical either. Even with similar acquisition 

protocols, different scanner types can influence radiomic feature values. Features were 

significantly affected by noise-related parameters such as slice thickness, the type of 

reconstruction algorithm (FBP vs. iterative) and patient thickness. This highlights the importance 

of the noise level. 

 Reporting: Most studies investigated the effects of a combination of factors while in 

reality all other factors should be kept constant except for the one under study. One perfect 

example of this was the study by (Berenguer et al. 2018). Other problems with the reporting of 

the investigated studies are the inconsistencies in reproducibility, the percent of robust features, 

the robust features against all the imaging parameters and the robust feature-factors that 

determine which features are robust against which factors.  

Outcome inclusion: The lack of clinically labelled human imaging datasets was another 

shortfall of the available studies. In Duda et al., the feature stability, expressed by its coefficient 

of variation, was not considerably influenced by the slice thickness (Duda, Kretowski, and Bezy-

Wendling 2013). However, in that same study, the classification of the cirrhotic liver using only 

robust features that were trained and tested on different slice thicknesses resulted in an 

accuracy fall of 90 to 62. This shows the importance of this issue since any conclusions that 

were made about feature reproducibility without investigating the effect of the clinical prediction 

would therefore not be reliable. 
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CONCLUSION 

Radiomic features stand to play an important role in guiding personalized cancer 

treatment. However, the robustness of these features against variation in medical imaging 

parameters may affect the performance of the models built upon these features. Although the 

reconstruction algorithm was reported to be reproducible more than other reviewed IPFs, there 

is not enough evidence to support this idea as a result of the methodological inconsistencies 

which were reported in the results. We also found shape as well as IH features to be the most 

robust radiomic features in some specific cases. 

Furthermore, we suggest reducing the dependency of radiomic features on scanner 

parameters as a key step in developing radiomic models. Two desirable but less practical 

solutions of doing this are (i) credentialing CT scanners used in radiomics studies or correcting 

for the parameters of the scanner during data analysis; and (ii) adopting standardized image 

acquisition and reconstruction factors. Although pre-processing settings vary depending on the 

type of features and image acquisition parameters, the most practical and desirable solution 

would still be implementation of pre-processing procedures, which are not feature (and patient) 

specific. Although currently there are no universal agreements on type and details of 

resampling, perhaps a future step for the community would be determining specific pre-

processing settings. Our review also recognizes that there are other factors that could affect 

reproducibility other than imaging parameters including intrinsic intra-patient variation, patient’s 

age and the organ-specific sensitivity of radiomic features. These are potential, confounding 

factors that future reproducibility studies should account for. 

Finally, we concluded that there is a large discrepancy in methodology among the 

reviewed studies from the software used to the clinical outcomes investigated. A clear take 

away from our review was the need for further comprehensive studies like the one that has 

been done in (Meyer et al. 2019) or (Berenguer et al. 2018) to further investigate the effects of 

imaging parameters. We would also suggest establishing a universal methodology and reporting 

styles when it comes to imaging parameters studies that would make the researchers work 

more reproducible and create higher consistency within the scientific community. 
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SUPPLEMENTARY TABLES 

 

Table 1. Abbreviation 

Term Definition 

ACQ Acquisition 

CCC Concordance Correlation Coefficient 

CCR  Credence Cartridge Radiomics phantom  

COV Coefficient of variation: abs(SD/mean)*100% 

FD fractal dimension analysis  

FOV field of view 

GLCM  Gray Level Cooccurrence Matrix 

GLDZM gray-level distance zone matrix 

GLSZM Gray level Size zone Matrix 

ICC intraclass correlation coefficients 

IH  Intensity Histogram 

LBP   local binary patterns 

LoG Laplacian of Gaussian 

LMEM  linear mixed-effects model 

NGLDM neighboring gray-level dependence matrix 

NGTDM Neighborhood Gray tone difference matrix 

REC Reconstruction 
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RLM Run Length Matrix 

SCA Scanner 

UWP  uniform water phantom 

 

 

Table 2. Information extraction table 

 

Type of Data Extracted information 

 

General  

Type of imaging factor (Acquisition, Reconstruction or Scanner), Scope (Retrospective | Prospective), Type of study 

(Repeatability or Reproducibility)  

 Data Phantom (type) or Patient (Organ), Number of cases 

 

Imaging 

Acquisition: Scanner Model, Scan Type, Det Col, mAs, mA, KvP, Dose, Eff.Tube Current, Pitch, Focal spot size, s 

Reconstruction: Recon Dia & pixel Size (FOV), Recon Algo & Conv Ker, SNR/noise, WW/WL,  

Patient protocol,: Injection Rate, Patient position, Breathing or respiratory motion, Contrast dose, 

scatter(weight/size), type of perfusion 

 

Analysis  

Feature extraction: Software, language, Feature Dimension, Total number of features,type post processing  

Reproducibility index: Type and Cut off 

Outcome prediction: Type  

 Results number of stable features, most and least reproducible feature or feature set, most and least variable perturbation 

factor 
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Table 3. Summary of selected studies to evaluate the clinical outcome of radiomic feature 

robustness 

 

 Obj SC # 
P 

SO Metric O.C FUI #  RFe LRF MRF D.M ROI 

(Berenguer et 
al. 2018) 

CCR Pros na IBEX COV<0.1 No mAs, 
FOV,kVp, 
Rec.Ker 

177 shape & 
IH 

kVp, 
Rec.Ker 

Pitch y Seg 

(Shafiq-ul-
Hassan et al. 
2017) 

CCR Pros na In.h COV<0.1 No mAs, 
Pitch, Rec. 
Ker 

88 GLSZM Reco. 
Ker 

mAs, 
Pitch 

y Sph 

(Varghese et al. 
2019) 

CTTA Pros na NM PAD<0.15 No Slice.Th, 
FOV, mA, 
kVP 

235 Entropy 
of FFT 
mag & 
ph 

SliceThi FOV y Sph 

(Y. J. Kim et al. 
2019) 

Antro Pros na In.h MRA,p-
value>0.0
5 

No Slice.Th, 
Rec.Ker, 
mAs 

20 - Slice.Th, 
Rec.Ker, 
mAs 

- n Seg 

(Larue et al. 
2017) 

CCR Pros na In.h CCC>0.85 No mA, 
Slice.Th 

114 GLSZM 
(SAE) 

Slice.Th mA y Sph 

(Lo et al. 2016) WP+Lu
ng 
nodule 

Pros 33 NM Q <1 No mAs, 
Pitch, 
Rec.Ker, 
Rec,Alg, 
Dose 

34 IH mean Dose Rec.
Alg 

y Sph 

(Mackin et al. 
2018) 

CCR Pros na IBEX COV No mAs 48 IH - mAs y rect 

(Midya et al. 
2018) 

Antro Pros na In.h CCC>0.9 No mA, 
Rec.Alg 

248 GLCM-
sum-Ave 

 mAs Rec.
Alg 

n Seg 

(Perrin et al. 
2018) 

Liver Retr 38 In.h CCC>0.9 No FOV(Pixel 
Spacing) 

254 (5) LBP FOV(Pix
el 
Spacing) 

- y Seg 

(Yamashita et 
al. 2019) 

Pancre
as 

Retr 37 In.h ICC>0.8 No mAs 266 RLM 
nonunifor
mity 

- mAs y Seg 

(Solomon et al. 
2016) 

Lung,Li
ver,Kidn
ey 

Retr 72 In.h ICC No Rec.Alg, 
Dose 

23 z-axis 
extent 

Rec.Alg, 
Dose 

- - Seg 

(Duda, 
Kretowski, and 
Bezy-Wendling 
2013) 

Liver Retro 29 - COV cirrhotic 
and 
healthy 
liver 

Slice.Th 155 Autocorr - Slice.
Thk* 

n Seg 

(Choe et al. 
2019) 

Lung 
Nodule 

Retr 10
4 

PyR CCC>0.85 No Con.Ker 702 IH_skew
ness 
 

Con.Ker - n Seg 
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(Kolossváry et 
al. 2018) 

Coronar
y Artery 
plaques 

Retr 60 Pictologi
c 

ICC>0.8 No Rec.Alg 164 - - Rec.
Alg 

n Seg 

(Larue et al. 
2017) 

CCR Pros na In.h Max.Differ
ence 

No Slice.Th, 
mAs 

114 GLSZM 
– Small 
Area 
Emphasi
s (SAE) 

- - n Sph 

(Li et al. 2018) Lung 
Ad Ca 

Retro 51 In.h CCC>0.8 EGFR) 
mutatio
n 

Slice.Th, 
Con.Ker 

169
5 

LoG_Ent
ropy_Sig
ma2.5_2
D 

Slic.Th Con.
Ker 

n Seg 

(L. Lu et al. 
2016) 

Lung Retro 32 NM CCC>0.8 No Slice.Th, 
Con.Ker 

89 spherical 
cap 

Conv.Ker Slic.T
h 

n Seg 

(Zhao et al. 
2016) 

Lung Retro  NM CCC>0.85 No Slice.Th, 
Rec.Ker 

89 Volume Slice.Th Conv.
Ker 

n Seg 
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Table 4. List of recommended radiomic features 

 

Reference Recommended features 

(Zhao et al. 2016) GTDM_Strength, Sigmoid-Offset, GLCM_Sum-Average, 
GLCM_Sum-Variance,LoG_MGI-s4, LoG_Entropy-s4,Sigmoid-
Offset, maximal diameter, maximal diameter and its maximal 
perpendicular diameter, Volume 

(Lu et al. 2016) spherical cap,Sigmoid-Offset-mean,LoG_Entropy_Sigma2.5, IH mean, 
GLCM_sum-avg, LoG_mean_Sigma2.5 

 GLCM_invDiffnorm.Stats_median.GLSZM_LAE.GLDZM_LILDE.NGLD
M_DV.GLCM_maxCorr.GLSZM_SZV107.Stats_mean.NGTDensity_Me
anDM_busyness.NGTDM_strength.Stats_skewness.Stats_kurtosis.GL
SZM_HILAE.GLSZM_SZ 
 

(Kolossváry et al. 
2018) 

All except for: first-order parameters: mode, harmonic mean and 
minimum and GLCM parameters: inverse difference sum and sum 
variance 

(Duda et al. 2013) Autocorr,FractalDim, GLCM SumAvg, IH Avg, RLM (ShortEmp, 
LongEmp, Fraction, HighGLREmp, RLEntr), Laws Texture Energy 
(E3L3,S3L3, S3E3, E3E3, S3S3), GLDM (DAvg, DEntr, DAngSecMom, 
DInvDiffMom) 
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