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Abstract 

As the Covid-19 pandemic soars around the world, there is urgent need to forecast the expected 

number of cases worldwide and the length of the pandemic before receding and implement 

public health interventions  for significantly stopping the spread of Covid-19. Widely used 

statistical and computer methods for modeling and forecasting the trajectory of Covid-19 are 

epidemiological models. Although these epidemiological models are useful for estimating the 

dynamics of transmission of epidemics, their prediction accuracies are quite low. Alternative to 

the epidemiological models, the reinforcement learning (RL) and causal inference emerge as a 

powerful tool to select optimal interventions for worldwide containment  of Covid-19.  

Therefore, we formulated real-time forecasting and evaluation of multiple public health 

intervention problems into off-policy evaluation (OPE) and counterfactual outcome forecasting 

problems and integrated  RL and recurrent neural network (RNN) for exploring public health 

intervention strategies to slow down the spread of Covid-19 worldwide, given the historical data 

that may have been generated by  different public health intervention policies. We applied the 

developed methods to real data collected from January 22, 2020  to June 28, 2020 for real-time 

forecasting the confirmed cases of Covid-19 across the world.  We forecasted that the number of 

laboratory confirmed cumulative cases of Covid-19 will pass 26 million as of August 14, 2020.  
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Introduction 

As of June 30, 2020, global confirmed cases of Covid-19 passed 10,475,817, including 511,251 

deaths and has spread to 213 countries, causing an immense public health crisis. The government 

officers and people around the world have implemented various nonpharmaceutical interventions 

to slow the spread of Covid-19 [1]. These public health interventions include cessation of public 

gatherings, traffic restriction, stay-at-home orders, closures of schools and nonessential 

businesses, face mask ordinances, maintaining social distancing,  quarantine,  isolation and 

expanding virus testing. However, implementing public health interventions will cause 

substantial economic losses and social damage.  Now the critical question is how to reopen the 

economy, while containing the Covid-19 pandemic?  A key to correctly answering this question 

is to reconstruct the complex epidemic dynamic systems from the data, precisely predict the 

extent or duration of Covid-19, and develop algorithms to evaluate the effects of public health 

intervention on the transmission dynamics of Covid-19 and devise practical implementable 

public health interventions to control the spread of Covid-19 in the world. 

         Widely used statistical and computer methods for modeling of Covid-19 simulate the 

transmission dynamics of epidemics to understand their underlying mechanisms, forecast the 

trajectory of epidemics, and assess the potential impact of a number of public health measures on 

curbing the spread speed of Covid-19 [2-8].   Covid-19 Forecast Hub collected 48 models for 

Covid-19 forecasts [9].  The majority of these models are epidemiological models. Although 

these epidemiological models are useful for estimating the dynamics of transmission, they have 

some critical limitations [10,11]. First, most epidemiological models assume that the 

reproduction number 𝑅 is constant. However, in the real world, the reproduction number 𝑅 is 

affected by various interventions such as lockdown of the epidemic areas, travel restrictions, 
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population mobility, social distancing, and climate factors [12]. Therefore, the reproduction 

number R often changes over time. The assumptions that the parameters in the model are 

constant will dramatically limit our ability to simulate interventions and improve prediction 

accuracy.  Second, the epidemiological models consist of ordinary differential equations that 

have many unknown parameters and depend on many assumptions.  Most analyses used 

hypothesized parameters, which often lead to poorly fitting data. Third, the successful 

application of public health intervention planning highly depends on the model parameter 

identifiability. However, some researchers show that the parameters in the complex 

compartmental dynamic models are unidentifiable [13]. The values of parameters cannot be 

uniquely determined from the real data [14]. The variances of the estimators of these parameters 

are very high. Fourth, the intervention measures are not explicitly included in the 

epidemiological models. These models lack the mechanisms to evaluate the actual effects of 

public health interventions on infection rates in the ongoing Covid-19 [2]. 

     An essential issue for overcoming these limitations is to explicitly incorporate counterfactual 

evaluation mechanisms into the models. Reinforcement learning (RL) and counterfactual 

outcome can be used as a general framework for evaluating the dynamic response of Covid-19 to 

the intervention measures and optimizing the intervention strategy [15-22]. RL is learning 

actions or interventions. It arises from solving optimal control problems of partially observed 

Markov Decision Processes by learning an intervention policy [23].  

      The control problem consists of identifying the dynamic systems and optimal control design. 

We can view the transmission dynamics of Covid-19 as a dynamic system or Markov Decision 

Process. A typical dynamic system is usually modeled by nonlinear state space equations, which 

can in turn be transformed into recurrent neural networks (RNN) [24]. The RNN is an ideal tool 
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to learn a partially observed Markov Decision Process.  After the dynamic system or Markov 

Decision Process is learned from historical data, we can use RL or optimal control theory 

(dynamic programming for a discrete system or pontryagin’s maximum principle for a 

continuous system) to infer control signal or actions, which transforms the system to the desired 

state [25]. RL provides a wealth of information about the consequences of actions, or 

information about cause and effect.  

    The goal of public health interventions is to contain the Covid-19 as soon as possible. 

However, the set of actions or health interventions for stopping the spread of Covid-19 is limited. 

The environments that determine the transition dynamics of Covid-19 may change rapidly over 

time. The future environments of Covid-19 may be substantially different from the previous one. 

The actions or interventions cannot be only inferred from the historical data. To fully design 

optimal actions or interventions in the RL may not be feasible. Therefore, we formulated the 

real-time forecasting and evaluating multiple public health intervention problem into off-policy 

evaluation (OPE) and counterfactual outcome forecasting problem within the RL framework 

where the aim is to estimate the response of a new public health intervention policy, given 

historical data that may have been generated by different public health intervention policies [26]. 

We interpreted the interventions as treatments where multiple interventions were implemented at 

different time points and the number of new cases as treatment responses. The accurate 

estimation of effects of public health interventions over time would allow health officers to make 

plans on what intervention strategies should be used and at what times to implement 

interventions [27]. 

    Public health interventions including virus testing, isolation and contact tracing, travel 

restriction, strict self-quarantine for families, maintaining social distancing, stopping mass 
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gatherings, closure of schools and nonessential business and vacating hotels. To quantify 

comprehensive intervention strategies, an intervention variable that comprehensively and 

abstractly measures virus testing, mobility activities and social distancing was used as an action 

variable in the RL.  

     Recurrent neural reinforcement learning (RNRL) is taken as a general framework for 

investigating how Covid-19 evolves under different interventions, how individual nations 

respond to the interventions over time, and what are optimal timings for implementing 

interventions. Therefore, the RNRL will provide new tools to forecast the trajectory of Covid-19 

under interventions and improve public health planning and decision making.  

     The RNRL was applied to the surveillance data of lab confirmed Covid-19 cases in the world 

up to June 28, 2020. Data on the number of confirmed and new cases of Covid-19 from January 

22, 2020 to June 28, 2020 were obtained from the John Hopkins Coronavirus Resource Center 

(https://coronavirus.jhu.edu/MAP.HTML). 

Methods 

RNRL as a framework for modeling and evaluating the effect of the interventions on the 

spread of Covid-19 

Markov Decision Process (MDP) is a theoretic process for the RL. RL has three components: 

state, action and reward and consists of system identification and optimal control of design [28]. 

The RNRL combines the RL with RNN [23]. The RL can be viewed as an open dynamic system 

with a correspondent reward function (or loss function). The dynamic system can be a discrete 

time or continuous time dynamic system. Here we focus on discrete time dynamic systems and 

partially observed MDP.  
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     Let ℎ𝑡 ∈ 𝑅𝑚 be a hidden state and 𝑦𝑡 be the observed variable (the number of new cases) at 

the time 𝑡. Let 𝐴𝑡 be an intervention variable or action variable at time 𝑡 and 𝑥𝑡 be a vector of 

covariates. Consider the following dynamic system underlying the transmission dynamics of 

Covid-19: 

ℎ𝑡+1 = 𝑓(ℎ𝑡 , 𝐴𝑡, 𝑥𝑡),          (1) 

𝑦𝑡 = 𝑔(ℎ𝑡 , 𝐴𝑡, 𝑥𝑡) ,          (2) 

where equation (1) is the system equation, equation (2) is the observation equation, and 𝑓, 𝑔 are 

two nonlinear functions. System  equation (1) states that the next hidden state  ℎ𝑡+1 is 

transitioned from the current hidden state ℎ𝑡 and influenced by the current action or intervention 

𝐴𝑡.  

   The corresponding reward function is defined as  𝑅: 𝐴 → 𝑅, which is a function of the current 

action. The reward at  time 𝑡 is defined as 𝑅𝑡 = 𝑅(𝐴𝑡). Since the current reward may make a 

small contribution to the total reward in the long run, an accumulated reward over time with a 

possible discount factor 𝛾 ∈ [0,1] is defined as 

𝑅 = ∑ 𝛾𝑡−1𝑇
𝑡=1 𝑅𝑡 .         (3) 

The MDP and agent (learner) generate a sequence: ℎ0, 𝐴0, 𝑅1, ℎ1, 𝐴1, 𝑅2, ….  The RL consists of 

two step learning: (1) system identification and (2) optimal intervention policy learning. The 

reward functions in two step learning are different.  

Reward function for system identification 

     The system identification serves two purposes. First, since the dynamics of Covid-19 is 

partially observed, the hidden states should be estimated from the historical data. Second, to 
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learn the optimal control (intervention) policy, we need to identify the system underlying the 

dynamics of Covid-19.  It serves as a basis for the second step, optimal intervention policy 

learning. For the convenience of discussion, equation (2) is modified to 

�̂�𝑡 = 𝑔(𝑦𝑡−1,…,𝑦𝑡−𝑙, ℎ𝑡 , 𝐴𝑡−1, 𝑥𝑡−1) .       (4) 

 Our goal is to minimize the reward (loss) function: 

min
𝑔,ℎ,𝐴

𝑅(𝑔, ℎ, 𝐴) = ∑ ‖𝑦𝑡 − �̂�𝑡‖2𝑇
𝑡=1  ,       (5) 

where  𝐴 = [𝐴0, 𝐴1, … , 𝐴𝑇−1]𝑇 are estimated from the data,  𝑔, ℎ functions are  implemented by 

RNN (See Supplementary Note A) 

Reward function for optimal intervention policy learning 

Inferring the optimal intervention (control) policy depends on the model identified in the 

previous step. In the second step, we search an optimal intervention (control) policy that 

minimizes the number of cumulated cases or the number of deaths. Therefore, the reward 

function at  time 𝑡 is defined as 

𝑅(𝐴𝑡) = ‖�̂�𝑡‖2 . 

In other words, we want to make the number of new cases at  time 𝑡 as small as possible.  

Let 𝜋 be the action selection policy which determines the model’s next action 𝐴𝑡.  The action 

selection policy 𝜋 which depends on the hidden state, observed data and covariates is given by  

𝐴𝑡 = 𝜋(𝑦𝑡−1, . . , 𝑦𝑡−𝑙, ℎ𝑡  , 𝐴𝑡−1, 𝑥𝑡) .       (6) 

We attempt to minimize the reward function: 
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min
𝜋

𝑅 = ∑ 𝛾𝑡−1𝑇
𝑡=1 𝑅(𝐴𝑡) .        (7) 

RNN for system identification 

System identification is to learn a model underlying the dynamics of Covid-19 from available 

historical data. The historical data includes the number of cases (new or cumulative) 𝑦𝑡, the 

covariates 𝑥𝑡 such as age, sex, race, the action or intervention 𝐴𝑡.  The model captures the main 

developments of the underlying system and explains the system evolvement beyond the observed 

data region. Recurrent neural networks (RNN) are a powerful tool for system identification [29]. 

The RNN can learn the complex dynamics within the temporal ordering of input time series of 

Covid-19 and use an internal memory to remember. 

     The RNN consists of two types of inputs and outputs: (1) internal input and output and (2) 

external input and output (Figure 1).  The internal output of RNN can be viewed as “system 

state” ℎ𝑡 which is passed to the next timestep. An RNN cell receives a prior internal state ℎ𝑡−1  

and a current external input: the number of cases 𝑦𝑡, … , 𝑦𝑡−𝑙+1,  action (intervention) 𝐴𝑡 and 

covariates 𝑥𝑡, and generates a current internal state ℎ𝑡 and an external current output 𝑦𝑡+1 (the 

number of cases)  at time 𝑡 + 1. The RNN models input the time series (past history of the 

number of cases of Covid-19 over time) and predicts future response time series (number of 

cases of Covid-19 in the future with a planned sequence of interventions).  

     Define the input vector 𝑉𝑡 as 

𝑉𝑡 = [

𝑦𝑡

⋮
𝑦𝑡−𝑙+1

] . 

The RNN model a state transition and an output equation of the dynamic system underlying 

Covid-19 as follows: 
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state transition     ℎ𝑡 = 𝑓ℎ(𝑊ℎℎℎ𝑡−1 + 𝑊𝑣ℎ𝑉𝑡 + 𝑊𝑎ℎ𝐴𝑡
𝑘 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ) , (8) 

output equation    �̂�𝑡+1 = 𝑓𝑦(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦),     (9) 

where 𝑊ℎℎ  is a 𝑚 × 𝑚 dimensional weight matrix that connects the previous state to the current 

state. 𝑊𝑣ℎ is a 𝑚 × 𝑙 dimensional matrix, �̂�𝑡
𝑘 is the 𝑘𝑡ℎ iteration of intervention measure at the 

time 𝑡. 𝑊𝑎ℎ is a 𝑚  dimensional vector. 𝑊𝑥ℎ is a 𝑚 × 𝑘 dimensional matrix,  𝑥𝑡 is a 𝑘 

dimensional vector of covariates, and 𝑏ℎ = [𝑏ℎ
1, … , 𝑏ℎ

𝑚]𝑇 is a 𝑚 dimensional bias vector that 

corrects the bias, and 𝑓ℎ is a element-wise nonlinear activation  function. 𝑊ℎ𝑦 is a 𝑚 dimensional 

weight  vector, 𝑓𝑦 is an activation function and 𝑏𝑦 is the bias vector of the output neurons.   

     In summary, using RNN to identify the system underlying the dynamics of Covid-19 can be 

formulated as the following optimization problem: 

min
𝜃,𝐴

𝑅(𝑔, ℎ, 𝐴) = ∑ ‖𝑦𝑡 − �̂�𝑡‖2𝑇
𝑡=1  ,       (10) 

s.t. 

ℎ𝑡 = 𝑓ℎ(𝑊ℎℎℎ𝑡−1 + 𝑊𝑣ℎ𝑉𝑡 + 𝑊𝑎ℎ𝐴𝑡
𝑘 + 𝑊𝑥ℎ𝑥𝑡 + 𝑏ℎ),    (11) 

�̂�𝑡+1 = 𝑓𝑦(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦),        (12) 

�̂�𝑡
𝑘+1 = 𝜋(𝑊𝑎ℎℎ𝑡 + 𝑏𝑎) ,        (13) 

where �̂�𝑡
𝑘+1 is the (𝑘 + 1)𝑡ℎ iteration of intervention measure at time 𝑡,  𝜋 is a nonlinear 

activation function, 𝑊𝑎ℎ is a 1 × 𝑚 dimensional matrix, the parameters 𝜃 are the weight matrices 

and bias vectors. The above minimization problem will be solved by a backpropagation method 

and forward dynamic programming [27]. The detailed algorithm for training is summarized in 

the Supplementary Note A. 
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RNN for learning actions 

The main purpose of the RL is to make the best decision from historical data. The second part of 

the typical RL is to learn optimal control policy (Figure 2). Learning optimal control policy is 

usually formulated as an optimal control problem. If the state space is discrete, dynamic 

programming is used to find the optimal control policy [27]. If the state space is continuous, the 

Hamilton-Jacobi-Bellman (HJB) equation is used to solve the optimal control problem [29]. 

Choices of public health interventions are restricted by multiple political, cultural, technological 

and economic factors. Policy optimization is often practically infeasible. Therefore, we do not 

attempt to design optimal control actions.  

     In contrast, we use off-policy methods that evaluate or improve a policy different from that 

used to generate the data to select suitable actions (interventions) from a set of feasible actions 

(interventions).  We propose to use RNN-based counterfactual action evaluation as a general 

framework for modeling and forecasting the spread of Covid-19 over time with multiple 

interventions [30]. Second RNN is used for learning counterfactual actions (interventions). The 

RNN forecasts the intervention response (similar to counterfactual outputs) for a given set of 

planned counterfactual actions  (interventions) and evaluates the impact of different  

counterfactual actions (intervention) and their implementation times on stopping the spread of 

Covid-19 and provides timely selection of suitable sequence of  actions (intervention) [21].  

    The RNN for system identification is called an encoder (Figure 1) and the RNN for action 

selection and evaluation is called a decoder (Figure 2). The RNN encoder models input time 

series (past history of the number of cases of Covid-19 over time) and predicts future response 

time series (number of cases of Covid-19 in the future with a planned sequence of interventions). 

RNN encoder was explained in the previous section. Here, we focus on the RNN decoder. Unlike 
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the standard decoder where the decoder reconstructs back the input time series from the latent 

representation, the RNN decoder uses the learned features of the dynamics of Covid-19 in the 

RNN encoder to forecast the counterfactual response time series, given a sequence of planned 

counterfactual public health interventions as an input to the RNN decoder. The feature vector 

learned in the RNN encoder is then provided as an input to the RNN decoder which initiate 

prediction of the future dynamics of Covid-19 under the future counterfactual interventions 

(Figure 2). The RNN decoder can be represented by the following set of equations: 

ℎ𝑡+𝜏 = 𝑓ℎ(𝑊ℎℎℎ𝑡+𝜏−1 + 𝑊𝑣ℎ𝑉𝑡+𝜏 + 𝑊𝑎ℎ�̃�𝑡+𝜏 + 𝑏ℎ) ,    (14) 

�̂�𝑡+𝜏+1 = 𝑓𝑦(𝑊ℎ𝑦ℎ𝑡+𝜏 + 𝑏𝑦),        (15) 

�̃�𝑡+𝜏+1 = 𝑓𝑎(𝑊ℎ𝑎ℎ𝑡+𝜏 + 𝑏𝑎) ,       (16) 

where 𝑉𝑡+𝜏 is defined as before, 𝜏 ≥ 1.  

The algorithm for action (intervention) evaluation and selection are summarized in 

Supplementary Note A.  

Data Collection 

The analysis is based on surveillance data of confirmed cumulative and new Covid-19 cases 

worldwide as of June 28, 2020. Data on the number of cumulative and new cases and Covid-19-

attributed deaths across 187 countries from January 22, 2020 to June 28, 2020 were obtained 

from John Hopkins Coronavirus Resource Center (https://coronavirus.jhu.edu/MAP.HTML).   

Data Pre-processing   

Data were split into a training dataset (01/22-06/21, 2020) and validation dataset (06/22-

06/28/2020).  All the input number of lab-confirmed cumulative cases 𝑌𝑡 was pre-processed by 
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the following transformation: �̃�𝑡 = log2(𝑌𝑡 + 1).   The number of new cases was calculated as 

𝑌𝑡
𝑛𝑒𝑤 = 𝑌𝑡+1 − 𝑌𝑡 .  

Minibatches,  Normalization and RNRL Flowchart  

The RNRL algorithm flowchart was shown in Figure S1. We first randomly picked   𝑘 = 64 

countries with 𝑙 + 𝜏 length of Covid-19 time series data staring from the same day to generate 𝑘 

time series with 𝑙 + 𝜏 length  for a minibatch  that was used for backpropagation training through 

time.  The 𝑙 length of time series were taken to train the RNN encoder and the 𝜏 length of time        

series were taken to train the RNN decoder. Repeat the above training processes 𝑛 times. After 

the RNN encoder and decoder were trained, the trained RNN encoder and decoder were used for 

forecasting and evaluation.   The time series 𝑦𝑡−𝑙+1, … 𝑌𝑡 were inputted into the trained RNN 

encode, while the RNN decoder were used to forecast the time series 𝑦𝑡+1, … , 𝑦𝑡+𝜏−1.  Calculate 

the mean value of each time series in the batch.  The values of each time series were divided by 

their mean values.  

Forecasting Procedures 

The trained RNN decoder was used to forecast the future number of new or cumulative cases of 

Covid-19 worldwide and for each country.  The recursive multiple-step forecasting involved 

using a one-step model multiple times where the prediction for the preceding time step and 

intervention strategy were used as an input for making a prediction on the following time step. 

For example, for forecasting the number of new confirmed cases for one more next day, the 

predicted number of new cases and intervention measure in one-step forecasting would be used 

as an observational input in order to predict day 2. Repeat the above process to obtain the two-

step forecasting. The summation of the final forecasted number of new or cumulative confirmed 
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cases for each country was taken as the prediction of the total number of new or cumulative 

confirmed cases of Covid-19 worldwide.   

Results 

Prediction accuracy of the dynamics of Covid-19 using RNRL 

Accurate prediction of the transmission dynamics of Covid-19 is important for health decision 

making. To demonstrate that the RNRL was an accurate forecasting method, the RNRL was 

applied to the lab confirmed accumulated cases of Covid-19 across 187 countries. Figures 3 and 

4 plotted reported and one-step ahead predicted time-case curves of Covid-19 in the world and 

top fifteen most-affected countries where blue and red curves were the number of reported and 

predicted cumulative cases, respectively. The top fifteen most-affected countries included US, 

Brazil, Russia, India, United Kingdom, Spain, Italy, Peru, France, Iran, Germany, Turkey, Chile, 

Mexico, and Pakistan. The average non-absolute and absolute of the one-step ahead prediction 

error in the world were 0.0572 and 0.0592, respectively.  The average non-absolute and absolute 

of the one-step ahead prediction error in fifteen countries were 0.0213 and 0.0277, respectively. 

To further reliably evaluate the forecasting accuracy, we reported 7-step ahead forecasted 

numbers of cumulative cases and errors of Covid-19 worldwide and in 15 countries in Table 1 

starting with June 22, 2020. The average forecasting error was 0.0197, ranging from 0.000016 to 

0.087.  

Transmission Dynamics of Top Fifteen Most-affected Countries 

Figures 5 and 6 plotted the reported and forecasted trajectory of the new and cumulative cases of 

Covid-19 in the top fifteen most-affected countries, respectively. Tables S1 and S2 listed one 

month forecasted number of new and cumulative cases of Covid-19 in the top fifteen most-
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affected countries, respectively.  We observed several remarkable features. First, keeping the 

current intervention measure, all the top 15 most-affected countries have passed the peak. 

Second, the spread of Covid-19 in all the top most-affected countries except for Brazil and Chile 

was curbed. The forecasted number of new cases in 7 countries on July 14, 2020 was less than 

1,000 (France: 143, Germany: 218, Iran 710, Italy: 56, Spain: 101, Turkey: 313, United 

Kingdom: 308),  the number of cases in 6 countries was less than 10,000 (India: 5,502, Mexico: 

1,835, Pakistan: 1,955, Peru: 2,177 and US: 8,676), and the number of two countries was larger 

than 10,000 (Brazil: 12,357 and Chile: 29,667). Third, the number of new cases in most of these 

countries decreased. The first derivatives of the new cases of Covid-19 in the 15 topmost-

affected countries, starting from May 17, 2020 to July 14, 2020, were listed in Table S3. The 

number of new cases in ten countries decreased, the average decrease rates ranged from -175 

(US) to -4 (Mexico). Although the average increase rates in Chile and Brazil were 148.946479 

and 462.9452744, respectively, they decreased quickly from the peak.  

Outbreak of Covid-19 worldwide continues to grow exponentially 

Although most European countries have almost stopped the spread of Covid-19 infections, 

outbreaks in Brazil, Chile, Russia, India, Peru, Mexico, and Pakistan are still growing fast. The 

spread of Covid-19 worldwide has not slowed down. The reported and forecasted curve of the 

number of cumulative cases of Covid-19 worldwide was shown in Figure 8. Table S4 

summarized the number of cumulative and new cases of Covid-19 worldwide, starting from June 

16, 2020 to August 14, 2020.  We observed that the outbreak of Covid-19 worldwide is growing 

exponentially.  

    On August 14, 2020, the number of new cases of Covid-19 worldwide increased from 192,343 

to a frightening number of 313,380 and the number of cumulative cases of Covid-19 is 
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exponentially growing from 8,226,804 to 26, 058,423 with an exponential growth rate 0.0195. 

The Covid-19 pandemic is a serious global health threat.  Intervention strategies are urgently 

needed to stop the spread of Covid-19 in the countries where Coronavirus cases are rapidly 

growing.   

Intervention Measure 

Traditionally, the effects of the interventions on the transmission dynamics of Covid-19 can be 

investigated by the reproduction number 𝑅𝑡 which measures the average number of individuals 

one affected individual will transmit the disease to. The reproduction number 𝑅𝑡 is often used to 

determine the dynamic behavior of epidemics. Similar to the reproduction  number, we defined 

an intervention measure 𝐴𝑡 to control the spread of Covid-19.  Intervention measure was a matric 

to quantify the degree of control of the intervention action.  

    Figure 8 plotted the estimated intervention measure curves of the top fifteen most-affected 

countries as a function of time and Table S5 summarized the estimated intervention measures of 

the top fifteen most-affected countries. These results showed some patterns of dynamic changes 

in intervention measures. France, Germany, Iran, Italy, Spain, Turkey, and United Kingdom have 

flattened the curves of Covid-19 infections. The shape of the intervention measure curves of 

these seven countries characterized the trajectory of Covid-19 in these countries. The common 

feature of the seven curves was that both the intervention curve and the number of new case-time 

curve shared a similar trend. As the number of new cases of Covid-19 increased to peak values, 

the intervention measure also increased to peak value. When the number of new cases fluctuated 

around the peak, the intervention measure also stayed at the plateau for a short time. Then, when 

the number of new cases decreased toward a small number or zero, the intervention measure 
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decreased and converged to a small stationary value (close to 0.2). Intervention measure and the 

number of new cases of Covid-19 were highly correlated.  

    We observed that the peak values of intervention measures in Chile, Mexico, Pakistan and 

India were less than 0.8 and intervention measure curves of these four countries stayed for much 

longer time than the previously discussed seven countries which have almost stopped the spread 

of Covid-19. This indicated that the intervention measures to contain the spread of Covid-19 in 

Chile, Mexico and Pakistan were weak. The current intervention measures in Brazil, Chile, Peru, 

Mexico, Pakistan, Russia, US, and India were larger than 0.4. The Outbreak of Covid-19 cases 

across these countries gained stream. These countries still have a long way to go to contain the 

spread of Covid-19.  

    To compare the intervention measure 𝐴𝑡 with the reproduction number 𝑅𝑡, we downloaded the 

estimated reproduction number 𝑅𝑡  from https://github.com/lin-lab/COVID19-

Rt/tree/master/initial_estimates, and presented Figure S2 that plotted the number curves as a 

function of time in the top fifteen  most-affected countries. In general, the reproduction curves 

were  fluctuated decreasing function. When outbreak of Covid-19 began, the reproduction 

number was in the top of the curve and much larger than 1. As time increased, the reproduction 

number decreased. When the reproduction number was less than 1, the number of new cases 

quickly converge to a very small number or to zero. Although the shape of the reproduction 

number curves are quite different from the intervention measure curves, the Spearman  

correlation coefficients between the intervention measures and reproduction number were large 

except for the countries where the spread of Covid-19 had not been well controlled (Table 2).   

Clustering Intervention Patterns of the Countries across the World 
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Clustering algorithm and geographical information system GIS were used to analyze the 

intervention strategies of all 187 countries across the world. Clustering results would provide 

information about the spread pattern of the coronavirus across the countries and how to best 

combat Covid-19. All 187 countries were grouped into 10 clusters using k-means clustering 

algorithms and intervention measure time curves of the 187 countries across the world (Figure 9 

and Table S6).  

    The first, fourth and seventh clusters were the group of countries where the outbreak of Covid-

19 was under control. The first cluster included 11 countries:  Austria, Belgium, Canada, France, 

Germany, Iran, Israel, South Korea, Portugal, Switzerland, and Turkey. The fourth cluster 

included 15 countries: Australia, Bangladesh, Belarus, Denmark, Ecuador, Finland, Ireland, 

Japan, Kuwait, Luxembourg, Malaysia, Netherlands, Qatar, Singapore and Sweden.  The seventh 

cluster included 3 countries:  Italy, Spain, and the United Kingdom. The ninth cluster was the 

group of countries where the outbreak of Covid-19 was not well controlled but was attempted to 

be controlled. The ninth cluster (Brazil, India, Russia, and US) were the top 4 most-affected 

countries. The eighth and third clusters were the group of countries where the outbreak of Covid-

19 was recently gaining steam. The eighth cluster included 18 countries: Chile, Colombia, 

Czechia, Dominican Republic, Egypt, Ghana, Indonesia, Mexico, Moldova, Norway, Pakistan, 

Philippines, Poland, Romania, Saudi Arabia, Serbia, Tajikistan, and Ukraine. The third cluster 

included 16 countries:  Afghanistan, Argentina, Armenia, Azerbaijan, Bahrain, Bolivia, 

Cameroon, Guatemala, Honduras, Iraq, Kazakhstan, Nepal, Nigeria, Oman, Panama, and South 

Africa. Tables S7 and S8 showed that the number of cumulative cases of Covid-19 in these 

countries recently surged. Countries in the second and fifth clusters were less affected.  

Discussion 
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When the cases of Covid-19 still surge worldwide and the coronavirus gains steam in some 

countries, planning and implementing strong public health interventions are urgently needed.  As 

an alternative to the epidemiologic transmission models, we developed the RNRL method to help 

health officers  plan public health interventions and combating the spread of Covid-19. We 

viewed interventions to stop the spread of Covid-19 as actions to control the states of dynamic 

system and intervention plan as the design of optimal control. A key step for optimal control 

design was identification of the dynamic system. Therefore, we integrated the identification of 

the dynamic system underlying Covid-19 and formulated a planning intervention strategy 

problem as a novel RNRL problem which included  recurrent neural network-based 

reinforcement learning. The RNRL can learn the complex dynamics within the temporal ordering 

of input time series of Covid-19 and develop suitable interventions for containing the Covid-19. 

    In this study, we presented a new concept of intervention measure. To improve interpretation 

of the intervention measure, we compared the intervention measure with the reproduction 

number. In general, the correlation coefficients between the intervention measure and 

reproduction number was high except for the less controlled countries. Intervention measure 

quantified the strength of intervention (control action), while reproduction number measured the 

state of the spread of Covid-19 being controlled, i.e., measures how well the spread of Covid-19 

was curbed. In other words, intervention measure is to quantify how strong the action is, while 

the reproduction number is to study the effect or the response of intervention. Intervention 

measure is complimentary to the reproduction number. 

    The world is in the crossroad of combating the rapid spread of Covid-19.  The RNRL provided 

a powerful tool for fighting the surge of Covid-19 worldwide. The dynamic system consists of 

two essential components. One is the state of the system and the second is action taken.  The 
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evolution of the dynamic system highly depends on a sequence of actions. Actions influencing 

the dynamics of Covid-19 cannot be directly measured or observed. In this report, we proposed 

to use an intervention measure to quantify the actions. The intervention measure was estimated.  

The intervention measure curve characterized the dynamics of Covid-19 and can be used to 

assess the stages of the spread of Covid-19 and strength of the control.  The intervention measure 

curves were used to cluster 187 countries into five basic groups: the well-controlled group (31 

countries), being controlled group (4 countries), newly surged group (34 countries), and less 

affected group (119 countries). Although the number of cumulative cases of Covid-19 worldwide 

passed 10 million, if the less controlled and newly surged groups of countries continuously 

strengthen interventions, our analysis demonstrated that the spread of Covid-19 worldwide will 

be finally stopped. We are confident that we will win the combat to contain the Covid-19. 

    Since the politics and economics strongly affect the dynamics of Covid-19, the evolutionary 

trajectories of Covid-19 in most countries will be uncertain. The accuracy of long-term 

forecasting of Covid-19 may not be very high. However, accuracy of short-term estimation of the 

number of new cases can be quite good. We suggest that every 10 days we update the data and 

run the RNRL to forecast the trajectory of Covid-19 in 15 days or one month. 
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Table 1. Forecasting errors of  worldwide and 15  countries. 
    

  Reported Forecasted Errors   Reported Forecasted Errors 

Global       Chile       

6/22/2020 9099271 9199656.573 0.01103 6/22/2020 246963 274726.7516 0.11242 

6/23/2020 9264657 9454986.187 0.02054 6/23/2020 250767 311422.4329 0.24188 

6/24/2020 9432072 9700300.156 0.02844 6/24/2020 254416 339988.4312 0.33635 

6/25/2020 9610551 9948823.713 0.03520 6/25/2020 259064 371174.7084 0.43275 

6/26/2020 9802294 10188349.03 0.03938 6/26/2020 263360 405221.6153 0.53866 

6/27/2020 9980257 10429672.51 0.04503 6/27/2020 267766 442391.5496 0.65216 

6/28/2020 10145791 10682507.07 0.05290 6/28/2020 271982 482970.9776 0.77575 

US       Italy       

6/22/2020 2312302 2305114.762 -0.00311 6/22/2020 238720 238731.3052 0.00005 

6/23/2020 2347491 2328815.735 -0.00796 6/23/2020 238833 238963.8367 0.00055 

6/24/2020 2382327 2352760.399 -0.01241 6/24/2020 239410 239196.5947 -0.00089 

6/25/2020 2422299 2376951.26 -0.01872 6/25/2020 239706 239382.2844 -0.00135 

6/26/2020 2467554 2401390.849 -0.02681 6/26/2020 239961 239568.1182 -0.00164 

6/27/2020 2510151 2421002.376 -0.03552 6/27/2020 240136 239731.4369 -0.00168 

6/28/2020 2548996 2438400.383 -0.04339 6/28/2020 240310 239894.867 -0.00173 

Brazil       Iran       

6/22/2020 1106470 1125455.852 0.01716 6/22/2020 207525 206895.3463 -0.00303 

6/23/2020 1145906 1169207.915 0.02033 6/23/2020 209970 208857.1193 -0.00530 

6/24/2020 1188631 1214660.838 0.02190 6/24/2020 212501 210799.0815 -0.00801 

6/25/2020 1228114 1261880.739 0.02749 6/25/2020 215096 212747.5359 -0.01092 

6/26/2020 1274974 1296022.702 0.01651 6/26/2020 217724 214485.2597 -0.01488 

6/27/2020 1313667 1331088.422 0.01326 6/27/2020 220180 216237.1771 -0.01791 

6/28/2020 1344143 1367102.894 0.01708 6/28/2020 222669 217670.3901 -0.02245 

Russia       France       

6/22/2020 591465 590142.9567 -0.00224 6/22/2020 198009 198208.3757 0.00101 
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6/23/2020 598878 596063.6947 -0.00470 6/23/2020 198526 198782.4091 0.00129 

6/24/2020 606043 601986.7329 -0.00669 6/24/2020 198607 199358.1049 0.00378 

6/25/2020 613148 607968.6279 -0.00845 6/25/2020 198607 199935.468 0.00669 

6/26/2020 619936 613850.0811 -0.00982 6/26/2020 200195 200391.3005 0.00098 

6/27/2020 626779 619593.8351 -0.01146 6/27/2020 200195 200797.3729 0.00301 

6/28/2020 633563 624239.3597 -0.01472 6/28/2020 199476 201546.7108 0.01038 

India       Germany       

6/22/2020 440215 436822.5152 -0.00771 6/22/2020 191768 192132.2829 0.00190 

6/23/2020 456183 448676.1949 -0.01646 6/23/2020 192480 192996.4351 0.00268 

6/24/2020 473105 460851.5369 -0.02590 6/24/2020 192871 193864.474 0.00515 

6/25/2020 490401 473357.2701 -0.03475 6/25/2020 193371 194474.4231 0.00571 

6/26/2020 508953 486202.3599 -0.04470 6/26/2020 194036 195086.2913 0.00541 

6/27/2020 528859 498434.4334 -0.05753 6/27/2020 194458 195700.0846 0.00639 

6/28/2020 548318 507864.2514 -0.07378 6/28/2020 194693 197046.0386 0.01209 

UnitedKingdom     Turkey       

6/22/2020 306761 306759.4654 -0.00001 6/22/2020 188897 188755.4421 -0.00075 

6/23/2020 307682 307718.9224 0.00012 6/23/2020 190165 189795.6607 -0.00194 

6/24/2020 308337 308681.3802 0.00112 6/24/2020 191657 190742.7598 -0.00477 

6/25/2020 309455 309646.8484 0.00062 6/25/2020 193115 191641.3802 -0.00763 

6/26/2020 310836 310571.7718 -0.00085 6/26/2020 194511 192544.2342 -0.01011 

6/27/2020 311727 311444.1883 -0.00091 6/27/2020 195883 193404.8846 -0.01265 

6/28/2020 312640 312125.7454 -0.00164 6/28/2020 197239 195129.7231 -0.01069 

Peru       Pakistan       

6/22/2020 257447 258116.8406 0.00260 6/22/2020 185034 186129.7079 0.00592 

6/23/2020 260810 260968.6343 0.00061 6/23/2020 188926 191311.7821 0.01263 

6/24/2020 264689 263606.8084 -0.00409 6/24/2020 192970 196638.1308 0.01901 

6/25/2020 268602 266271.6521 -0.00868 6/25/2020 195745 202112.7706 0.03253 

6/26/2020 272364 268934.204 -0.01259 6/26/2020 198883 206175.7103 0.03667 

6/27/2020 275989 271623.3795 -0.01582 6/27/2020 202955 210177.2525 0.03559 

6/28/2020 279419 273991.2974 -0.01942 6/28/2020 206512 214256.4578 0.03750 
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Spain       Mexico       

6/22/2020 246504 246684.0117 0.00073 6/22/2020 185122 184999.6728 -0.00066 

6/23/2020 246752 247096.7126 0.00140 6/23/2020 191410 189564.2573 -0.00964 

6/24/2020 247086 247510.104 0.00172 6/24/2020 196847 194241.4653 -0.01324 

6/25/2020 247486 247799.8895 0.00127 6/25/2020 202951 198369.2836 -0.02258 

6/26/2020 247905 248090.0142 0.00075 6/26/2020 208392 202584.8217 -0.02787 

6/27/2020 248469 248380.4785 -0.00036 6/27/2020 212802 206889.9435 -0.02778 

6/28/2020 248770 248671.283 -0.00040 6/28/2020 216852 210450.1416 -0.02952 
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Table 2. Correlation coefficients between  intervention measure and reproduction 

number. 

Country Correlation Country Correlation Country Correlation 

Germany 0.9342 Brazil 0.1172 Chile 0.3663 

Italy 0.9079 Russia 0.1858 Iran 0.6676 

Spain 0.9039 India 0.0046 Turkey 0.6127 

France 0.8372 United Kingdom 0.7655 Pakistan 0.4306 

US 0.8323 Peru 0.1131 Mexico 0.1641 
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Figure Legend 

Figure 1. Architecture of RNN encoder.  

Figure 2. Architecture of RNN decoder. 

Figure 3. Reported and predicted time-case curves of Covid-19 worldwide where blue curve and 

red curve were the number of reported and predicted cumulative cases, respectively.  

Figure 4. Reported and predicted time-case curves of Covid-19 in top fifteen most-affected 

countries where blue curve  and red curve were the number of reported and predicted cumulative 

cases, respectively. 

Figure 5.  The trajectory of the new cases of Covid-19 in the top fifteen most-affected countries 

Figure 6. The trajectory of the cumulative cases of Covid-19 in the top fifteen most-affected 

countries. 

Figure 7. The reported and forecasted curve of number of cumulative cases of Covid-19 

worldwide where blue curve and red curve were the number of reported and predicted 

cumulative cases, respectively.   

Figure 8. The estimated intervention measures of the top fifteen most-affected countries.  

Figure 9. All 187 countries were grouped into ten clusters. 
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Supplementary Figure Legend 

Figure S1. RNRL algorithm flowchart.  

Figure S2. The reproduction number curves as a function of time in the top fifteen  most-

affected countries. 
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Figure 1. Architecture of RNN encoder.  
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Figure 2. Architecture of RNN decoder. 
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Figure 3. Reported and predicted time-case curves of Covid-19 worldwide where blue curve and 

red curve were the number of reported and predicted cumulative cases, respectively.  
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Figure 4. Reported and predicted time-case curves of Covid-19 in top fifteen most-affected 

countries where blue curve  and red curve were the number of reported and predicted cumulative 

cases, respectively. 
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    Figure 5.  The trajectory of the new cases of Covid-19 in the top fifteen most-affected 

countries 
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     Figure 6. The trajectory of the cumulative cases of Covid-19 in the top fifteen most-affected 

countries. 
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 Figure 7. The reported and forecasted curve of number of cumulative cases of Covid-19 

worldwide where blue curve and red curve were the number of reported and predicted 

cumulative cases, respectively.   
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Figure 8. The estimated intervention measures of the top fifteen most-affected countries.  
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Figure 9. All 187 countries were grouped into ten clusters. 
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