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2 

SUMMARY 45 

The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the 46 

world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with 47 

acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune 48 

system in the severe cases calls for a better characterization and understanding of the changes in the 49 

immune system. Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control 50 

donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-51 

associated signatures were prominently enriched in severe patient groups, which was corroborated in whole 52 

blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a 53 

third cohort of 11 COVID-19 patients. Comparison of COVID-19 blood transcriptomes with those of a 54 

collection of over 2,800 samples derived from 11 different viral infections, inflammatory diseases and 55 

independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, 56 

stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated 57 

systemic immune response of the host. 58 
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INTRODUCTION 64 

Pandemic spread of the recently emerged coronavirus, severe acute respiratory syndrome-coronavirus 2 65 

(SARS-CoV-2), has resulted in over 9.2 million confirmed infected individuals and over 470,000 deaths 66 

worldwide (WHO, covid19.who.int, as of June 24th, 2020) from the resulting severe respiratory illness, called 67 

coronavirus disease 2019 (COVID-19) (1–3). Based on clinical observations, it has become clear that there 68 

is great variety in disease manifestation, ranging from asymptomatic cases, to flu-like symptoms, to severe 69 

cases needing mechanical ventilation, to those who do not survive (4–8). Increasing evidence suggests 70 

that the immune system plays a pivotal role in determining the severity of the disease course and it has 71 

been suggested that different molecular phenotypes might be responsible for the heterogenous outcome 72 

of COVID-19 (9–11). Identifying these molecular phenotypes might not only be important for a better 73 

understanding of the pathophysiology of the disease, but also to better define patient subgroups that are 74 

more likely to benefit from specific therapies (12–17). Indeed, while vaccines are still under development, 75 

finding an effective and patient-tailored therapeutic management for COVID-19 patients including targeting 76 

derailed immune mechanisms (18, 19) is key to mitigate the clinical burden as well as to prevent further 77 

disease fatalities (15, 16). 78 

The analysis of peripheral blood-derived immune parameters in inflammatory and infectious diseases either 79 

by classical testing, including flow cytometry and serum protein measurements, or omics technologies, 80 

including transcriptomics, has been proven very valuable in the past (20–28). In COVID-19 patients, 81 

monitoring peripheral blood as a proxy for the ongoing changes within the circulating cells of the immune 82 

system, has revealed lymphopenia to correlate with disease severity (29). Similarly to SARS-CoV and 83 

MERS-CoV infections, hyperinflammation due to excessive release of proinflammatory cytokines is often 84 

observed in severe COVID-19 patients as increased serum IL-6 levels correlate with respiratory failure and 85 

adverse clinical outcomes (9, 30, 31). 86 

While one can envision mild and/or early cases to benefit from antiviral drug treatments currently under 87 

clinical investigation, more severe cases may benefit from treatment to mitigate the excessive systemic 88 

immune reactions resulting in progressing pneumonia and even respiratory failure associated with severe 89 

COVID-19 (4–9). The detrimental role of the systemic inflammation in the late phase of the disease has 90 

become clear, as the cytokine storm has been associated with disease morbidity (6, 9, 30–33). Thus, a 91 

better understanding of the dysregulation of the host response to the infection leading to immunopathology 92 

is urgently needed to dissect and comprehend the immune parameters accompanying the heterogeneous 93 

disease severity seen upon SARS-CoV-2 infection.  94 

Based on previous experience with other infectious diseases (20–26), we hypothesized that whole blood 95 

transcriptomes should allow us to 1) determine immune cellular characteristics and functions in COVID-19 96 

patients, 2) reveal heterogeneous molecular phenotypes of patients with similar clinical presentation, 3) 97 
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define commonalities and differences of COVID-19 in comparison to other inflammatory conditions and 4) 98 

predict potential drug repurposing that might counteract observed immune dysregulations. 99 

Here, by using blood transcriptomes, we provide evidence for molecular subtypes within the immune 100 

response of COVID-19 patients beyond distinguishing mild and severe cases only. In addition, molecular 101 

changes in blood of severely affected patients are strikingly associated with changes in the granulocyte 102 

compartment. Furthermore, blood transcriptomes of molecular subtypes of COVID-19 patients seem to be 103 

unique in comparison to more than 2,600 samples derived from other infections, inflammatory conditions 104 

and controls. Finally, by reverse drug target prediction using patients’ blood transcriptomes revealed known 105 

as well as additional new potential targets for further evaluation. Our data might also serve as a starting 106 

point for a large-scale assembly of molecular data collected during currently ongoing and future therapy 107 

trials for COVID-19 patients based on whole blood transcriptomes. 108 

 109 

RESULTS 110 

Whole blood transcriptomes reveal diversity of COVID-19 patients not explained by disease 111 

severity 112 

To investigate the host immune response of COVID-19 patients in a systematic approach, whole blood 113 

transcriptomes were analyzed from 39 patients and 10 control donors recruited at the same hospital by 114 

RNA-sequencing (RNA-seq, Fig. 1a). Two-dimensional data representation using principal component 115 

analysis (PCA) showed separation of COVID-19 and control samples (Fig. 1b). Differential expression 116 

analysis identified 2,289 upregulated and 912 downregulated genes comparing COVID-19 and control 117 

samples (FC>|2|, padj<0.05 / Fig. 1c). Upregulated genes showed greater fold changes than the 118 

downregulated genes (Fig. 1d). Of note, CD177, markedly expressed in neutrophils (34, 35), was the most 119 

prominently upregulated gene with the lowest p-value. Heightened expression was further found for several 120 

granulocyte- and monocyte-associated molecules, such as Eosinophil-derived neurotoxin (RNASE2), 121 

Haptoglobin (HP), Neutrophil elastase (ELANE), Olfactomedin 4 (OLFM4), Myeloperoxidase (MPO), 122 

Resistin (RETN), matrix metalloproteinases (MMP8, MMP9), and alarmins (S100A8, S100A9, S100A12), 123 

as well as for cell cycle progression-associated genes (G0S2, CDC6, CDC25A), type I interferon (IFN)-124 

induced genes (IFI27, IFITM3, CD169 (SIGLEC1)), but also genes with immunosuppressive functions 125 

(IL10, SOCS3, Arginase (ARG1)). Downregulated genes included many lymphocyte-associated factors, 126 

such as NELL2, RORC, KLRB1, TCF1 (TCF7), Calcipressin-3 (RCAN3), BACH2, or LEF1 (Fig. 1d, Table 127 

S1). Functional analysis of the differentially expressed genes (DEGs) by gene ontology enrichment analysis 128 

(GOEA) revealed granulocyte and complement activation-associated terms enriched in the upregulated 129 

DEGs and lymphocyte differentiation and T cell activation for the downregulated DEGs (Fig. 1e). 130 
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Interestingly, the T cell activation-associated genes accounting for the enrichment of this term for the 131 

upregulated DEGs included IL10 and CD274 (PD-L1) pointing at suppressive T cell functionality (Table 132 

S1). 133 

In the current cohort, 51% of COVID-19 patients required intubation (Table S2). Given the heterogeneous 134 

nature of clinical manifestation of COVID-19, we sought to stratify the transcriptomic profiles by disease 135 

severity based on intubation status. Indeed, samples from patients with mild disease (requiring no 136 

intubation) clustered more closely to the control samples, while those of severe cases scattered away in 137 

the PCA (Fig. 1f). Consequently, there was a greater number of DEGs in blood samples from severe 138 

COVID-19 patients than in mild patients when compared to controls (Fig. 1g). Many of the DEGs found in 139 

the COVID-19 vs control comparison (Fig. 1d) were also found when separating the COVID-19 samples 140 

by severity (Fig S1a,b). Both, severe and mild COVID-19 in comparison to controls sh The SARS-CoV-2 141 

pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical 142 

presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute 143 

respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in 144 

the severe cases calls for a better characterization and understanding of the changes in the immune 145 

system. Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors 146 

enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated 147 

signatures were prominently enriched in severe patient groups, which was corroborated in whole blood 148 

transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third 149 

cohort of 11 COVID-19 patients. Comparison of COVID-19 blood transcriptomes with those of a collection 150 

of over 2,600 samples derived from 11 different viral infections, inflammatory diseases and independent 151 

control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified 152 

transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic 153 

immune response of the host.ared neutrophil-specific CD177 and HP expression among the most 154 

upregulated DEGs, as well as lymphocyte-associated genes such as ABLIM1, NELL2, RCAN3, RORC, 155 

KLRB1, among the downregulated genes (Fig. S1a,b). GOEA reflected these findings (Fig. S1c). Although 156 

all samples from COVID-19 patients showed functional enrichment for granulocyte/neutrophil activation-157 

associated terms in general, direct comparison of severe and mild COVID-19 patients revealed this to be a 158 

heightened characteristic of the immunoprofiles in severe COVID-19 (Fig. S1c). Upregulated DEGs in the 159 

severe vs. mild sample comparison included CD177, Haptoglobin (HP), Neutrophil elastase (ELANE), 160 

Olfactomedin 4 (OLFM4), Myeloperoxidase (MPO), Resistin (RETN), matrix metalloproteinase MMP8, and 161 

alarmins (S100A8, S100A12). Whereas the type I IFN-response genes, such as IFI27 or IFITM3, were not 162 

differentially regulated in severe vs. mild samples, expression of immunosuppression-associated factors 163 

was more pronounced in severe COVID-19 patients (IL10, SOCS3, Arginase (ARG1)) (Fig. 1h, Table S1). 164 

Moreover, blood transcriptomes from severe cases showed decreased expression of lymphocyte-165 

associated genes, such as the T cell receptor chains (TRAC, TRBC1), CD3 zeta chain (CD247), CD4, CD2, 166 
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IL2RB, TBET (TBX21), IL7R, as well as monocyte-associated genes, such as MHC class II molecules 167 

(HLA-DPA1, HLA-DRB5), fractalkine receptor (CX3CR1), Macrophage scavenger receptor (MSR1), or 168 

CCL2 (Fig. 1h, Table S1). Differences in gene expression were not restricted to granulocyte and T cell 169 

functions only: assessing the changes in defined gene groups, e.g. transcription factors, epigenetic 170 

regulators, surface or secreted molecules, we observed many significant changes in genes that are not 171 

restricted to granulocytes or T cells, clearly indicating that other cell types are also transcriptionally altered 172 

in COVID-19 patients (Fig. S1d). 173 

Distribution of the COVID-19 samples in the PCA revealed heterogeneity in the transcriptomic profiles (Fig. 174 

1f), which might be due to clinical heterogeneity (Table S2). In order to investigate this further, the top 25% 175 

of the most variable expressed genes were visualized in a heat map and samples sorted by unbiased 176 

hierarchical clustering based on their transcriptomic profiles, which resulted in more than three clusters 177 

suggesting higher transcriptional heterogeneity as explained by mild and severe COVID-19 cases vs control 178 

(Fig. 1i). Strikingly, neither disease, disease severity, nor the inclusion of outcome or immune classification 179 

(31), sufficiently explained the structure in the data. In order to get a better clinical understanding of the 180 

transcriptional data, we included further clinical parameters and grouped the COVID-19 patients 181 

accordingly (Fig. 1i). We therefore performed agglomerative hierarchical clustering using the clinical 182 

parameters that contributed most to the transcriptional differences observed across the first principal 183 

component of the dataset (r-adjusted square ≥0.1, Fig. S1e). The COVID-19 patients were clustered into 184 

five clinical groups, which was the optimal number of clusters at which the intra-group variance was low 185 

and the ‘clusters distance’ remained high (Fig. S1f,g). However, comparison of this clinical parameter-186 

based grouping of the COVID-19 patients did not match the transcriptional variability observed in the data 187 

either (Fig. 1i), arguing that additional molecular parameters must exist that better define the blood 188 

transcriptome structure and thereby more accurately dissect heterogeneity of the clinical manifestation of 189 

COVID-19. 190 

 191 

Co-expression analysis discloses COVID-19 subgroups with distinct molecular signatures 192 

Classical approaches to analyze the transcriptome data by using differential gene expression analysis 193 

based on sample groups defined by a selection of clinical parameters precluded dissection of the 194 

heterogeneity of the host immune response towards SARS-CoV-2 infection, which is evident in the high-195 

parameter space of the transcriptome (Fig. 1). Co-expression analysis on the other hand identifies similarly 196 

regulated genes across samples, groups these genes into modules, which can then be explored for each 197 

patient sample individually or for entire patient groups. Applying such an approach using our established 198 

CoCena² pipeline [https://github.com/Ulas-lab/CoCena2] (Fig. 2a) for all 49 samples (39 COVID-19, 10 199 

control) independent of their clinical annotation disclosed 10 co-expression modules, designated by color 200 
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indianred to darkgrey, across a total of 6,085 genes included in the analysis (Fig. S2a). Hierarchical 201 

clustering of the samples based on their group fold changes (GFCs) for each module revealed a data-driven 202 

patient stratification assorting the samples into six groups (Fig. S2b), which were subsequently used in all 203 

following analyses: five different COVID-19 sample-containing groups, which only partially grouped by 204 

disease severity and illustrated heterogeneity of the immune response in COVID-19 patients, plus one 205 

group containing all control as well as four COVID-19 samples (Fig. 2b+S2c). Overlaying this information 206 

onto the original PCA reflected structured sample stratification as the newly defined groups clustered 207 

together (Fig. S2d). GFC analysis of the newly generated groups revealed group-specific enrichment of 208 

co-expressed gene modules (Fig. 2c). GOEA on each of the modules identified associated gene signatures 209 

displaying distinct functional characteristics, which distinguish the different sample groups G1-G6 (Fig. 210 

2d+S3, Table S3). For example, ‘inflammatory response’ was enriched in modules maroon, lightgreen, 211 

pink, and darkgrey, all characteristic for sample groups G1 and G2 to different extents, indicating these to 212 

possibly undergoing a more vigorous inflammatory immune reaction (Fig. 2c+d). Of note, G1 and G2 213 

harbour a great fraction of samples from patients with severe COVID-19 (Fig. 2b). Only a slight increase in 214 

the inflammation-associated module maroon, an increase in expression in the genes of darkorange 215 

(enriched in oxidative phosphorylation, mTORC1 signaling and cell cycle-associated genes), as well as a 216 

loss of expression in the gold module (connected to estrogen response genes and IL2 signaling) was 217 

indicative of the G4 sample group. G6, encompassing all control samples, was not associated with any 218 

modules connected to inflammatory processes, but showed higher expression of indianred, steelblue and 219 

gold, all functionally enriched basic cellular and metabolic processes. Extended analysis of the lightgreen 220 

module, containing 987 genes, revealed a prominent enrichment of granulocyte/neutrophil activation-221 

related signatures (Fig. 2e, Table S3). To further explore this neutrophil activation signature association, 222 

we investigated possible co-expression patterns of long non-coding RNAs (lncRNA) that were reported as 223 

regulators of granulocyte function (36). CYTOR (also known as Morrbid) is a lncRNA that mediates survival 224 

of neutrophils, eosinophils, and classical monocytes in response to pro-survival cytokines (36), and 225 

interacts with the protein-coding RNAs for the catalytic PI3K isoform Phosphatidylinositol-4,5-bisphosphate 226 

3-kinase catalytic subunit beta (PIK3CB) and the filament Vimentin (VIM) (37). Interestingly, expression of 227 

CYTOR was significantly increased in severe COVID-19 patient group G1 (p<0.001) and correlated with 228 

both PIK3CB (r= 0.53, p<0.001) and VIM (r= 0.55, p<0.001) (Fig. 2f).  229 

Next, we asked whether the enrichment for neutrophil activation-associated signatures in G1 and G2 is 230 

attributed to an increased relative number of granulocytes within the whole blood sample. Deconvolution of 231 

the expression values using linear support vector regression (38) showed increased relative percentages 232 

of neutrophils especially in G1 and G2 (Fig. S2e). G5, on the other hand, clearly displayed an increased 233 

percentage of monocytes. At the same time, lymphocyte enrichment was found to be reduced in the COVID-234 

19 sample groups, most prominently in G1 and G2 (Fig. S2e). The linear deconvolution results were then 235 

validated by flow cytometry. Blood composition of COVID-19 donors confirmed an increased number of 236 

neutrophils and a decreased number of lymphocytes especially in G1 and G2 (Fig. S2f). As a result, the 237 
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neutrophil-lymphocyte ratio (NLR), a clinical marker proposed for disease severity as it has been associated 238 

with an increased systemic inflammation (39, 40), was markedly elevated in G1 and G2 compared to the 239 

control sample-containing G6, both in the computationally deconvoluted results (Fig. 2g) as well as 240 

measured by flow cytometry (Fig. 2h). Interestingly, in context of the observation that men more often 241 

progress to severe COVID-19 than women (41), G1 encompasses samples from solely male patients (Fig. 242 

S2c). Analysis of the top 20 differentially expressed transcription factors, epigenetic regulators, surface or 243 

secreted proteins for the six sample groups confirmed an increased inflammatory state, again most 244 

remarkably for G1 and G2, evident from the transcription factors of the STAT family, STAT1, STAT3, 245 

STAT5B and STAT6, surface marker CSF3R (G-CSF) or FCGR3B (CD16b), the secreted factors GRN or 246 

IL1B, or the epigenetic regulator PADI4 (PAD4) (Fig. S2h).  247 

We confirmed our findings of distinct molecular phenotypes in the blood of COVID-19 patients in a second 248 

independent cohort. Thirty patients, severely affected by SARS-CoV-2 infection, were sampled upon 249 

admission to the ICU. We stratified the obtained blood transcriptomes based on the module signatures from 250 

the co-expression analysis (Fig. 2c). The samples of the second cohort were filtered for the genes present 251 

in the COVID-19 co-expression network, group fold changes were calculated across all patients individually, 252 

and sample groups G1-G6 assigned according to their combinatorial module expression (Fig. S4a). 253 

Controls from the first cohort were included for comparison. Interestingly, in these ICU patients, we noted 254 

the transcriptome profiles from the second cohort to show greatest similarity to G1 and G2, which is in line 255 

with their severe phenotypes and our findings from the first cohort. Hierarchical clustering of the samples 256 

based on their group fold changes for each module stratified the samples of the second cohort into four 257 

groups (Fig. S4b). The control samples from the first cohort built one separate group, which we designated 258 

again as G6. To allow for group-specific comparison to the stratification within the first cohort (Fig. 2c), we 259 

calculated the mean GFCs of the four groups identified in the second cohort (Fig. S4c). Second cohort 260 

samples of the first group showed enrichment in modules lightgreen, pink and darkgrey and were thus 261 

assigned most similar to G1; the third group of the new samples showed enrichment in modules maroon 262 

and darkorange, most similar to G2; and the remaining samples were stratified into an intermediate group 263 

exhibiting stronger expression of genes from the darkorange as well as pink module indicating 264 

characteristics of both G1 and G2 (Fig. S4c).  265 

Collectively, co-expression analysis (CoCena2) in whole blood transcriptomes reveals at least five 266 

molecular phenotypes of the host’s immune response in COVID-19 patients with at least two different 267 

groups in clinically described severe COVID-19 patients. The two molecularly defined groups G1 and G2 268 

are transcriptionally characterized by a pronounced neutrophilic signature, at the same time distinct in other 269 

cellular characteristics. Such molecular classification might serve as a basis for identifying clinical 270 

surrogates for patient stratification. Since whole blood transcriptomics captures functional changes in the 271 

host’s peripheral immune response across all cell types, we next sought a more detailed investigation of 272 

the granulocyte compartment within the framework of the newly identified subgroups. 273 
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 274 

Granulocytes from severe COVID-19 patients show a simultaneous increase in inflammatory and 275 

suppressive signatures 276 

To investigate whether the activation signatures seen in whole blood of COVID-19 patients are not only due 277 

to disease-associated increase of the neutrophil population, granulocytes were sequenced and 278 

transcriptomes were analyzed from 11 longitudinally sampled patients (4 mild, 7 severe), resulting in 14 279 

mild and 45 severe COVID-19 samples (Fig. 3a). Evaluation of the relative cell type composition within 280 

each sample using linear deconvolution predicted the samples to mainly consist of neutrophils, with 281 

comparable fractions of 78.8% on average (Fig S5a). Exploratory analysis by PCA showed a separation 282 

between mild and severe COVID-19 patients’ granulocyte samples, especially for the day 1-14 groups (Fig. 283 

3B). Differential expression analysis identified 1,496 upregulated and 1,440 downregulated genes 284 

comparing severe and mild samples from day 1-14 after first symptoms, while comparison at a late disease 285 

stage showed less differences on gene level (380 up-, 307 downregulated genes / FC>|2|, padj<0.05 / Fig. 286 

3c, Table S4). Whole blood transcriptome analysis showed enrichment of neutrophil activation-associated 287 

signatures (Fig. 2). Excluding the bias of alterations in neutrophil population size across conditions, gene 288 

set enrichment analysis on granulocyte samples now uncovered that differentially expressed genes 289 

between severe and mild COVID-19 patients are indeed characterized by an increase in granulocyte 290 

activation-associated factors (Fig. S5b). CD177 is part of the granulocyte activation gene set and was 291 

indeed markedly increased in severe (day 1-14) compared to mild (day 1-14) COVID-19 samples (Fig. 3d). 292 

Also, the alarmin S100A6 exhibited heightened expression in granulocytes from severe COVID-19 patients 293 

(Fig. 3d). 294 

Next, we used the CoCena2 modules from the whole blood analysis (Fig. 2c) to identify modules that are 295 

actually driven by alterations in neutrophil activation instead of a mere increase in the neutrophil population. 296 

The genes from the modules were filtered by the union of the upregulated genes between severe and mild 297 

COVID-19 patients (either comparing at day 1-14 or 15-28 / Fig. S5c). After filtering, the number of DEG 298 

between granulocyte samples from mild and severe COVID-19 exceeded 100 genes per module in three 299 

of the modules. Among those modules, the genes identified in whole blood transcriptomes within the 300 

lightgreen module showed the highest overlap of 45%, maroon of 29% and pink of 7% with genes 301 

upregulated in granulocytes of severe COVID-19 patients. We then investigated the expression pattern of 302 

those modules for each individual patient in a longitudinal fashion (Fig. 3e). In concordance with the whole 303 

blood CoCena2 results (Fig. 2c), modules lightgreen, maroon and pink showed a continuously elevated 304 

mean expression in the severe compared to the mild COVID-19 patients, indicated by horizontal lines 305 

showing the mean expression of the respective modules calculated only for the mild patients (Fig. 3e). This 306 

effect was observed irrespective of donor and of days after symptoms onset. 307 
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Recently, heterogeneity of neutrophils with distinct subsets associated with disease severity and phase 308 

was revealed by single cell RNA-seq analysis in blood of COVID-19 patients (42). Enrichment of the three 309 

signatures that related to severe COVID-19, in our granulocyte samples demonstrated that the findings 310 

obtained in the single-cell study were also discernible in bulk data and the results in accordance to the 311 

reported phenotypes: premature/immature, severe inflammatory, as well as severe suppressive subset 312 

marker genes were markedly enriched in granulocytes from severe COVID-19 patients in the present study 313 

(Fig. S5d). Further analysis of this observation on the gene level displayed the heightened expression of 314 

pre-/immature neutrophil-associated markers in severe COVID-19 patients’ granulocytes, such as CD15 315 

(FUT4), metalloproteinase MMP8, alarmins (S100A8/9), NET formation-involved PADI4, or NLRC4, for 316 

which activating mutations have been reported to overtly trigger the inflammasome and thereby increase 317 

the risk to develop autoinflammatory syndrome (43, 44) (Fig. 3f). Marker genes attributed to the “mild 318 

mature activated” neutrophil subset (42), such as ITGA4, or SLC38A1, were indeed elevated as well in the 319 

mild COVID-19 patients’ granulocytes of this study. In line with the single cell study, signs of an interferon 320 

response were observed irrespective of disease severity (IFIT1, IFIT3, ISG15), while only severe COVID-321 

19 patients’ granulocytes featured expression of genes with suppressive functionality, such as ARG1 or 322 

PD-L1 (CD274) (Fig. 3f),  323 

We next stratified the granulocyte samples based on the module signatures from the whole blood analysis. 324 

The granulocyte samples were filtered for the genes present in the COVID-19 co-expression network (Fig. 325 

2c) and the group fold changes were calculated across all patients individually, sample groups G1-G6 were 326 

assigned according to their combinatorial module expression (Fig. 2c+3g). For example, samples attributed 327 

to G1 showed high enrichment scores in modules lightgreen, darkgreen and pink, whereas those assigned 328 

as G2 additionally expressed the maroon module. Samples with the indianred/darkorange combination 329 

were designated as G4. Assessment of the combinatorial enrichment scores for the different modules did 330 

not lead to a corresponding sample group for all longitudinal samples from patient 1, hence it was assigned 331 

as G7. Re-analysis of CD177, NLRC4, ARG1, and PD-L1 (CD274) as a function of the assigned sample 332 

groups (Fig. 3b-d), showed increased expression in G1 and G2 in relation to the other groups (Fig. 333 

3h+S5e). Interestingly, the stratified patient groups in the whole blood data also depicted increased 334 

expression in G1 and G2 in comparison to the control-containing G6 (Fig. 3i+S5f). 335 

Analysis of granulocyte samples from COVID-19 patients proved that, in addition to the relative increase in 336 

neutrophils in severe COVID-19 cases, there are indeed alterations in the transcriptional program of these 337 

cells themselves. We found enrichment of signatures typical of pre-/immature neutrophils and evidence of 338 

simultaneous inflammatory and suppressive features, arguing for a dysregulation in the peripheral 339 

granulocyte compartment. Importantly, transferring these findings back to the whole blood analysis showed 340 

that the granulocyte phenotypes were still observable within the whole blood transcriptomes. 341 
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 342 

Integration with signatures from other diseases reveals COVID-19-specific characteristics 343 

 344 

Putting COVID-19 into context of other known diseases, we compiled whole blood transcriptomes from 11 345 

further diseases, including several viral and bacterial infections as well as immune-related disorders into 346 

one large dataset encompassing a total of 2,817 samples including the 39 COVID-19 samples from this 347 

study (Fig. 4a, S6a, Table S5). All in all, the dataset contains three other viral infection studies 348 

(Chikungunya (26), HIV (23) and Zika (45), n=466), seven bacterial infection studies (tuberculosis (20–23, 349 

46), bacterial sepsis and systemic inflammatory response syndrome (SIRS, n=1,578) (24), six 350 

inflammatory/autoimmune studies (systemic lupus erythematosus (47), Crohn's disease, rheumatoid 351 

arthritis (48), Ebola vaccination (25), neonatal-onset multisystem inflammatory disease (NOMID) and 352 

macrophage activation syndrome (NLRC4-MAS) (44), n=326) as well as control samples from eight 353 

different studies (n=408). To investigate how the COVID-19-specific co-expression modules can be linked 354 

to other diseases, the combined dataset was filtered for the genes present in the COVID-19 co-expression 355 

network (Fig. 2c) and the group fold changes were calculated across all samples (Fig. 4b). Additionally, 356 

cell type-specific signatures (38) and single cell-derived neutrophil subset signatures (42) (Table S6) were 357 

intersected with all CoCena2 modules. This analysis revealed that the lightgreen module shows a high 358 

(61%) neutrophil enrichment followed by module pink (38%) and maroon (32%), which is in line with a high 359 

functional enrichment for neutrophil activation in lightgreen (Fig. 2e, Table S3). Genes within module 360 

lightgreen were most prominently upregulated in the severe COVID-19 group (G1) as well as in sepsis and 361 

in patients with tuberculosis and HIV infection, but not in individually occurring HIV and tuberculosis (Fig. 362 

4b). Enrichment of the neutrophil subset signatures revealed increased expression of genes found in pre-363 

/immature neutrophils and those of inflammatory neutrophils associated with severe COVID-19. Many 364 

genes within module lightgreen are known to be related to induction of neutrophil extracellular traps (NET) 365 

(e.g. PKC (49), PADI4 (50), LTB4 (51)). Moreover, a link between excessive NET activation and tissue 366 

damage has been reported in sepsis (52). Module darkgrey shares a similar expression pattern across the 367 

disease spectrum with lightgreen and contains genes involved in platelet activation. The NET–platelet–368 

thrombin axis has been reported to be involved in the promotion of intravascular coagulation in sepsis (53). 369 

The pink module shows the second highest neutrophil enrichment, which is dominated by the enrichment 370 

of pre-/immature neutrophils subtype signatures. It is strongly increased in sepsis, tuberculosis, after Ebola 371 

vaccination as well as in autoinflammatory diseases such as rheumatoid arthritis, NLRC4-MAS and NOMID, 372 

and shows slight overlap with the severe COVID-19 patients in group G1. It contains many epigenetic 373 

modifiers, such as HDAC5, SETD1B, or KMT2D, as well as KLF2, shown to regulate NF-κB-mediated 374 

immune functions, such as inflammation, erythropoiesis and lung development (54). Maroon is the third 375 

module with predicted neutrophil enrichment, which features genes from the “severe suppressive” subset 376 

alongside the “severe inflammatory” and pre-/immature subset signatures. It is associated with COVID-19 377 
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groups G2-4 and shares this characteristic with blood transcriptomes from the response to infection with 378 

Chikungunya and Zika virus or from HIV patients suffering from tuberculosis. 379 

 380 

A combination of single sample gene set variation analysis (ssGSVA), a non-parametric, unsupervised 381 

approach to estimate variation of gene set enrichment within each single sample, and Hallmark enrichment 382 

for each disease or inflammatory condition in the compiled dataset accentuated the findings on COVID-19 383 

blood transcriptomes in context of the other diseases (Fig. 4c). ‘Interferon alpha and gamma responses’ 384 

were enriched in acute viral infections with Chikungunya and Zika virus as well as in HIV with or without 385 

concomittent tuberculosis or after Ebola vaccination, and this enrichment was shared with COVID-19 G2. 386 

‘Inflammatory response’, ‘IL6 and TNFA signaling’ is an attribute of both, G1 and G2, to a lesser degree of 387 

G5, also Tuberculosis/HIV, and to some extent of sepsis. More prominently enriched in sepsis was 388 

‘complement’, ‘coagulation’, ‘heme metabolism’ and ‘glycolysis’ - shared by COVID-19 G1+G3; whereas 389 

‘oxidative phosphorylation’ and ‘mTORC1 signalling’ were seen for Chikungunya and Zika virus infections 390 

- shared to some extent with COVID-19 G3+G4. 391 

 392 

Although we observed overlaps of gene modules enriched in COVID-19 with several other infectious and 393 

immune-related diseases, each of our molecularly defined COVID-19 patient groups was characterized by 394 

a specific combination of these modules, clearly indicating the unique biology of this SARS-CoV-2 infection-395 

mediated immune response, which needs to be considered when developing patient-stratified therapy 396 

regimens. 397 

 398 

COVID-19 patient subgroup-specific signatures can be used to predict potential drug repurposing 399 

Despite the immunologically-driven nature of COVID-19, most drugs that are currently investigated in 400 

clinical trials to combat or ameliorate COVID-19 are targeting the virus and its direct interaction partners 401 

(Fig. 5a+S7a, Table S7). Compounds as well as the number of clinical trials performed with anti-402 

inflammatory, immunosuppressive, and immunomodulatory properties are immensely outnumbered by 403 

other approaches. Examining the listed target genes of currently investigated drugs in our stratified patient 404 

groups, we found 162 included in our co-expression network analysis, most of which being differentially 405 

expressed in the severe patient group G1 in comparison to G6 (Fig. 2c+5b). In addition, many of the 406 

regulated genes in our patient signatures are clearly not affected by the drugs that are currently investigated 407 

against COVID-19. The immunopathologies seen in COVID-19 patients, especially past their second week 408 

of symptoms, demand a host-directed, immune system-focused therapy.  409 

To identify potentially beneficial drugs, we designed an in silico signature-based drug repurposing approach 410 

(Fig. S7b). To generate input signatures of interest, we characterized our stratified sample groups by 411 

identifying differentially expressed genes between groups G1-G5 and the control group G6 (Fig. S7c). Most 412 
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transcriptional differences were observed for G1 (up: 4,032, down: 4,729) and G2 (up: 2,336, down: 2,767), 413 

whereas group G3 (up: 1,193, down: 1,921), G5 (up: 1089, down: 1216), and especially G4 (up: 727, down: 414 

547) were less different to G6. Only a minor fraction of 137 DEGs was shared by all 5 comparisons. The 415 

most overlap of DEGs was observed between G1 and G2, the two groups comprising mostly severe COVID-416 

19 patients. Nevertheless, G2 was still characterized by a large number of specific DEGs (Fig. S7c). GOEA 417 

of the upregulated DEGs of each comparison revealed enrichment of genes in the context of ‘neutrophil 418 

activation’ and ‘coagulation’ in all comparisons (Fig. S7d). Humoral and B cell-mediated immunity terms on 419 

the other hand were enriched the strongest in G4-specific upregulated DEGs (Fig. S7d). Differential 420 

expression analysis for the stratified sample groups once more emphasized that neutrophils play a central 421 

role in the host’s immune response against SARS-CoV-2 infection. Neutrophils, as the most abundant 422 

circulating leukocytes, have become a therapeutic target of interest in multiple disease settings in recent 423 

years (55). Two interesting target genes discussed in this context and already addressed in clinical trials 424 

are CXCR2 and C5AR1. Consistent with the increased NLR in G1 and G2, we observed significant 425 

upregulation of CXCR2 and C5AR1 in both groups (Fig. S7e). 426 

Using patient cluster-specific DEGs as input (Fig. S7c, Table S8), we searched for compounds that evoke 427 

a reverse signature in human cells via the NIH Library of Integrated Network-Based Cellular Signatures 428 

(iLINCS) (56) and the Broad Institute’s Repurposing Hub (57). The best counteracting signatures for each 429 

comparison were combined with signatures for all currently investigated drugs and downloaded for further 430 

analysis, resulting in about 63,000 signatures from 940 compounds/drugs. We performed gene set 431 

enrichment analysis for all signatures against our COVID-19 patient comparisons and calculated the 432 

difference of the up- and downregulated normalized enrichment score (ΔNES). A positive ΔNES indicates 433 

drug signatures that reverse our COVID-19 signatures, whereas drugs with a negative ΔNES induce 434 

signatures similar to the ones observed in COVID-19. Signatures were then grouped by k-means clustering 435 

revealing groups of drug signatures that reverse specific patient subgroup signatures (e.g. cluster 5) or 436 

those that have the highest impact on all patient subgroups (e.g. cluster 13, Fig 5c). Amongst the top 437 

signatures in cluster 13 are methylprednisolone (ΔNESG1=7.13), immunoglobulins (ΔNESG1=6.62), 438 

methotrexate (ΔNESG1=4.21) and pevonedistat (ΔNESG1=4.81) which are all under investigation 439 

(clinicaltrials.gov), thereby proving that our in silico signature-based drug repurposing approach can indeed 440 

predict drugs that have already been deemed potentially beneficial in this disease (Fig. S7f). Extracting the 441 

leading edge of the most frequently targeted genes by the drugs included in cluster 13 revealed alarmins, 442 

such as S100A8 or S100A6, and SERPINB1, critical for neutrophil survival by protecting the cell from 443 

proteases released into the cytoplasm during stress (58–60). Visualizing these genes in the co-expression 444 

network deducted from the blood transcriptomes of our COVID-19 patient cohort identified most of them as 445 

part of cluster lightgreen and maroon (Fig. S7g). Sample group G1-specific drug signature cluster 5 also 446 

encompasses a considerable number of drugs currently being tested in clinical trials to fight COVID-19 (Fig. 447 

5a+d, Table S9). Interestingly, a lot of drug signatures in cluster 5 were related to female hormones, such 448 

as alpha-estradiol (ΔNESG1=2.83), estradiol-cypionate (ΔNESG1=2.78), estriol (ΔNESG1=2.78), or 449 
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chlormadinone acetate used in birth control pills (ΔNESG1=2.74), but also for example dexamethasone 450 

(ΔNESG1=2.65) that was recently reported to reduce mortality in severe COVID-19 cases requiring 451 

intubation, while showing no benefit for patients with milder disease courses (61). The most frequently 452 

targeted genes within the signatures of cluster 5 included protein tyrosine kinase 2 beta (PTK2B), playing 453 

an important role for integrin-mediated neutrophil degranulation (62, 63), lysosomal protease Cathepsin D 454 

(CTSD) expressed in neutrophils and monocytes, as well as the inflammatory mediator Interleukin-1β 455 

(IL1B) (Fig. 5e). The majority of these target genes cluster in the G1-specific lightgreen and pink, as well 456 

as in the maroon CoCena² modules. Drugs predicted to be effective for each module are presented as a 457 

resource as supplementary information for further inspection (Table S9).  458 

We used stratified blood transcriptomes from COVID-19 patients in an in silico signature-based approach 459 

to identify potential drugs for therapeutic repurposing. Many of our identified hits are indeed already being 460 

tested in clinical trials. Further, it became evident that, apart from common therapeutic avenues to address 461 

the immune dysregulation in COVID-19 patients, there are patient groups that may benefit from treatments 462 

targeting more precisely their immune phenotype and this phenotyping could be used for enrichment of 463 

patient groups in clinical trials. 464 

 465 

DISCUSSION 466 

The global spread of SARS-CoV2 resulting in hundreds of thousands of COVID-19 cases urgently demands 467 

a more thorough molecular understanding of the pathophysiology of the disease (12, 17, 64, 65). While 468 

vaccines are still under development (66–68), therapeutic management of the COVID-19 patients is key to 469 

mitigate the clinical burden as well as to prevent deaths. It has become clear that there is great variety in 470 

the occurrence of disease manifestation, and dysregulation of local and systemic immune responses have 471 

been implicated in disease heterogeneity (19, 33, 64, 69, 70). Here, by applying classical bioinformatics 472 

approaches and data-driven co-expression network analysis (CoCena²) on blood transcriptomes of COVID-473 

19 patients, we provide evidence for the existence of distinct molecular phenotypes that are not solely 474 

explained by current clinical parameters. Particularly in severe COVID-19, we detected dramatic 475 

transcriptional changes in the blood compartment with loss of T cell activation and concurrent gain of a 476 

rather unique combination of neutrophil activation signals, which was not simply due to changes in cell 477 

numbers since isolated neutrophils showed the same transcriptional changes. CoCena² allowed us to group 478 

functionally related genes into 10 major transcriptional modules with distinct expression patterns across 479 

five, on this basis newly defined COVID-19 patient groups, of which two (G1, G2) were related to severe 480 

disease courses. While pronounced neutrophil-related alterations were observed in both subgroups of 481 

severe COVID-19 patients (G1, G2), genes associated with coagulation and platelet function were mainly 482 

elevated in patients with the most highly elevated number of neutrophils as measured by flow cytometry, 483 
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an information that was also deduced by linear support vector regression from transcriptome data. 484 

Assessment of non-coding RNA species from whole blood transcriptomes also allowed the identification for 485 

additional regulatory circuits. For example, we identify CYTOR, a lncRNA associated with granulocyte 486 

survival (36) strongly upregulated in COVID-19 patient group G1, which was accompanied by strong 487 

induction of CYTOR interactors such as VIM and PIK3CB (37). These findings strongly support the notion 488 

that whole blood transcriptomics might not only be suitable for better understanding the systemic immune 489 

response in COVID-19 patients, but can also be used to predict novel therapeutic targets involving distinct 490 

pathophysiological mechanisms observed in COVID-19. In a ‘reverse transcriptome approach’, we used 491 

the specific changes observed in the COVID-19-related transcriptional modules as the bait and searched 492 

for inverse correlation in thousands of drug-based transcriptome signatures to predict potential drug 493 

candidates. Most interestingly, we identified drug candidates that might be beneficial for all COVID-19 494 

patients, but also candidates that might only be suitable for a subgroup of patients. Lastly, by comparing 495 

the transcriptional modules identified in whole blood of COVID-19 patients, we identified unique differences 496 

to other viral and bacterial infections, for which similar data were available, suggesting that blood 497 

transcriptomes might also be used diagnostically or for outcome prediction in larger clinical cohorts, 498 

treatment or vaccine trials in the near future. 499 

Classical bioinformatic assessment of blood transcriptome data comparing defined groups, in this study 500 

represented by control individuals and samples derived from either mild or severe COVID-19 patients, 501 

already revealed important biology of the systemic immune response. For example, the most significantly 502 

elevated transcript was CD177, a cell surface molecule on neutrophils, which was enhanced in both mild 503 

and severe cases (Fig. 1, S1), CD177 has also been introduced as a hallmark for Kawasaki syndrome (71), 504 

a syndrome that has been observed in several studies being increased in children and adolescents during 505 

the SARS-CoV-2 pandemic (72–74). In acute Kawasaki syndrome, elevated expression of CD177 was 506 

associated with resistance to treatment with intravenous immunoglobulin (IVIG), a therapy in COVID-19 507 

patients that is currently investigated in clinical trials around the world (9 trials, clinicaltrials.gov). Integrating 508 

the assessment of CD177 into these trials might help to stratify patients and better predict individual therapy 509 

outcome. 510 

Hierarchical clustering of the most variable genes in the dataset already hinted towards further 511 

heterogeneity among patients beyond the current clinical differentiation into mild and severe patients 512 

(Fig.1). Indeed, co-expression network analysis in a data-driven fashion allowed us to define five patient 513 

subgroups (G1-5) defined by 10 distinct transcriptional modules, which was corroborated in a second 514 

independent cohort (Fig. 2+S4). Gene transcription observed in severe COVID-19 patients in G1 clearly 515 

differed from severe G2 COVID-19 patients particularly in modules darkgrey, pink, orchid, and maroon (Fig. 516 

2c). For example, biological mechanisms related to the darkgrey module included blood coagulation, 517 

platelet activation, aggregation and degranulation, as well as cell-cell adhesion and integrin mediated 518 

signaling. These are all mechanisms that are integral to several of the complications observed in a subset 519 
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of severe COVID-19 patients including increased disseminated intravascular coagulation (75), venous 520 

thromboembolism (75, 76), stroke (77), or acute cor pulmonale (78), further supporting the need for 521 

advanced molecular subtyping of COVID-19 patients, as proposed here based on blood transcriptomes. 522 

This is only one prominent example of the rich information within the new structure of molecular COVID-19 523 

phenotypes that we provide here. For further inspection of the data we refer the reader to the online tool 524 

that allows to extract module and group specific gene expression information 525 

(https://www.fastgenomics.org/). 526 

In addition to many other infectious and non-infectious diseases (20–28), whole blood transcriptomics 527 

revealed important insights into the patient structure in COVID-19 and comparative analysis provides first 528 

evidence for the unique changes elicited by this disease within the host in comparison to other infections 529 

(Fig. 4). While cases in G2-4 shared changes with other viral infections such as Chikungunya or Zika, 530 

mainly including interferon signature genes (IFI16, IFI35, IFIT1, maroon module), partial overlap to bacterial 531 

sepsis was observed for G1-G3, albeit the major sepsis module (pink) was not prominently enriched in 532 

COVID-19 patients indicating that there are distinct differences in pathology of these two diseases. Although 533 

we could establish an integrative model using historical and publicly available blood transcriptome data, we 534 

also realized that limited standardization of the experimental procedures (sample processing, library 535 

production, sequencing) between different whole blood transcriptomics studies led to the exclusion of 536 

several additional important studies. In this context, it will be of great interest whether blood transcriptomics, 537 

as it was shown for tuberculosis (20, 21), can be utilized in large enough cohorts and clinical trials for 538 

disease risk or outcome prediction in COVID-19. We propose to collect whole blood transcriptomics data 539 

in a central registry for direct inspection by the research community and provide a prototype model for such 540 

a registry on FASTGenomics. Transcriptome data have been successfully used to predict a role for specific 541 

gene networks in the drug response to certain cancer types (79–83). Considering the strong influence of 542 

the systemic immune response on severity and outcome of COVID-19, we wanted to establish, whether 543 

the global assessment of molecular subgroups of COVID-19 patients could be utilized to predict novel drug 544 

targets for this disease addressing the dysregulated peripheral immune response of the host (Fig. 5). Using 545 

two major databases providing transcriptome signatures to many known drugs, CLUE (83) and iLINCS (82), 546 

we designed an in silico signature-based drug repurposing approach, allowing us to identify candidate drugs 547 

(84) that might reverse immune pathophysiology as observed in blood transcriptomes. Some of the 548 

candidate drugs identified are currently already in clinical trials, for example Imatinib (NCT04394416, 549 

NCT04357613, NCT04346147, NCT04356495), Ruxolitinib (NCT04348071, NCT04355793, 550 

NCT04377620) or Nintedanib (NCT04338802), for which prediction was particularly high in G1 patients. 551 

These trials might benefit from assessing molecular phenotypes of immune cells thereby determining 552 

whether patients with G1 type transcriptomes benefit most from such treatment. First study reports have 553 

recently declared strong benefit for Dexamethasone treatment in severe COVID-19 cases requiring 554 

intubation, while no effect on mortality was seen for those patients who did not require respiratory support 555 

(61). Of note, drugs predicted to potentially reverse the transcriptome signatures of the severely affected 556 
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G1 group may have adverse effects in milder COVID-19 cases from G4 as observed in the contrasting 557 

regulation patterns in many of the clusters (Fig. 5c). Interestingly and in line with the reports on sexual 558 

dimorphism in COVID-19 severity and mortality (85), G1 included only male patients and many of the drugs 559 

predicted to reverse the G1-specific signatures were related to female hormones (Fig. 5d). However, we 560 

also predicted drugs for all COVID-19 patients already in clinical trials such as immunoglobulins (>80 trials, 561 

clinicaltrials.gov), or methylprednisolone (>20 trials), findings further supporting the value of our prediction 562 

approach. Despite these promising results, strongly suggesting that reverse transcriptomics is not only of 563 

value in cancer (79–81) but might also be used to identify drugs targeting the immune pathophysiology in 564 

COVID-19, we would also like to point out current limitations of our findings that need to be addressed in 565 

future studies. Predictions will further benefit from and focused by validation studies in independent COVID-566 

19 patient cohorts, which is to be fostered by a central database for COVID-19 patients’ blood transcriptome 567 

data. Nevertheless, we used samples from different countries, illustrating the generalizability. Furthermore, 568 

the molecularly derived and prioritized drug candidates presented here might be tested in very recently 569 

introduced pre-clinical models (86) prior to starting clinical trials. Irrespective of the current shortcomings, 570 

we favor such drug candidate identification, since it is based on interrogation of molecular data directly 571 

derived from patients’ immune cells involved in the ongoing processes in the disease and therefore may 572 

increase the likelihood of a beneficial effect in patients. 573 

Collectively, we provide first evidence for whole blood transcriptomics to potentially become a valuable tool 574 

for distinguishing COVID-19 from other infections in cases for which pathogen detection might be difficult, 575 

for monitoring and potentially predicting outcome of the disease, to further dissect molecular phenotypes 576 

of COVID-19, particularly of the host’s immune system, also along the disease course over time, and to 577 

support drug target prediction for subgroups of patients. Clearly, in contrast to more sophisticated higher 578 

resolution methods, whole blood transcriptomes can be easily obtained in large clinical cohort studies and 579 

large clinical treatment trials yet providing an enormous information content about the molecular reactions 580 

of the host’s immune system. We therefore propose a blood transcriptome registry following the model we 581 

introduce here on the FASTGenomics platform that would allow the scientific community to utilize the 582 

information for new clinical studies and to address further large-scale studies into pathophysiological 583 

mechanisms of the disease and enhance the chances of trials to demonstrate a clinical benefit in patients. 584 
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METHODS 631 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 632 

Human Cohorts 633 

Whole blood samples for RNA-seq analysis 634 

The study was conducted between March 13 and March 30, 2020. A total of six ml of blood was sampled 635 

from patients with community-acquired pneumonia (CAP) by SARS-CoV-2 within the first 24 hours of 636 

hospital admission. CAP was defined as the presence of diffuse infiltrates in chest X-ray or chest computed 637 

tomography and positive molecular testing of respiratory secretions for SARS-CoV-2. Exclusion criteria 638 

were infection by the human immunodeficiency virus; neutropenia; and any previous intake of 639 

immunosuppressive medication (corticosteroids, anti-cytokine biologicals and biological response 640 

modifiers). The studies were conducted under the 23/12.08.2019 approval of the Ethics Committee of 641 

Sotiria Athens General Hospital; and the 26.02.2019 approval of the Ethics Committee of ATTIKON 642 

University General Hospital. Written informed consent was provided by patients or by first-degree relatives 643 

in case of patients unable to consent. Patients were classified as severe when they were admitted to the 644 

intensive care unit because of need of mechanical ventilation; remaining patients were hospitalized in the 645 

ward and were classified as mild. The following information was recorded: white blood cell count and 646 

differential; administered treatment; and 28-day outcome. A volume of 2.5 ml of the collected blood was 647 

transferred into one PAXgene tube and stored at -80°C. The remaining was used for flow cytometry 648 

analysis. A similar amount of blood was sampled from 10 controls fully matched for age, gender and the 649 

Charlson’s comorbidity index.  650 

For the second cohort, whole blood samples were collected for RNA-seq analysis in PAXgene tubes from 651 

30 patients upon admission to the Intensive Care Unit of the Radboud university medical centre in 652 

Nijmegen, the Netherlands. The study was carried out in accordance with the applicable rules concerning 653 

the review of research ethics committees and informed consent. All patients or legal representatives were 654 

informed about the study details and could decline to participate. COVID-19 was diagnosed by a positive 655 

SARS-CoV-2 RT-PCR test in nasopharyngeal and throat swabs and/or by typical chest CT-scan findings. 656 

Exclusion criteria were hematological malignancies and/or active chemotherapy, solid organ transplant, 657 

auto-immune diseases, and pre-existent use of high dose corticosteroids. 658 

 659 

Granulocyte samples for RNA-seq analysis 660 

This study was approved by the Institutional Review board of the University Hospital Bonn (073/19 and 661 

134/20). After providing written informed consent, 11 COVID-19 patients were included in the study. In-662 

patients who were not able to consent at the time of study enrollment, consent was obtained after recovery. 663 
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COVID-19 patients who tested positive for SARS-CoV-2 RNA in nasopharyngeal swabs were recruited at 664 

the Medical Clinic I of the University Hospital Bonn between March 30 and May 17, 2020. 665 

Granulocytes were isolated from EDTA-treated or heparinized peripheral blood by density centrifugation 666 

over Pancoll or Ficoll-Paque density centrifugation (density: 1.077g/ml). Granulocyte fractions were then 667 

treated with 10ml RBC lysis buffer (Biolegend) for 10min. After RBC lysis, cells were washed with DPBS 668 

and recovered by centrifugation at 300xg for 10min. Granulocyte pellets were then lysed with 500µl of 669 

QIAzol (QIAGEN), shortly vortexed and incubated 5min at RT prior storage at -80°C until RNA extraction. 670 

 671 

Rhineland Study as control samples within the integrated dataset for disease comparison 672 

Study population  673 

The Rhineland Study is an ongoing community-based cohort study in which all inhabitants of two 674 

geographically defined areas in the city of Bonn, Germany aged 30–100 years are being invited to 675 

participate. Persons living in these areas are predominantly German with Caucasian ethnicity. Participation 676 

in the study is possible by invitation only. The only exclusion criterion is insufficient German language skills 677 

to give informed consent.  678 

Ethical Approval 679 

Approval to undertake the Rhineland Study was obtained from the ethics committee of the University of 680 

Bonn, Medical Faculty. The study is carried out in accordance with the recommendations of the International 681 

Conference on Harmonization (ICH) Good Clinical Practice (GCP) standards (ICH-GCP). Written informed 682 

consent was obtained from all participants in accordance with the Declaration of Helsinki. 683 

Blood withdrawal 684 

Overnight fasting blood was collected from all participants between 7:00 and 9:30 AM, including a PAXgene 685 

tube for RNA extraction.  686 

 687 

METHOD DETAILS 688 

Flow cytometry techniques 689 

Whole blood cells were incubated for 15 minutes in the dark with the monoclonal antibodies anti-CD14 690 

FITC, anti-CD3 FITC, anti-CD4 FITC and anti-CD19 FITC (fluorescein isothiocyanate, emission 525nm, 691 
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Beckman Coulter); with anti-CD4 PE, anti-CD8 PE, and anti-CD(16+56) PE (phycoerythrin, emission 692 

575nm, Beckman Coulter); and with anti-CD45 PC5 (emission 667nm, Beckman Coulter). Fluorospheres 693 

(Beckman Coulter) were used for the determination of absolute counts. Cells were analyzed after running 694 

through the CYTOMICS FC500 flow cytometer (Beckman Coulter Co, Miami, Florida). Isotypic IgG controls 695 

stained also with anti-CD45 were used for each patient. 696 

 697 

Whole blood RNA isolation 698 

Total RNA was isolated from whole blood samples stored and stabilized in PAXgene RNA tubes using the 699 

Qiagen PAXgene Blood miRNA kit according to manufacturer’s guidelines. Eluted RNA was dissolved in 700 

RNase free water. The quality and quantity of RNA was evaluated by visualization of 28S and 18S band 701 

integrity on a Tapestation 4200 system (Agilent).  702 

 703 

RNA-sequencing 704 

Total RNA was converted into double-stranded cDNA libraries using the TruSeq Stranded Total RNA with 705 

Ribo-Zero Globin kit (Illumina). In brief, ribosomal and globin mRNA were depleted from 750ng purified total 706 

RNA using biotinylated, target-specific oligos combined with Ribo-Zero rRNA removal beads, remaining 707 

RNA was fragmented using divalent cations under elevated temperature. First-strand was generated using 708 

SuperScript2 RT (Invitrogen) supplemented with Actinomycin D, followed by second-strand synthesis with 709 

dUTP replacing dTTP. 3' ends were adenylated and index adapters were ligated before subsequent PCR 710 

amplification to yield the final library. Remaining overhangs were converted into blunt ends via 711 

exonuclease/polymerase activities and enzymes were removed. Selective enrichment of DNA fragments 712 

with ligated adaptor molecules was performed using Illumina PCR primers in a 15 cycles PCR reaction, 713 

followed by purification cDNA using SPRIBeads (Beckman-Coulter). Libraries were quantified by Qubit 714 

dsDNA HS Assay (Thermo Fisher Scientific) and fragment size distribution was determined using the HS 715 

D1000 assay on a Tapestation 4200 system (Agilent). High-throughput sequencing was carried out with a 716 

NovaSeq™ 6000 Sequencing System S2 (50bp paired-end reads), and data was converted into fastq files 717 

using bcl2fastq2 v2.20. 718 

RNA-sequencing analysis 719 

Sequenced reads were aligned and quantified using STAR: ultrafast universal RNA-seq aligner (v2.7.3a) 720 

(87) and the human reference genome, GRCh38p13, from the Genome Reference Consortium. Raw counts 721 

were imported using DESeqDataSetFromHTSeqCount function from DEseq2 (v1.26.0) (88) and rlog 722 

transformed according to DEseq2 pipeline. DESeq2 was used for the calculation of normalized counts for 723 

each transcript using default parameters. All normalized transcripts with a maximum over all row mean 724 
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lower than 10 were excluded resulting in 37,526 present transcripts. Differentially expressed genes were 725 

calculated for the scenarios status (COVID-19 vs. controls), mild/severe (severe COVID-19 vs controls, 726 

mild COVID-19 vs controls, and severe vs mild COVID-19) and new_cluster (1vs6, 2vs6, 3vs6, 4vs6, and 727 

5vs6) separately using a p-value cut-off of 0.05, an adjusted p-value (IHW) < 0.05 (independent hypothesis 728 

weighting) and a FC of 2. All present transcripts were used as input for principal component analysis. The 729 

top 25% most variable transcripts within the dataset were selected and visualized in a heat map. DEGs 730 

were visualized as DE bar plots and were used as input for volcano plots. 731 

Gene ontology enrichment analysis (GOEA) 732 

To test for functional enrichment within all three scenarios, we performed GOEA for up- or downregulated 733 

transcripts in the respective comparison using gene ontology set of biological processes. Gene set 734 

“c5.bp.v7.0.symbols.gmt” was obtained from the Molecular Signatures Database (MSigDB) (89). 735 

compareCluster and enrichGo functions from the R package ClusterProfiler (v3.12.0) (90) were used to 736 

determine significant enrichment (q-value<0.05) of biological processes. All present genes were used as 737 

background (universe). 738 

Filtering for transcription factors, epigenome, surfaceome and secretome 739 

All present transcripts were filtered and sorted by their variance in the dataset. The 20 most variable genes 740 

of each category were selected and visualized using a heat map. Transcription factor lists were extracted 741 

from (91), the epigenome gene list was literature-driven, surface and secretome markers were extracted 742 

from the Human Protein Atlas (92). 743 

Clustering of patients according to clinical parameters 744 

The contribution of each clinical parameter to the transcriptome in COVID-19 patients was determined using 745 

linear modelling of each parameter separately with PC1. Clinical parameters with rounded up adjusted r-746 

square ≥0.2 were used for agglomerative hierarchical clustering of the COVID-19 patients. A dissimilarity 747 

matrix based on Gower distance was calculated using the daisy function from the cluster packages (version 748 

2.1.0). Agglomerative hierarchical clustering was performed using the hclust function, defining the method 749 

with a setting for ward.D2 method linkage. We evaluated the clustering by extracting clusters statistics using 750 

the function cluster.stats from the package fpc (version 2.2-5). The number of clusters was chosen at the 751 

value at which the lowest distance among patients within clusters (i.e. low value of within-cluster sum of 752 

squares distance) and preserving a high distance among clusters (i.e. high average silhouette width) was 753 

achieved, while still maintaining a comparable number of individuals among the clusters.  754 

Linear support vector regression 755 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.07.20148395doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.07.20148395
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

Linear support vector regression (38) was employed to computationally deconvolute the study’s whole 756 

blood samples. Gene expression tables were normalized with DESeq2 and were utilized as the input 757 

mixture file. LM22-subsetted signatures for B cells, T cells, NK cells, monocytes, dendritic cells, eosinophils 758 

and neutrophils were generated as described on https://cibersort.stanford.edu/tutorial.php. The algorithm 759 

was subsequently run with 1,000 permutations and the proportions of cell types were visualized with ggplot2 760 

(v3.2.1) (93). 761 

CoCena²: Construction of Co-expression networks, analysis - automated  762 

To define differences and similarities in transcript expression patterns among the different groups, CoCena2 763 

(Construction of co-expression Network Analysis – automated) was performed based on Pearson 764 

correlation. CoCena² is a network-based approach to identify clusters of genes that are co-expressed in a 765 

series of observed conditions based on data retrieved from RNA-sequencing. The tool offers a variety of 766 

functions that allow subsequent in-depth analysis of the biological context associated with the found 767 

clusters. As input for the analysis the 10,000 most variable genes were used. 768 

To identify genes whose expression patterns are highly similar across all tested samples, pairwise Pearson 769 

correlation coefficients are calculated using the R package Hmisc (v4.1-1). The underlying assumption of 770 

the Pearson correlation to the data is that it is normally distributed, which is a valid assumption to make in 771 

the context of gene expression when looking at expression patterns within different experimental conditions. 772 

The correlation between each pair of genes is the basis for the subsequent network construction. Therefore, 773 

the tool focuses mainly on positively correlated gene pairs, since the rate of confirmation of an edge 774 

representing an association of genes is higher than that of a non-existing association. 775 

In order to refine the structure of the upcoming network and to unravel the condition specific signatures, a 776 

correlation cut-off is proposed to mark the minimal correlation a pair of genes must exhibit for their co-777 

expression to be taken into account. The cut-off is determined based on different criteria: 778 

1)      Scale-free topology: 779 

Gene expression networks have been argued to have a scale-free topology (94), meaning that the majority 780 

of vertices has a low number of adjacent edges, also referred to as the vertex’ degree, whereas only very 781 

few vertices have a high degree. The degree distribution of scale-free networks asymptotically follows a 782 

power law. To assess the scale-free topology of a network constructed by a given correlation cut-off, a log-783 

log plot of the degree distribution is constructed and the R²-value of the resulting linear regression is used 784 

to evaluate the scale-free criterion. 785 

2)      Number of graph components: 786 
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A graph component is a subset of nodes, such that there is a path from every node within the component 787 

to any other node in that same component but none connecting the nodes to any outside of that component. 788 

Even though there exist functional collections of genes that cooperate to fulfil a common task, these 789 

collections are not expected to be operating independently within the cell. Thus, the cut-off proposal favors 790 

graphs with a small number of components. 791 

3)      Number of edges: 792 

To avoid a highly connected graph with great lack of structure -“hairball”-, the cut-off is chosen such that 793 

the number of edges is minimized while respecting the above-mentioned criteria. 794 

A Pearson correlation coefficient cut-off of 0.857 (6,085 nodes and 252,584 edges) was chosen to construct 795 

scale-free networks. 796 

The undirected co-expression network is constructed based on the gene pairs which show a higher 797 

correlation in their expression pattern than the set cut-off. A series of network-based clustering algorithms 798 

is available to then identify clusters of strong co-expression within the network. An option “auto” is provided, 799 

which tests the different clustering algorithms and picks the one that achieves the highest modularity score. 800 

Unbiased clustering was performed using the “label propagation” algorithm in igraph (v1.2.1) [The igraph 801 

software package for complex network research] and was repeated 1,000 times. Genes assigned to more 802 

than 5 different clusters during the iterations received no cluster assignment. 803 

To assess the expression strength of the found gene clusters in the different studied conditions, the group 804 

fold changes (GFCs) of the conditions are calculated for each gene by calculating the mean expression of 805 

a gene over all samples and then computing the fold change of the mean gene expression within each 806 

condition from the overall mean. The GFCs of all genes within one cluster are then added and divided by 807 

the total number of genes per cluster, resulting in condition-specific GFCs per cluster. Agglomerative 808 

hierarchical clustering was performed by the hclust function (cluster package, version 2.1.0), using a 809 

dissimilarity matrix of samples based on the GFC values of each sample defined with the daisy function for 810 

calculating the Euclidean distances. The number of clusters was set to achieve a low within-cluster sum of 811 

squares distance and a high average silhouette, while preserving a comparable number of individuals within 812 

each cluster. The clinical parameters and the GFCs results are displayed in a heat map where conditions 813 

are clustered by their GFCs revealing similar and opposing patterns (Cluster/Condition heat map). 814 

Utilizing the R-package clusterProfiler, CoCena² automatically analyses the gene clusters with respect to 815 

different kinds of gene set enrichments: The genes within each cluster are scanned for enrichment in KEGG 816 

(95), Hallmark (96), Gene-Ontology terms (97) and Reactome (98). Using the R-package pcaGoPromoter 817 

(99) the genes are also analyzed for enrichment of transcription factor binding sides and if the predicted 818 
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transcription factors are present in the data, their expression profile is visualized to facilitate evaluation of 819 

their possible role. 820 

To investigate the interactions between protein-coding and long-non-coding RNAs, we utilized the enricher 821 

function from the clusterProfiler package. We performed an enrichment analysis for lncRNA species, using 822 

the protein-coding genes that belong to the lightgreen cluster as the input gene list and all the network 823 

protein-coding genes as background. The annotation table defining lncRNA to protein-coding RNA was 824 

downloaded from the RNA interactome database RNAInter (100), filtered to only include interactions of 825 

lncRNA detected by the RNA sequencing, had an experimental validation score of at least 0.5 and were 826 

involved in regulating the function of granulocytes (36). Next, to obtain a comprehensive understanding of 827 

the lncRNA that may be relevant for this specific network module, the lncRNA found by the enrichment 828 

analysis with p-value <0.1 were sorted according to the highest number of genes. Thereafter, Spearman 829 

correlation amongst the gene expression of each lncRNA and its corresponding protein-coding RNAs was 830 

performed, and significant protein-coding RNA genes were plotted in a heat map. The CoCena2 network 831 

was visualized by using the ggplot function from the ggplot2 package. Annotations were generated by 832 

filtering the edges of the network for the 5 top connected transcription factors, epigenetic regulators, and 833 

surface and secretome markers in each cluster. GO enrichment analysis was performed on each cluster 834 

by utilizing the enrichGO function from the clusterProfiler package to assess the overall functionality of the 835 

cluster using the genes of each cluster as the input and all the in the network as background. The top GO 836 

term and top connected genes of each cluster were compiled representing their general characteristic. 837 

Granulocyte dataset analysis 838 

Granulocyte raw data was aligned and quantified using STAR (v2.7.3a) and the human reference genome, 839 

GRCh38p13, from the Genome Reference Consortium. Raw counts were imported using 840 

DESeqDataSetFromHTSeqCount function and rlog transformed. DESeq2 was used for the calculation of 841 

normalized counts for each transcript using default parameters. All normalized transcripts with a maximum 842 

over all row mean lower than 10 were excluded resulting in 27,323 present transcripts. Differentially 843 

expressed genes were calculated for the severe vs mild for day 1-14 and 15-28 post 1st symptoms groups) 844 

separately using a p-value cut-off of 0.05, an adjusted p-value (IHW) <0.05 (independent hypothesis 845 

weighting) and a FC of 2. All present transcripts were used as input for principal component analysis. DEGs 846 

were visualized as DE bar plots. 847 

Data Integration for Disease Comparison 848 

To describe the differences and similarities between COVID-19 and other diseases, we searched in 849 

databases for genomics data such as Gene Expression Omnibus (GEO) (101) and ArrayExpress (102) [for 850 

studies that fulfill certain criteria: I) having at least 20 samples, II) the disease of study was of relevance 851 

(other infections, such as bacterial and viral, plus diseases that mainly involve immune dysregulation, such 852 
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as autoimmune disease) and III) library preparation and sequencing technology differ as little as possible 853 

from our COVID-19 protocol. The fastq files of 18 additional studies (588242, GSE101705, GSE107104, 854 

GSE112087, GSE127792, GSE128078, GSE129882, GSE133378, GSE143507, GSE57253, GSE63042, 855 

GSE66573, GSE79362, GSE84076, GSE89403, GSE90081, GSE97590, GSE99992 and the Rhineland 856 

study) were downloaded and aligned with STAR. The counts were imported into R (v3.6.2) and were 857 

modelled for each gene using DESeq2. Merged raw counts were filtered for the genes present in the 858 

COVID-19 co-expression network, ribosomal protein-coding genes and mitochondrial genes were removed, 859 

yielding a total of 5,770 genes and 3,176 samples. To account for differences in sequencing depth across 860 

studies, a quantile normalization was performed on the filtered data. Group fold changes were calculated, 861 

where the grouping variable was set to be the disease status. 862 

To explore COVID-19 associated expression of genes within the integrated dataset, the data was 863 

intersected with the gene modules previously retrieved from the COVID-19 CoCena2 network, the mean 864 

group-fold-changes were determined per cluster and condition and visualized in a heat map. 865 

The modules were analyzed for enriched immune cell markers as provided by CIBERSORT and BD 866 

Rhapsody and those that showed neutrophil enrichment were screened for genes representative of different 867 

neutrophil subtypes as recently described (42). 868 

Enrichment of signature from scRNA data of granulocytes 869 

The signatures of different neutrophil states in COVID-19 as previously described (42) were enriched for 870 

the different clusters from CoCena2. 871 

To get a more fine-grained differentiation of the specific neutrophil states for figure 3, the authors kindly 872 

provided additional signatures from the scRNA dataset using a Wilcoxon rank sum test for differential gene 873 

expression implemented in Seurat. Genes had to be expressed in >10% of the cells of a cluster, exceed a 874 

logarithmic threshold >0.1 and to have >5% difference in the minimum detection between two clusters. The 875 

following additional comparisons were performed: 8 and 9 (pre- and immature neutrophils combined) VS 876 

the rest, 1,3,4,6 (neutrophil states from control patients) VS the rest. To get unique signature genes for 877 

clusters 0, 2 and 5 (COVID-19-specific clusters) we took the following approach for each cluster: 1) 878 

Calculate DEG for cluster 0 VS all other clusters. 2) Calculate DEG for cluster 0 vs 2&5. 3) Take intersection 879 

of these two calculations. 4) Remove genes that occur in more than one of these intersections of cluster 880 

0,2 or 5. 881 

Gene set enrichment analysis (GSVA) 882 

The GSVA R package (v1.34.0) (103) was used to test the enrichment of neutrophil signatures (42) in the 883 

normalized gene expression table. The gsva method was used for the run and data were visualized in a 884 

heat map with the pheatmap (v1.0.12) package.  885 
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Overview of drugs 886 

An overview of currently used, recommended or investigated drugs for treatment of COVID-19 patients was 887 

compiled from drug lists and lists of drugs in clinical trials downloaded from https://www.drugbank.ca/covid-888 

19, https://www.pharmgkb.org/page/COVID and https://clinicaltrials.gov/ct2/results?cond=COVID-19 (last 889 

update: 2020-06-05). Classification of the drugs was performed based on the ATC code, as well as 890 

additional research on the drugs action. Drug target genes were identified using the DrugBank database 891 

(104) (Table S6). The number drugs currently recommended or investigated, as well as the number of 892 

clinical trials within the respective drug classes were visualized using the ggplot2 package (105, 106). The 893 

target genes of the drugs currently recommended or investigated with a minimum frequency of 4 were 894 

visualized in a word cloud using the wordcloud package (version 2.6). 895 

 896 

Drug prediction 897 

To identify drugs, which reverse the gene expression signature observed in the comparisons of the COVID-898 

19-specific clusters compared to the control cluster, the drug prediction databases iLINCS 899 

(http://www.ilincs.org/ilincs/) and CLUE (https://clue.io/) were accessed. As input for the drug prediction the 900 

top 1000 (iLINCS) or the top 100 (CLUE) DEGs were used. Drugs reversing the COVID-19 gene expression 901 

signature (defined by a negative score) were pooled together with drugs under investigation in current 902 

literature, resulting in a list of 940 unique drugs. Using the iLINCS API (https://github.com/uc-903 

bd2k/ilincsAPI/blob/master/usingIlincsApis.Rmd), every gene expression signature from each drug listed in 904 

the signature libraries iLINCS chemical perturbagens (LINCSCP), iLINCS targeted proteomics signatures 905 

(LINCSTP), Disease-related signatures (GDS), Connectivity Map signatures (CMAP), DrugMatrix 906 

signatures (DM), Transcriptional signatures from EBI Expression Atlas (EBI), Cancer therapeutics response 907 

signatures (CTRS) and Pharmacogenomics transcriptional signatures (PG) were downloaded. Labelling 908 

was performed in the following principle: “drug name”_”database”_”database ID”. Signatures were ordered 909 

by fold change and only the top 300 genes were used. This resulted in a total of 62,897 unique drug 910 

signatures each with an up- and down-regulated set. Subsequently, GSEA (107) was performed on the 911 

sequencing data for every up- and down-regulated set for each drug and each cluster comparison. The 912 

resulting normalized enrichment scores (NES) were used to calculate the delta NES for each drug, defined 913 

as ΔNES = NES (down) – NES (up), ergo the difference of the NES from the downregulated set and the 914 

NES from the upregulated set of each respective drug. These ΔNES values were then k-mean clustered 915 

(k=40). The clusters showing the highest ΔNES values for all comparisons and the cluster showing only 916 

high ΔNES in the comparison G1vsG6 (most severe) were chosen and selected ones of the uniquely 917 

present drugs shown. The leading edge genes of the downregulation signatures of these drugs for the 918 
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G1vsG6 comparison were examined and the frequency was counted. Recurring target genes were plotted 919 

on the CoCena2 network.  920 

Patterns of differential gene expression of genes targeted by drugs which are currently approved or under 921 

investigation for the treatment of COVID-19 patients were visualized using ggplot2. To this end, target 922 

genes of each drug and their first degree neighbors were extracted from several databases and the gene 923 

co-expression networks, respectively. Regulation patterns of expression of these genes in different COVID-924 

19 patient groups, as compared to the control group, were classified as up-/downregulated or not significant 925 

(n.s.) when pairwise comparisons of gene expression of COVID-19 patients and controls were not 926 

statistically significant. The same methodology was applied to genes not included in the drug-target list to 927 

identify genes which are not targeted by current drugs but could be potentially targeted by newly identified 928 

drugs. 929 

 930 

CONTACT FOR REAGENT AND RESOURCE SHARING 931 

For further information and requests for resources and reagents should be directed to and will be fulfilled 932 

by the lead contact, Dr. Thomas Ulas (t.ulas@uni-bonn.de). 933 

 934 

DATA AND SOFTWARE AVAILABILITY 935 

Data Availability 936 

The data that support the findings of this study, including transcriptome data from 60 patients at multiple 937 

time points who granted informed consent to share such data, are made available at the European 938 

Genome-Phenome Archive (EGA) under accession number EGAS00001004503, which is hosted by the 939 

EBI and the CRG. The Rhineland Study’s dataset is not publicly available because of data protection 940 

regulations. Access to data can be provided to scientists in accordance with the Rhineland Study’s Data 941 

Use and Access Policy. Requests for further information or to access the Rhineland Study’s dataset should 942 

be directed to RS-DUAC@dzne.de. In addition to data deposition on EGA, we provide an interactive 943 

platform for data inspection and analysis via FASTGenomics (fastgenomics.org). The FASTGenomics 944 

platform also provides normalized count tables of the datasets generated in this study. Materials, code, and 945 

data are available from the corresponding author upon reasonable request. CoCena2 is also available under 946 

https://github.com/Ulas-lab/CoCena2.  947 
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Figure 1 – Whole blood transcriptomes reveal diversity of COVID-19 patients not explained by 1087 

disease severity 1088 

(a) Schematic workflow for analysis of whole blood transcriptome data.  1089 

(b) PCA plot depicting relationship of all samples based on dynamic gene expression of all genes 1090 
comparing COVID-19 and control samples.  1091 

(c) Number of significantly upregulated (red) and downregulated (blue) genes (FC>|2|, FDR-adj. p-value 1092 
<0.05) comparing COVID-19 and control samples.  1093 

(d) Volcano plot depicting fold changes (FC) and FDR-adjusted p-values comparing COVID-19 and control 1094 
samples. Differentially expressed up- (red) and downregulated genes (blue) are shown and selected genes 1095 
are highlighted.  1096 

(e) Plot of top 10 most enriched GO terms for significantly up- and downregulated genes, showing ratio of 1097 
significantly regulated genes within enriched GO terms (GeneRatio).  1098 

(f) PCA plot depicting relationship of all samples based on dynamic gene expression of all genes comparing 1099 
mild and severe COVID-19 as well as control samples.  1100 

(g) Number of significantly upregulated (red) and downregulated (blue) genes (FC >|2|, FDR-adj. p-value < 1101 
0.05) comparing mild and severe COVID-19 as well as control samples.  1102 

(h) Volcano plot depicting fold changes and FDR-adjusted p-values comparing mild and severe COVID-19 1103 
as well as control samples. Differentially expressed up- (red) and downregulated genes (blue) are shown 1104 
and selected genes are highlighted.  1105 

(i) Hierarchical clustering map of 25% most variable genes between control patients, COVID-19 mild or 1106 
severe patients, with additional annotation of disease outcome, hierarchical agglomerative clustering of 1107 
clinical parameters COVID-19, and the groups defined by agglomerative clustering.  1108 
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Figure S1 – related to Figure 1 1110 

(a-b) Volcano plots depicting fold changes and FDR-adjusted p-values comparing severe (a) or mild (b) 1111 
COVID-19 patients vs. controls. Differentially expressed up- (red) and downregulated genes (blue) are 1112 
shown and selected genes are highlighted. 1113 

(c) Plot of top 10 most enriched GO terms for significantly up- and downregulated genes. Ratios of 1114 
significantly regulated genes within enriched GO terms (GeneRatio) are shown for the comparisons 1115 
between mild or severe COVID-19 patients and controls as well as between ‘mild’ and ‘severe’ COVID-19 1116 
patients.  1117 

(d) Heat map of group mean gene expression values from the top 20 most variant transcription factors, 1118 
epigenetic regulators, surface and secreted proteins.  1119 

(e) Heat map of the linear model adjusted r-square that includes each clinical parameter with PC1. Clinical 1120 
parameters with r-adjusted square ≥0.1 were used for agglomerative clustering of COVID-19 patients.  1121 

(f) Plots for agglomerative clustering statistics: within cluster sum of squares and high average silhouette 1122 
width scores.  1123 

(g) Heat map presenting summary statistics of the clinical parameters used for the clustering across clinical 1124 
agglomerative clusters 1-5.  1125 
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Figure 2 – Co-expression analysis discloses COVID-19 subgroups with distinct molecular 1127 

signatures 1128 

(a) Schematic overview of the analysis performed on the whole blood samples. 1129 

(b) Alluvium plot visualizing the distribution of the samples according to different grouping; disease status, 1130 
severity and data-driven sample groups.  1131 

(c) Group fold change heat map and hierarchical clustering for the six data-driven sample groups and the 1132 
gene modules identified byCoCena2 analysis. 1133 

(d) Functional enrichment of CoCena2-derived modules using the Hallmark gene set database. Selected 1134 
top terms were visualized. 1135 

(e) Functional enrichment of CoCena2 module lightgreen using GO gene set database. Top 5 terms were 1136 
visualized. 1137 

(f) Heat map presenting the normalized expression values of the lncRNA CYTOR, and protein coding RNAs 1138 
PIK3CB and VIM from the lightgreen CoCena2 module. 1139 

(g) Neutrophil-lymphocyte ratio plot after cell type deconvolution at lineage level.  1140 

(h) Neutrophil-lymphocyte ratio across the six data-driven sample groups. Box plots show median with 1141 
variance, with lower and upper hinges representing the 25th and 75th percentile, respectively.  1142 
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Figure S2 – related to Figure 2 1144 

(a) Group fold change (GFC) heat map and hierarchical clustering for each sample and the gene modules 1145 
identified by CoCena2 analysis.  1146 

(b) Agglomerative hierarchical clustering of the samples according to the GFC. Top plots present the 1147 
clustering statistics (within cluster sum of squares and high average silhouette width scores) used for the 1148 
generation of the six data-driven CoCena2 sample groups G1-G6, which are plotted in the dendrogram plot. 1149 

(c) Heat map presenting summary statistics of clinical parameters for COVID-19 patients grouped according 1150 
to the CoCena2 sample groups G1-G5 Presented are scaled values of the mean value of the parameters 1151 
age/blood cell counts/SOFA score/Pneumonia Index/Charlson score, and prevalence of the 1152 
comorbidity/death (outcome)/male (sex)/immune classification (intermediate/dysregulation/MAS). 1153 
Statistical differences were estimated among the groups via the one-sided Anova test or Fisher test, for 1154 
numeric or categorical values respectively. (*,** p-value < 0.05, 0.01 respectively) 1155 

(d) PCA plot depicting relationship of all samples based on dynamic gene expression of all genes. Coloring 1156 
based on the six data-driven CoCena2 sample groups G1-G6. 1157 

(e) Cibersort cell type deconvolution at cell subset level. Grouping based on the six data-driven CoCena2 1158 
sample groups G1-G6. 1159 

(f) Flow cytometry analysis, number of lymphocytes (upper) and neutrophils (lower) per µl of blood. 1160 
Grouping based on the six data-driven CoCena2 sample groups G1-G6. 1161 

(g) Heat map of DE and top 20 most variable transcription factors, epigenetic regulators, surface and & 1162 
secreted proteins.  1163 
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Figure S3 – related to Figure 2 1165 

(a) Visualization of the COVID-19 CoCena2 network. Nodes are genes and edges represent co-expressed 1166 
genes. Additional module information is displayed by module-colored labels. Labels include information 1167 
about top-connected transcription factors (TFs), epigenetic regulators, surface & secreted markers as well 1168 
as representative Hallmark terms.  1169 
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Figure S4 – related to Figure 2 1171 

(a) Heat map of mean group fold changes (GFCs) of the CoCena2 whole blood modules in the second 1172 
COVID-19 cohort for each sample. Patients are clusters by the mean GFC module expression. Severity 1173 
patterns found in the whole blood CoCena2 network were identified and patients groups were labeled 1174 
accordingly (G1-G6).  1175 

(b) Agglomerative hierarchical clustering of the samples according to the GFC. Top plots present the 1176 
clustering statistics (within cluster sum of squares and high average silhouette width scores) used for the 1177 
generation of the six data-driven CoCena2 sample groups G1-G6, which are plotted in the dendrogram plot. 1178 

(c) GFC heat map and hierarchical clustering for the four identified sample groups and the gene modules 1179 
identified with CoCena2 analysis.  1180 
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Figure 3 – Granulocytes from severe COVID-19 patients show a simultaneous increase in 1182 

inflammatory and suppressive signatures 1183 

(a) Schema of sample processing and analysis. 1184 

(b) PCA of all genes within the dataset mapped by COVID-19 severity status. 1185 

(c) Bar plot of DEGs between severe and mild COVID-19 patients at day 1-14 (left) and day 15-28 (right) 1186 
(FC>|2|, FDR-adj. p-value <0.05). 1187 

(d) Boxplot of CD177 (left) and S100A6 (right) in mild and severe COVID-19 patients at day 1-14 and 15-1188 
28. 1189 

(e) Mean of group fold changes (GFCs) of the modules maroon, pink and lightgreen in the granulocyte 1190 
samples over time. Patients are grouped according to severity mild (top) and severe (bottom). Samples are 1191 
ordered by the days after disease onset. Maroon, pink and lightgreen lines represent the overall mean of 1192 
GFCs in the mild patient group. 1193 

(f) Heat map of mean expression of 24 markers in mild (top) and severe (bottom) patients ordered by days 1194 
after disease onset bins (day 1-14, 15-28 and 29-46). 1195 

(g) Heat map of mean GFCs of the CoCena2 whole blood modules in the granulocyte samples from each 1196 
individual patient. Patients are clusters by the mean GFC module expression. Severity patterns found in 1197 
the whole blood CoCena2 network were identified and patients groups were assigned accordingly (G1-G6). 1198 
Patients with a distinct GFC expression pattern were labeled as G7. 1199 

(h) Box plot of CD177 expression in granulocytes grouped by G1-G7. 1200 

(i) Box plot of CD177 expression in whole blood grouped by G1-G6.  1201 
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Figure S5 – related to Figure 3 1204 

(a) Cibersort computational deconvolution of the 59 granulocyte samples used in Figure 3. The LM22 1205 
reference signature was used. 1206 

(b) Functional enrichment analysis of the DEGs between severe and mild COVID-19 patients by GOEA. 1207 

(c) CoCena2 whole blood module genes filtered for severe vs mild COVID-19 DEGs. Intersection of modules 1208 
with DEGs are shown in opaque bars, filtered network module genes are shown in transparent bars. 1209 

(d) GSVA of single-cell neutrophil signatures (42). Samples are ordered by COVID-19 severity status and 1210 
days after disease onset. 1211 

(e) Box plots of ARG1, CD274, NLRC4 and S100A6 in granulocytes grouped by G1-G7. 1212 

(f) Box plot of ARG1, CD274, NLRC4 and S100A6 in whole blood grouped by G1-G6.  1213 
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Figure 4 – Integration with signatures from other diseases reveals COVID-19-specific 1215 

characteristics 1216 

(a) Schema of analysis of the integrated dataset. The integrated dataset was analyzed with regard to 1217 
expression patterns of the clusters previously identified in the whole blood COVID-19-specific co-1218 
expression network. 1219 
 1220 
(b) Heat map of mean group fold changes of CoCena2 module comparison between COVID-19 and other 1221 
diseases. From left to right, the diseases are ordered by category (COVID-19, viral infections, bacterial 1222 
infections and others). On the right side of the heat map, the first box plot shows the enriched immune cell 1223 
markers in each module. The second box plot shows the enrichment of genes upregulated in specific 1224 
neutrophil subtypes based on cross-referencing with single-cell data (42). Both box plots show enriched 1225 
cell types in percent of total hits, absolute hits with respect to cluster size are stated aside. 1226 
 1227 
(c) Gene set variation analysis was conducted for every single patient based on Hallmark gene sets as 1228 
shown in Fig. 2D. The result was standardized to retrieve the z-scores, a disease mean was calculated and 1229 
displayed as a dot plot with size and color correlating to the z-score. The labels on the x-axis are the same 1230 
as in (b).  1231 
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 1232 
 1233 
 1234 

 1235 

Figure S6 – related to Figure 4 1236 

(a) Overview of the composition of the integrated dataset comprising 2,817 samples: 39 COIVD-19 samples 1237 
and 2,778 other conditions and controls. 1238 
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Figure 5 – Patient subgroup-specific signatures can be used to predict potential drug targets 1240 

(a) Overview of drugs currently used, investigated or recommended for the treatment of COVID-19 patients. 1241 
The inner circle represents the number of drugs for the representative drug categories, the outer circle 1242 
represents the number of clinical trials of drugs for the respective drug categories. 1243 

(b) Visualization of genes targeted by drugs approved or undergoing trial for the treatment of COVID-19 1244 
patients included in the whole blood co-expression network. Numbers of such genes from each module are 1245 
designated on the right of the panel. Genes are represented as hexagons and colored by the expression 1246 
fold change between COVID-19 patient severity group (G1-G5) and the control group (G6) (upregulated: 1247 
red, downregulated: blue, not regulated: grey). 1248 

(c) Drug predictions based on ΔNES score of drug signatures in regard to diseased patient group-specific 1249 
gene expression patterns (G1-5 vs G6). Signatures were clustered by k-means clustering. A high ΔNES 1250 
score accounts for drug signatures which counteract the gene expression of the patient group they are 1251 
compared to. Drug signatures with a negative ΔNES score induce a gene expression pattern similar to the 1252 
input. The number of signatures within a cluster determines its size. 1253 

(d) Display of selected drug signatures from k-means cluster 5 from (C) showing the highest ΔNES score 1254 
in the most severe COVID-19 patient group G1 and the least effect in patient group G4. 1255 

(e) Visualization of recurring target genes in the G1 vs G6 comparison of cluster 5 signatures and their 1256 
frequency mapped onto the CoCena2 network.  1257 
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Figure S7 – related to Figure 5 1259 

(a) Word cloud of the target genes of drugs currently investigated for the treatment of COVID-19 patients. 1260 
Increasing frequency is represented by increasing size with min. frequency = 41 and max. frequency = 97. 1261 

(b) Schematic workflow of the drug prediction analysis. Drug signatures were collected using the platforms 1262 
iLINCS and CLUE. Signatures were selected by highest counteracting ΔNES score and combined with 1263 
signatures of drugs under investigation from the literature. 1264 

(c) Differentially expressed genes (FC>|2|, FDR-adj. p-value <0.05) of comparisons between groups G1-5 1265 
vs G6. Vertical bar plots indicate the number of group-specific differentially expressed genes (DEGs, right) 1266 
and genes shared by several groups (left), whereby the contributing groups are indicated as connected 1267 
dots (bottom). Horizontal bar plots visualize the size of DEGs per group. 1268 

(d) Gene ontology enrichment analysis of upregulated DEGs obtained for each comparison G1-G5 vs G6. 1269 
Visualized are significant enrichments (adj. p-value<0.05, q-value<0.05) for the union of top 10 terms per 1270 
comparison. Term ratio indicates the ratio of DEGs matching the term and the total gene number of that 1271 
term. 1272 

(e) Box plots of normalized expression of selected DEGs, upregulated in at least one comparison. 1273 

(f) Display of selected drug signatures from k-means cluster 13 from Fig. 5c showing high ΔNES scores 1274 
throughout all patient groups compared to G6. 1275 

(g) Visualization of recurring target genes in the G1 vs G6 comparison of cluster 13 signatures and their 1276 
frequency mapped onto the CoCena2 network 1277 
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