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Abstract 

There is considerable interest in developing computational models capable of detecting rare disease patients in popu-
lation-scale databases such as electronic health records (EHRs). Deriving these models is challenging for several 
reasons, perhaps the most daunting being the limited number of already-diagnosed, ‘labeled’  patients from which to 
learn. We overcome this obstacle with a novel lightly-supervised algorithm that leverages unlabeled and/or unrelia-
bly-labeled patient data – which is typically plentiful – to facilitate model induction. Importantly, we prove the algo-
rithm is safe: adding unlabeled/unreliably-labeled data to the learning procedure produces models which are usually 
more accurate, and guaranteed never to be less accurate, than models learned from reliably-labeled data alone. The 
proposed method is shown to substantially outperform state-of-the-art models in patient-finding experiments involv-
ing two different rare diseases and a country-scale EHR database. Additionally, we demonstrate feasibility of trans-
forming high-performance models generated through light supervision into simpler models which, while still accu-
rate, are readily-interpretable by non-experts.  

1. Introduction  

Taken together, rare diseases affect more than 350M individuals worldwide, and many are chronic, progressive, de-
generative, and life-threatening. They also tend to be unfamiliar and challenging to recognize, requiring an average 
of five years and seven physicians to be assigned an accurate diagnosis (if diagnosed at all) [1-4]. Difficulty finding 
patients who are suffering from a given rare disease is a major impediment to effective diagnosis and treatment, and 
is an obstacle to achieving many other clinical and research goals (e.g. cohort recruitment, disease characterization, 
resource allocation). Because the prevalence of each rare disease is low, practically-useful patient-finding must be 
pursued using population-scale databases such as electronic health records (EHRs) or Web activity logs, and there-
fore must be realized via computational modeling [5-9]. While it is possible to derive the models through consulta-
tion with experts, this strategy can be problematic for several reasons, including the incomplete nature of experts’ 
understanding, the complexity of disease processes, and cognitive biases associated with human decision-making 
[10-12,2].  

These considerations motivate an interest in learning computational models for patient discovery directly from data 
[e.g. 13], and in particular by applying predictive modeling to EHRs [7-9,14-16]. This scheme faces difficulties of 
its own, perhaps the most crucial being that, with rare diseases, there are only a limited number of already-diagnosed 
patients available for model training. EHR databases possess additional properties which must be addressed for suc-
cessful data-driven modeling, including: i.) their large-scale and high-dimensionality, ii.) the unreliable, incomplete, 
and sparse character of the data, iii.) the fact that patient records combine a myriad of structured (e.g. hierarchically-
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organized diagnostic codes) and unstructured (e.g. free-text notes) information, the vast majority of which is irrele-
vant to the prediction task at hand. See [7-9,14-16] for further discussion of these issues.  

Given a target disease of interest, perhaps the most natural way to build patient-finding models is through supervised 
learning. Standard supervised learning in this context entails: i.) labeling the EHRs of already-diagnosed patients as 
being positive for the disease, ii.) adding these records to those of some unaffected patients, who form the negative  
class, to assemble a training dataset, and iii.) applying a validated machine learning algorithm to this training data 
and in this way acquire a model capable of predicting the disease status of new unseen patients [17]. Unfortunately, 
if the target disease is rare, then there are invariably too few patients with confirmed diagnoses to support construc-
tion of generalizable models using standard supervised techniques [17,8].  

Perhaps surprisingly, recent work has shown it is sometimes possible to learn accurate predictive models by combin-
ing limited labeled data with additional, less directly-informative, sources of supervision, and exploiting this ‘light’ 
supervision to guide the modeling process [18]. For instance, training examples with unreliable or missing labels can 
represent valuable sources of light supervision if they are appropriately leveraged [8,18-21]. Observe that this light-
ly-supervised approach to learning appears to represent a promising alternative in the present setting because EHR 
databases typically contain [8]: i.) an abundant supply of patient records which are unlabeled relative to the target 
disease, and ii.) patients whose records document some evidence of positive target-disease status but who do not 
have confirmed diagnoses, and who therefore may be assigned tentative, noisy labels. 

We have developed a novel learning methodology which enables accurate patient-finding models to be induced from 
the imperfect real-world data encountered when investigating rare diseases. The approach enjoys two key attributes. 
First, learning requires only the light supervision provided by a few reliably-labeled patients, some patients with un-
reliable/noisy labels, and a cohort of patients who are unlabeled. Second, learning is provably safe: adding unlabeled 
and noisily-labeled data to the learning procedure produces models which are usually more accurate, and never less 
accurate, than models obtained with the reliably-labeled data alone. The safety guarantee is important. While super-
vision from noisy/incomplete data is intended to improve learning performance when reliably-labeled examples are 
limited, existing algorithms may not actually achieve this aim. Indeed, incorporating less directly-informative data 
often yields models that perform worse than those found using the (limited) reliable data alone [18-21]. 

In what follows, we describe and validate this new approach to rare-disease patient-finding. More specifically, this 
paper:  

• introduces a new algorithm for learning prediction models from the light supervision delivered by a few relia-
bly-labeled patients, some patients with noisy labels, and a set of patients who are unlabeled relative to the (ra-
re) disease of interest;  

• proves the algorithm is safe: the addition of unlabeled/noisily-labeled examples to a small training set of relia-
bly-labeled data, to compensate for its limited size, yields models which are usually more accurate, and never 
less accurate, than corresponding models induced from the original training set;  

• demonstrates that the proposed strategy outperforms state-of-the-art models for the task of detecting two differ-
ent rare diseases in a country-scale database of 3.2M EHRs;  

• shows the feasibility of transforming learned high-performance patient-finding models – which consist of large 
ensembles of complex prediction models – into simpler, but still accurate, models that are interpretable by non-
experts.  
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2. Safe Lightly-Supervised Learning  

A. Problem Formulation  

Consider a scenario in which we are given a target rare disease (TD) and access to a database of de-identified EHRs, 
and wish to learn a prediction model capable of reliably detecting (undiagnosed) patients with the disease in the da-
tabase. Ideally, learning should be feasible even if only a few patients known to have the disease are available for 
model training. To focus on the most widely-applicable setting, it is assumed the EHRs document patient encounters 
with general practitioners (GPs) (rather than, say, specialists) and contain standard information: basic demographic 
data, diagnosis codes, medication codes, free-text clinical notes, and limited lab test results (because lab test results 
are frequently not reported in GP EHRs). We refer to such a database as GP-EHR-DB and represent each patient in 
it with a vector of measurement values (e.g. age, blood glucose level) and counts of the various ‘tokens’ (e.g. diag-
nostic codes, words); see below for additional details.  

As indicated above, data-driven patient-finding through supervised learning consists of three basic steps [17]:  

1. model each patient as (x,y), where feature vector x = [x1, …, xd]T∈X encodes information in the patient’s EHR 
[e.g. 14] and label y∈{0,1} denotes whether x has TD;  

2. assemble a set of patient EHRs L = {(x1, y1), …, (xM, yM)}, where the disease status of each of these patients is 
known and thus labels yi are reliable (conventionally yi = 1 if xi has TD);  

3. use labeled dataset L to learn model fL: X → [0,1] which predicts the probability p(y = 1 | x) that a given patient 
x has TD [17].  

A challenge with predictive modeling of rare diseases is that the number of training examples M is invariably small 
and the ‘light’ supervision supplied by L is insufficient to support effective learning [17,8]. In fact, dataset L may be 
empty (M = 0). It turns out this situation also can be analyzed with the proposed methodology by specifying a ‘prior’ 
for the probability that patients in GP-EHR-DB have TD (e.g. based on prevalence estimates, perhaps stratified by 
patient phenotype). This extension is illustrated below with one of the target rare diseases investigated in this paper.  

Because (standard) supervised learning is not well-suited to the task of finding rare-disease patients, we introduce a 
novel strategy which exploits limited supervision to learn high-performance models, that is, models capable of accu-
rately predicting the TD-status of all patients in GP-EHR-DB. This lightly-supervised learning (LSL) strategy inte-
grates three sources of supervision (dataset L is listed again for completeness):  

• reliably-labeled patients L = {(x1, y1), …, (xM, yM)}, where labels y∈{0,1} are accurate but number of patients 
M is too small to facilitate generalizable learning;  

• noisily-labeled patients N = {(xM+1, y′M+1), …, (xM+N, y′M+N)}, where some patients in N are expected to be mis-
labeled, that is, y′ ≠ y with (unknown) probability pnoise;  

• unlabeled patients Tar = {xM+N+1, …, xM+N+T}; these are the patients for whom TD-status is to be predicted (i.e. 
the labels for these patients are unknown).  

With these definitions in place, the safe LSL problem can be stated: given a target disease TD and sets of reliably-
labeled, noisily-labeled, and unlabeled patient EHRs L, N, and Tar, respectively, learn a patient-finding model that 
normally outperforms fL, learned using L alone, and is guaranteed to never perform worse than fL.  
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B. Overview of Learning Method  

The proposed scheme for learning rare-disease patient-finding models in a safe lightly-supervised manner consists 
of three main steps. First, labeled dataset L is used to induce prediction model fL: X → p0, where p0 is the ‘baseline’ 
predicted probability patient x∈Tar has label y = 1 (i.e., has TD). Applying fL to unlabeled dataset Tar yields a vec-
tor of predictions p0 = [p0(M+N+1), …, p0(M+N+T)]T, one for each of the T patients in Tar.  

However, if the number of labeled examples M is small, the predictions p0 may not be accurate. This observation 
motivates the second step in the learning strategy: construct an ensemble of additional predictions which can be ex-
ploited to improve upon baseline p0. Because it is advantageous for the ensemble to be diverse, we generate the pre-
dictions which comprise it using two different techniques:  

• prediction refinement of p0 guided by the underlying structure of the data, as revealed through unsupervised clus-
tering of unlabeled patient dataset Tar;  

• noise-robust learning informed by both unreliably-labeled dataset N and the underlying structure of patient data.   

While predictions made with these two methods are typically informative, attempting to use them to improve predic-
tions p0 may actually decrease accuracy, rather than increase it. Thus the third step in the learning methodology is to 
safely combine p0 with the ensemble predictions, that is, to integrate this information to form final predictions which 
are ordinarily better, and never worse, than p0.  

The first step in the prediction process – inducing model fL from labeled dataset L – is straightforward to complete 
using any algorithm which allows statistically-efficient supervised learning. Here we adopt a random forests (RF) 
model for fL, with 1000 trees and default hyperparameter values [17] (varying tree number between 200 and 2000 
had modest effect).  

The second and third steps in the SLSL procedure are more involved, warranting the separate descriptions provided 
in the next two sections.  

C. Ensembles of Predictions  

This section recalls two analytic methods, which we first introduced in [22] in a different context, for building en-
sembles of predictions.  

Prediction refinement. As indicated above, labeled dataset L can be used to induce prediction model fL: X → p0, 
where p0 is the predicted probability that patient x∈Tar has label y = 1. Applying fL to unlabeled dataset Tar yields 
vector of baseline predictions p0 = [p0(M+N+1), …, p0(M+N+T)]T, one for each of the T patients in Tar. p0 can be used to 
create an ensemble of diverse predictions by leveraging unlabeled patients in Tar to create refinements of this base-
line [22]. The assumption behind the refinement strategy is that if patients xk and xl are ‘similar’ then they should 
possess similar labels.  

More precisely, patient similarity is used to refine p0 to p′ = [p′M+N+1, …, p′M+N+T]T with p′i the predicted probability 
instance xi has label yi = 1. Toward this end, let La = I − C denote a Laplacian matrix, where I is the identity matrix 
and C a similarity matrix computed via ensemble clustering on Tar [17]. C is constructed so that element Ckl is equal 
to the number of times patients xk and xl are assigned to the same cluster by members of the ensemble. (Varying the 
number of clusters per ensemble member and number of ensemble members has little impact on performance. Rea-
sonable choices for these hyperparameters are 2-20 clusters and 5-20 ensemble members.) Predictions p′ are formed 
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by balancing the goals of achieving within-cluster label similarity and maintaining agreement with the baseline pre-
dictions p0:  

minp′ { λ || p′ − p0 ||2 + (1−λ) p′T La p′ }                                                         (1) 

subject to the constraint that each pi∈[0,1], where λ∈[0,1] reflects the relative expected predictive value of labeled 
and unlabeled data.  

The optimization (1) can be accomplished by iterating the following formula over j until convergence (which is as-
sured [23,24]):  

p′ j+1 = λ p0 + (1−λ) Cnorm p′ j,    p′ 0 = p0.                                                       (2) 

In (2), Cnorm is the normalized version of C obtain by expressing C as a symmetric probability matrix. This solution 
is computationally efficient, allowing population-scale problems to be investigated.  

Finally, an ensemble of R1 prediction refinements {p′1, …, p′R1} can be assembled by varying λ and/or defining dif-
ferent Laplacian matrices La through the use of distinct clusterings of Tar (see the experiments below).  

Noise-robust learning. Noisily-labeled dataset N can also be exploited to model the probability that patient x∈Tar 
has label y = 1. However, effectively using noisy labels requires that learning be robust to mislabeling. We achieve 
this robustness using a scheme similar to the one summarized in the preceding subsection (see also [8]). More pre-
cisely, ‘preliminary’ predictions are made for patients in Tar using a model learned from dataset N, and these predic-
tions are then improved using information which is independent of the noisy labels.  

RFs are known to be robust to label noise [17,25], especially if built from reasonably shallow trees (larger leaf nodes 
can ‘average out’ label noise). We therefore learn ‘robustified’ RFs by modifying the algorithm to penalize exces-
sive tree-depth [25]. In this way, noisily-labeled dataset N is used to induce prediction model fN: X → p0′, where p0′ 
is the predicted probability that patient x∈Tar has label y = 1. Applying fN to unlabeled dataset Tar gives prelimi-
nary predictions p0′ = [p0′(M+N+1), …, p0′(M+N+T)]T for the patients in Tar.  

While preliminary predictions p0′ are expected to be useful, it can be helpful to mitigate the influence of label noise 
on p0′ with the procedure (2), rewritten here for convenience of reference (see also [25]):  

p′′ j+1 = λ p0′ + (1−λ) Cnorm p′′ j,    p′′ 0 = p0′.                                                     (3) 

This computation yields p′′ = [p′′M+N+1, …, p′′M+N+T]T, where p′′i is the predicted probability xi∈Tar has label yi = 1. 
As before, an ensemble of predictions {p′′1, …, p′′R2} can be acquired by varying λ and/or producing a set of Lapla-
cian matrices using distinct clusterings of Tar (see the experiments below).  

D. Algorithm SLSL 

We now show how the ensemble of predictions Π = {p′1, …, p′R1, p′′1, …, p′′R2} can be leveraged to improve base-
line predictions p0 made with model fL learned from (small) labeled dataset L. Importantly, the proposed methodol-
ogy is safe: the final predictions p are guaranteed to be at least as accurate as p0.  

It is natural to approach safe LSL (SLSL), in which assurances are sought for prediction quality in the presence of 
uncertainty, as an adversarial learning problem [26]. Toward this end, let y = [yM+N+1, …, yM+N+T]T denote the true 
(hidden) labels for patients Tar = {xM+N+1, …, xM+N+T}, and define α = [α1, …, αR1+R2]T with αi ≥ 0 and Σiαi = 1. α 
can be employed to specify various convex combinations of the predictions Π via pc = Πα, and in this way model an 
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‘adversary’ within the learning process. Informally, suppose the true labels y satisfy y = Παtrue for some unknown 
αtrue. Then our objective is to form predictions p which are close to Παtrue despite our uncertainty about αtrue. If an 
adversary is introduced whose goal is to choose α to make prediction difficult, this provides a framework within 
which to seek predictions p that are ‘good’ even in worst-case, that is, when αtrue is close to the adversarially-chosen 
value for α.  

These considerations can be formalized by stating a game theory-inspired algorithm [25-27,21] for computing pre-
dictions p which improve upon p0 even in worst-case.  

Algorithm SLSL  

1. Learn model fL from dataset L and use it to form baseline predictions p0 = [p0(M+N+1), …, p0(M+N+T)]T for unlabeled 
patient dataset Tar = {xM+N+1, …, xM+N+T}.  

2. Learn model fN from dataset N and use it to form preliminary predictions p0′ = [p0′(M+N+1), …, p0′(M+N+T)]T for un-
labeled patient dataset Tar.  

3. Assemble an ensemble of predictions Π = [p′1, …, p′R1, p′′1, …, p′′R2] by: i.) refining p0 → {p′1, …, p′R1} via (2) 
and ii.) adapting p0′ → {p′′1, …, p′′R2} using (3) (see Section 2.C for details).  

4. Compute final predictions p by solving the following optimization problem [25-27,21]  

maxp minα [ || p0 − Π α ||2 − || p − Π α ||2 ].                                                      (4) 

It is seen that (4) quantifies the adversarial setting summarized above: we select predictions p to maximally improve 
upon p0 in worst-case, that is, when true labels y = Πα′ with α′ chosen by the adversary to minimize any such im-
provement in prediction accuracy.  

The safety and effectiveness of Algorithm SLSL is established in  

Theorem SLSL: Assume there exists (unknown) αtrue such that the true labels y = Π αtrue. Then the optimal solution 
(p*, α*) to (4) ensures i.) || p*− y || ≤ || p0 − y || and ii.) p* achieves maximum worst-case performance gain over p0.  

Proof: It is easy to check that objective function  

Φ(p, α) =  || p0 − Π α ||2 − || p − Π α ||2 

satisfies the conditions of the minimax theorem [27], so that  

maxp minα Φ(p, α) = minα maxp Φ(p, α). 

This, in turn, implies  

Φ(p, α*) ≤ Φ(p*, α*) ≤ Φ(p*, α). 

Setting p = p0 and α = αtrue in this chain of inequalities gives  

Φ(p0, α*) =  || p0 − Π α* ||2 − || p0 − Π α* ||2 

                                                                           = 0 ≤ || p0 − Π αtrue ||2 − || p* − Π αtrue ||2, 

implying || p* − y || ≤ || p0 − y ||, which is claim i. Claim ii. follows from this and the optimality of p*.                     
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Thus predictions p* = [p*M+N+1, …, p*M+N+T]T for the TD-status of patients Tar = {xM+N+1, …, xM+N+T} are always at 
least as close to the true labels y as baseline predictions p0, and improve upon p0 to the maximum extent possible in 
worst-case (when y = Πα*).  

In addition to being provably-safe, Algorithm SLSL is efficient to execute. For instance, it is easy to show that op-
timization problem (4) is convex, implying that optimal predictions p* can be computed via standard convex quad-
ratic programming [28].   

3. Patient-Finding Experiments  

We now describe a study in which Algorithm SLSL is deployed to find patients suffering from two very rare, diffi-
cult-to-diagnose TDs in a large GP-EHR-DB. The investigation:  

• performs patient-finding for two quite different TDs in settings in which reliable labels are extremely limited (2 
and 0 patients with confirmed diagnoses for the two TDs);  

• illustrates construction of EHR training datasets in this challenging scenario;  

• demonstrates that models learned with Algorithm SLSL outperform state-of-the-art benchmark models and ena-
ble high-precision detection of TD patients in a country-scale database of 3.2M EHRs;  

• identifies those patient features which possess significant predictive power for each TD;  

• illustrates the way results of chart review by TD specialists can be leveraged to obtain improved training labels 
and permit induction of even more accurate patient-finding models.   

A. Setup  

The main goal of these experiments is to learn models which can accurately detect patients affected by a rare disease 
of interest using standard GP EHR data. In order to assess the generality of the approach, the experiments consider 
two TDs with quite distinct attributes:  

• acute hepatic porphyria (AHP), an autosomal dominant disorder impacting heme synthesis and associated with 
serious and potentially life-threatening neurovisceral attacks; clinical presentation is heterogeneous and can in-
clude severe abdominal pain, nausea, vomiting, hypertension, tachycardia, and various neurological and psychi-
atric symptoms; prevalence is estimated to be around 5-20/1M [29,30];  

• lipodystrophy (LD), a genetic/acquired disorder characterized by selective deficiencies of adipose tissue and as-
sociated with serious complications including diabetes mellitus, dyslipidemia, liver disease, heart disease, pan-
creatitis, and reproductive dysfunction; prevalence is estimated to be approximately 2-4/1M [31,32].  

GPs may be unfamiliar with these diseases, and clinical manifestation of each is variable and can mimic many other 
more common diseases. Thus these TDs are often repeatedly misdiagnosed or not detected at all. Difficulty identify-
ing patients leads to treatment delays, negatively impacts patient health, and slows progress in clinical research [1-
4], highlighting the real-world relevance of this set of experiments.  

Experiments were conducted using a database of 3.2M de-identified EHRs arising from patient encounters with GPs 
in a European country [33]; we refer to this database as GP-EHR-DB-NL. The information contained in GP-EHR-
DB-NL includes basic demographics data, ICPC diagnosis and symptom codes (http://www.who.int/classifications/ 
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icd/adaptations/icpc2/), ATC drug codes (https://www.whocc.no/atc_ddd_index/), and limited free text clinical notes 
and lab results. GP-EHR-DB-NL is representative of other de-identified GP EHR datasets and the challenges faced 
when analyzing them. For instance, clinical notes and lab test records are typically brief and incomplete, reflecting 
privacy concerns and the nature of GP visits.  

Patients are represented as pairs (x, y), where feature vector x encodes a patient’s EHR information in the usual way. 
Briefly, x is composed of year-of-birth, gender, counts for all ICPC and ATC codes, numerical values for lab test re-
sults and clinical measurements, and a ‘bag-of-words’ model for free-text clinical notes (yielding high-dimensional 
patient vectors). Further details on this processing step can be found in [e.g. 14,8]. The label y designates TD-status, 
with y = 1 if the patient has the TD in question and y = 0 if not.  

Training datasets were assembled in the following manner. For each TD, the positive-class examples consist of pa-
tients with confirmed diagnoses (2 for AHP, 0 for LD) together with a number of (noisily-labeled) patients who may 
have TD (i.e., their EHRs contain some evidence of TD). The negative class training set was gathered by randomly-
sampling EHRs of i.) patients diagnosed with diseases having clinical presentation similar to TD (mimics), ii.) pa-
tients matched to positive-class examples for age, gender, and date of earliest record. The criteria employed for iden-
tifying positive-class patients were defined through consultation with domain experts [8]. To avoid data leakage, on-
ly information entered into an EHR prior to diagnosis of the pertinent condition (TD or mimic disorder) was retained 
for analysis. Similarly, all patient EHRs were edited to remove mentions of terms used in the dataset collection pro-
cedure.  

Attributes of the training datasets are listed in Table 1. Notice that each TD has low prevalence, there are few/no al-
ready-diagnosed patients in GP-EHR-DB-NL, and patients are described by thousands of features. As mentioned, 
the noise and high-dimensionality of the dataset are key obstacles to learning accurate, generalizable models for rare 
disease patient-finding.  

 
 

 

 

 

 

 

 

 

In both the AHP and LD patient-finding experiments, Algorithm SLSL is implemented in four steps as specified in 
Section 2.D and detailed below.  

1. Baseline prediction p0 is made with an RF model fL: X → p0 learned from dataset L (1000 trees and default hy-
perparameters; see Section 2.B and [17]).  

Table 1. Training datasets.  
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2. Preliminary prediction p0′ is formed with a noise-robust RF fN: X → p0′ learned from dataset N (see Section 2.C 
and [8]).  

3. Ensemble predictions Π = [p′1, p′2, p′3, p′′1, p′′2, p′′3] are made by: i.) refining p0 → {p′1, p′2, p′3} via (2) with 
three clusterings of Tar (k-means method [17] with k∈{2,4,7}) and ii.) adapting p0′ → {p′′1, p′′2, p′′3} using (3) 
with three clusterings of Tar (k-means, k∈{2,4,7}). Hyperparameter λ is set to λ=0.6 in iterative algorithms (2) 
and (3) (selected through nested cross-validation [17]).  

4. Final prediction p* is made by solving maxp minα [ || p0 − Π α ||2 − || p − Π α ||2 ] using standard convex quad-
ratic programming [28] (see Section 2.D).  

Because intermediate and final predictions generated by Algorithm SLSL can be computed efficiently [23-25,28], 
patient-finding can be conducted using country-scale EHR databases.  

To permit an objective, quantitative assessment of the performance of Algorithm SLSL, we compare the accuracy of 
its predictions with those of two benchmark models:  

• ‘Anchor and learn algorithm’ [34,35]: a state-of-the-art technique for learning disease-state estimation models 
with very limited labeled data;  

• ‘TD-training’ model: assume the TD training dataset is correctly-labeled and use all positive-class patients (i.e., 
the combination of already-diagnosed patients and patients for whom evidence exists of positive disease-status) 
as predictions for which patients have TD; this ‘model’ is similar to standard patient-finding methodologies, in 
which expert-derived code/keyword queries are employed to identify candidate patients [8]; its use here also al-
lows the noise-level of training labels to be quantified.  

We considered using standard supervised learning for this task (support vector machines, L1-regularized logistic re-
gression [17]) but these models performed poorly in a pilot examination, likely because of the limited, noisy nature 
of the training data.  

B. Results  

Algorithm SLSL is now applied to the task of finding undiagnosed TD patients in country-scale EHR database GP-
EHR-DB-NL. Patient-finding is implemented in three steps:  

1. Replace missing EHR fields with a ‘missing’ token [17].  

2. Train Algorithm SLSL using the training dataset assembled for the TD under study (AHP or LD, see Table 1). 
Use the learned model to predict the probability that each patient in GP-EHR-DB-NL has the TD.  

3. Rank-order patients by predicted probability of having TD and extract the Top 20 and Top CP candidates (with 
the threshold CP determined based upon natural breakpoints in the probabilities).  

For each TD, we recruited appropriate specialists practicing in Europe to review the EHRs of the top CP candidates 
returned by our models. To increase reliability and objectivity of the reviews, the order of the patients was shuffled 
and 10 randomly-chosen patients were added to each list [8]. The specialists classified each candidate as ‘likely TD’, 
‘possible TD’, ‘unlikely TD’, ‘highly unlikely TD’, ‘not TD’, or ‘unable to assess’. The results of the reviews are 
reported in Tables 2 and 3. Taken together, these results demonstrate that Algorithm SLSL is able to learn accurate 
patient-finding models from light-supervision provided by a few (two or zero) labeled examples together with noisi-
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ly-labeled/unlabeled data. Indeed, the Top 20 Lists for AHP and LD achieve 90% precision and 70% precision, re-
spectively, substantially outperforming state-of-the-art in this setting. To place these results in context, observe from 
current prevalence data (Table 1) that ~0.001% of patients are expected to have AHP and ~0.0003% of patients are 
expected to have LD.  

In more detail, rank-ordering all patients in GP-EHR-DB-NL according to predicted probability of having AHP re-
veals the top 42 candidates have qualitatively higher AHP-probability than the rest (~0.9). The AHP specialists re-
viewing the EHRs for these patients classified 17 as ‘likely AHP’ and an additional 16 as ‘possible AHP’, for a total 
of 33 plausible candidates (79% of the list). The top 20 list has even better precision, containing 14 ‘likely AHP’ pa-
tients and 4 ‘possible AHP’ patients, for a total of 18 plausible candidates (90% precision @ 20). In comparison, the 
Anchor and Learn model [34,35] nominates 33 potential AHP patients, of whom 12 are deemed to be plausible can-
didates (36%), while the 50-patient AHP-training list includes 14 plausible candidates (28%). The latter result shows 
that, as hypothesized, Algorithm SLSL can learn prediction models which are more accurate than the labels used for 
training. It can be seen that the models learned with Algorithm SLSL are also reasonably well-calibrated: the top 20 
list has a greater ratio of ‘likely AHP’ to ‘possible AHP’ patients than the top 42 list. Se Table 2 for a summary of 
the experimental results for AHP.  

 

 

 

 

 

 

 

 

 

By rank-ordering patients in GP-EHR-DB-NL according to predicted probability of having LD we find that the top 
36 candidates have qualitatively higher LD-probability than the rest (~0.8). This list of 36 candidates includes 4 pa-
tients that the specialist assessed to be ‘likely LD’ and 15 more deemed ‘possible LD’, for a total of 19 plausible 
candidates (53% of the list). The top 20 list has higher precision, containing the 4 ‘likely LD’ patients and 10 ‘possi-
ble LD’ patients, for a total of 14 plausible candidates (70% precision @ 20). As is the case with AHP, the Anchor 
and Learn method [34,35] provides much poorer performance, nominating 15 potential LD patients of whom 5 are 
deemed plausible candidates (33%). The 12-patient LD-training list includes 3 plausible candidates (25%), again in-
dicating that Algorithm SLSL is capable of learning a prediction model which is more accurate than its training data. 
See Table 3 for a summary of the experimental results for LD.  

Knowing which features captured in EHRs are predictive of a given rare disease is of value in various clinical appli-
cations. We assessed feature predictive power using both forward- and backward-stepwise analyses [17], and now 
highlight a few findings. The predictive power of structured v. unstructured features varies across the two TDs, with 
ICPC codes having significant predictive power for AHP, free text clinical notes being quite helpful for LD, and lab 

Table 2. Results of patient-finding experiments: AHP.  
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test results, though limited in these GP EHRs, being predictive for both AHP and LD. Proxies for temporal order of 
events are useful for distinguishing AHP from its mimics. Unusual combinations of otherwise common symptoms 
are also predictive (e.g. for LD, diabetes presenting in patients with normal or low body mass index (BMI)).  

Fairly subtle characteristics of ‘patient journey’ can be informative. For example, longer sequences of unique ICPC 
codes, conjectured to reflect GP uncertainty/evolving understanding when confronted with a rare disorder, are pre-
dictive features for both AHP and LD, as are notes documenting GP behavior arising from uncertainty/unfamiliarity 
(e.g. multiple referrals or consultations). Finally, mental health‐related clinical notes and medications (e.g. terms re-
lated to depression and anxiety, ATC codes/notes for anti‐anxiety medications and anti-depressants) are distinguish-
ing for both AHP and LD.  

 

 

 

 

 

 

 

 

 

C. Model Retraining with Specialist Labels  

The experiments summarized in the preceding section demonstrate the accuracy and utility of patient-finding models 
learned by applying Algorithm SLSL to noisily-labeled/unlabeled training data. Interestingly, the chart review con-
ducted by TD specialists in support of algorithm evaluation affords the opportunity to improve upon these models by 
leveraging TD-specialist appraisals. More specifically, we can replace the noisily-labeled positive-class training ex-
amples employed above with patient EHRs classified as ‘plausible TD’ by the specialists (i.e. ‘likely TD’ and ‘pos-
sible TD’ for each TD). Because the revised positive-class training sets are small, consisting of 33 and 19 patients 
for AHP and LD, respectively, Algorithm SLSL is still used for model-building (e.g. to permit unlabeled examples 
to be exploited).  

This strategy does indeed generate very high-quality models. For instance, ten-fold cross-validation runs of the re-
sulting models yield the following estimates for out-of-sample area under ROC curve (AUC):  

• for AHP, AUC = 0.98;  

• for LD, AUC = 0.96.  

As another test of the new model, we rank-ordered the ‘top 42’ and ‘top 36’ lists for AHP and LD, respectively, ac-
cording to the predicted TD-probabilities returned by the retrained patient-finding models. The reordered lists agree 
more closely with the specialists’ assessments.   

Table 3. Results of patient-finding experiments: LD.  
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4. Interpretable Models  

A. Basic Idea  

The preceding theoretical (Section 2) and empirical (Section 3) discussions demonstrate that Algorithm SLSL offers 
a powerful and broadly-applicable approach to finding rare-disease patients in EHR databases. However, while the 
models learned by Algorithm SLSL are accurate, they are not interpretable by non-experts: each patient’s predicted 
TD-status is obtained by combining outputs of thousands of individual supervised and unsupervised models through 
convex quadratic programming. It would be desirable to use the algorithm as the basis for deriving detection models 
which are both accurate and interpretable [36-38], as this would enable clinicians to understand, and therefore trust, 
a model’s prediction process.  

This section explores the feasibility of transforming the high-performance prediction models produced by Algorithm 
SLSL into accurate, interpretable models. The proposed technique accommodates key challenges associated with the 
clinical domain. Predictions concerning patient disease status are typically high-consequence and thus demand relia-
ble, validated models. In addition, EHR data is characterized by missing, noisy, hierarchically-related features [39-
41]. These problem requirements and attributes represent key obstacles for standard ways of achieving model inter-
pretability. For instance, one common idea is to achieve interpretability by trading-off model performance for sim-
plicity. However, the resulting models generally do not meet the performance demands of clinical tasks [37,38]. Al-
ternatively, insights can be gained into the workings of a complex model by identifying which features are important 
to its predictions. Unfortunately, feature importance cannot be reliably-quantified for models that are designed to 
handle missing/noisy data or hierarchically-organized features [38-41].  

We now present a simple method for learning accurate, interpretable patient-finding models which overcomes these 
challenges. The approach operationalizes a reasonable, mathematically-sound definition for model interpretability: a 
model is deemed interpretable if a user can take the model’s input data and parameters and, in reasonable time, exe-
cute the calculations necessary to make a prediction [36,37]. The basic algorithm is composed of three steps.  

Algorithm IM (Interpretable Modeling)  

Given a target prediction task, interpretable models are learned in three steps.  

1. Assemble a training set of patient EHRs (e.g. cohorts of patients known/suspected to either have or not-have the 
disease of interest).  

2. Learn full model MF which is capable of forming accurate predictions for new patients despite the practical diffi-
culties associated with EHR-based modeling (e.g. missing feature values, unreliable patient labels, mix of struc-
tured and unstructured data) [8].  

3. Abstract the full model MF [42,43] to produce interpretable decision tree model MIDT using one of the following 
methods:  

a. fit a decision tree to the predictions of MF (rather than the patient labels appearing in the training dataset);  

b. abstract MF using a slight extension of the logic-preserving (abstraction) algorithm put forth in [43].  

A schematic of the procedure is depicted in Figure 1. In this feasibility study, only the model-abstraction 3a. is used; 
a more comprehensive investigation of model-abstraction and interpretable modeling, including the use of technique 
3b., may be found in [38] (see also [43]).  
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While it is possible to apply the proposed interpretable-modeling procedure even with TDs that possess heterogene-
ous presentations spanning diverse medical domains, the resulting decision trees can be too complex to be readily-
comprehensible. To address this issue we have designed an extension to the basic process, in which an ensemble of 
‘specialist’ decision trees, rather than a single tree, is learned. For a given TD, the ensemble of specialists is induced 
by partitioning the full feature space into separate subspaces and learning one tree for each subspace [38]. The selec-
tion of feature subspaces is guided by the structure of medical domains, and consequently a learned ensemble tends 
to be composed of models which i.) align with medical specialties (e.g. cardiology, oncology), or ii.) correspond to 
aspects of the patient journey (e.g. by recognizing that GPs are imperfect ‘sensors’ and identifying feature subspaces 
that reflect clinical confusion). Interpretable specialist ensembles are illustrated in the next section and discussed in 
detail in [38].  

B. Experiments  

The main goal of the experimental study is to evaluate the possibility of learning patient-finding models which are 
simultaneously accurate and interpretable. The task of interest is to detect undiagnosed AHP and LD patients in GP-
EHR-DB-NL (3.2M patients). Algorithm IM is implemented as specified in Section 4.A. For each TD, model MF is 
constructed by  

• learning an initial model Minit using Algorithm SLSL;  

• submitting patients predicted to have TD by Minit to disease specialists for chart review and revising the labels of 
the (positive-class) training dataset based upon this specialist assessment;  

• training model MF using the revised data;  

• note: recall that models MF are high-performance, achieving cross-validated accuracies of AUC = 0.98 for AHP 
and AUC = 0.96 for LD, but are too complex to allow convenient inspection of their decision-logic.  

Figure 1. Schematic of interpretable modeling process.  
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An interpretable model, denoted MIDT, is then obtained by fitting a CART decision tree to predictions of the learned 
full model MF (see e.g. [17] for background on CART models).  

Figure 2 displays two decision tree models for LD patient-finding generated using Algorithm IM with two different 
choices of hyperparameters [38,17]. Each model is accurate, realizing out-of-sample AUC > 0.9 on the training set. 
Moreover, the models are interpretable: their prediction-logic is straightforward to understand and they offer insight 
into the way LD presents in GP EHRs. For example, it is seen that LD patients are characterized by high blood glu-
cose and triglycerides (TRI), as expected, and tend to have comorbidities (e.g. diabetes) that are unusual for individ-
uals with normal/low BMI. Perhaps more surprising, presence of ‘clinical confusion’ in a patient’s record, quantified 
using counts of unique diagnostic codes or consultations, is found to be a useful predictor of LD.  

 

 

 

 

 

 

 

 

 

 

These results broadly agree with, and appear to supplement and increase the utility of, published guidelines for diag-
nosing LD in clinical settings. For instance, standard guidelines often begin with ‘suspicion of LD’ [e.g. 31], which 
reduces their value to GPs (e.g. there are over 7000 rare diseases, so it may be impractical to require that a GP sus-
pect one of them in order to start the diagnostic process). Papers which may help clinicians ‘suspect LD’ [e.g. 44] 
have some decision points in common with our models MIDT (e.g. diabetes with normal BMI, high triglycerides) but 
also miss informative predictors (clinical confusion) and do not specify the decision-logic necessary for implementa-
tion.  

Because AHP has a heterogeneous clinical presentation [29,30], we built an ensemble of specialist trees to form the 
interpretable model MIDT for this disease. As an illustrative example, Figure 3 depicts a three-tree ensemble induced 
by partitioning the full feature space into different subspaces and learning ensemble members on the individual sub-
spaces [38]. It can be seen the individual models either align with medical specialties, such as psychiatry, or reflect 
features determined to be predictive via the learning process (e.g. feature subspaces associated with a GP examina-
tion).  

In particular, the tree at top-left of Figure 3 forms predictions by combining well-known diagnostic and demograph-
ic information (e.g. abdominal pain, peripheral neuropathy, year of birth) with proxies for clinical confusion (such 
lengthy clinical notes, numerous disparate medication prescriptions), and thereby encodes ‘GP as an imperfect sen-
sor’ data. The other trees serve to bring ‘labs data’, ‘psychiatric interactions’, and suspicion of porphyria (captured 

Figure 2. Sample interpretable models for LD patient-finding.  
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in  ICPC codes) into the patient-finding process. Taken together, the ensemble of trees is accurate, providing out-of-
sample AUC > 0.9 on the training set, yet interpretable: clinicians can understand each specialist decision trees and 
the way in which the trees ‘vote’ to make a prediction regarding AHP status.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 

5. Concluding Remarks  

This paper presents a novel lightly-supervised approach to learning models with which to detect rare disease patients 
in EHR databases. The proposed algorithm leverages unlabeled and unreliably-labeled EHR data to induce accurate 
models from limited numbers of ‘clean’ labels, thereby addressing a key challenge with rare disease patient-finding. 
We prove the algorithm is safe: adding unlabeled/unreliably-labeled data to the learning procedure produces models 
which are usually more accurate, and never less accurate, than models learned from the reliably-labeled data alone. 
Moreover, the method is shown to substantially outperform state-of-the-art models in ‘real-world’ patient-finding 
experiments involving two different rare diseases and a database of 3.2M GP EHRs. The high-performance models 
generated through light supervision can be transformed into simpler models that are simultaneously accurate and 
easily-understandable by non-experts.  

Figure 3. Sample ensemble of interpretable models for AHP patient-finding.  
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