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ABSTRACT  

Traditional screening for COVID-19 typically includes survey questions about symptoms, travel 

history, and sometimes temperature measurements. We explored whether longitudinal, personal 

sensor data can help identify subtle changes which may indicate an infection, such as COVID-

19.  To do this we developed an app that collects smartwatch and activity tracker data, as well as 

self-reported symptoms and diagnostic testing results from participants living in the US. We 

assessed whether symptoms and sensor data could differentiate COVID-19 positive versus 

negative cases in symptomatic individuals. Between March 25 and June 7, 2020, we enrolled 

30,529 participants, of whom 3,811 reported symptoms, 54 reported testing positive for COVID-

19, and 279 negative. We found that a combination of symptom and sensor data resulted in an 

AUC=0.80 [0.73 – 0.86] which was significantly better (p < 0.01) than a model which just 

considered symptoms alone (AUC=0.71 [0.63 – 0.79]) in the discrimination between 

symptomatic individuals positive or negative for COVID-19.  Such orthogonal, continuous, 

passively captured data may be complementary to virus testing that is generally a one-off, or 

infrequent, sampling assay.  
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INTRODUCTION 

Due to the current lack of fast and reliable testing, one of the greatest challenges for preventing 

transmission of SARS-CoV-2 is the ability to quickly identify, trace, and isolate cases before 

they can further spread the infection to susceptible individuals.  As regions across the U.S. start 

implementing measures to reopen businesses, schools, and other activities, many rely on current 

screening practices for COVID-19, which typically include a combination of symptom and 

travel-related survey questions and temperature measurements. However, this method is likely to 

miss pre-symptomatic or asymptomatic cases, which make up approximately 40% to 45% of 

those infected with SARS-CoV-2, and who can still be infectious.1,2  An elevated temperature 

(>100 degrees Fahrenheit) is not as common as frequently believed, being present in only 12% of 

individuals who tested positive for COVID-19,3 and just 31% of hospitalized COVID-19 patients 

at the time of admission.4  

Smartwatches and activity trackers, which are now worn by 1 in 5 Americans,5 can improve our 

ability to objectively characterize each individual’s unique baseline for resting heart rate,6 sleep,7 

and activity and therefore can be used to identify subtle changes in that users data which may 

indicate that they are coming down with a viral illness. Previous research from our group has 

shown that this method, when aggregated at the population level, can significantly improve real-

time predictions for influenza-like illness.8  Consequently, we created a prospective app-based 

research platform, called DETECT (Digital Engagement & Tracking for Early Control, & 

Treatment), where individuals can share their sensor data, self-reported symptoms, diagnoses, 

and electronic health record data with the aim of improving our ability to identify and track 

individual and population level viral illnesses, including COVID-19.   
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A previously reported study that captured symptom data in over 18,000 SARS-CoV-2 tested 

individuals via a smartphone-based app found that symptoms were able to help distinguish 

between individuals with and without COVID-19.2 The aim of this study is to investigate if the 

addition of individual changes in sensor data to symptom data can be used to improve our ability 

to identify COVID-19 positive versus COVID-19 negative cases among participants who self-

reported symptoms.   

 

METHODS 

Study population 

Any person living in the United States over the age of 18 years old is eligible to participate in the 

DETECT study by downloading the iOS or Android research app, MyDataHelps. After 

consenting into the study, participants are asked to share their personal device data (including 

historical data collected prior to enrollment), report symptoms and diagnostic test results, and 

connect their electronic health records.  Participants can opt to share as much or as little data as 

they would like. Data can be pulled in via direct API with Fitbit devices, and any device 

connected through Apple HealthKit or GoogleFit data aggregators. Participants were recruited 

via the study website (www.detectstudy.org), media reports, and outreach from our partners at 

Fitbit, Walgreens, CVS/Aetna, and others. 

Between March 25, 2020 and June 7, 2020, our research study enrolled 30,529 individuals with 

representation from every state in the United States. Among the consented individuals, 62.0% are 

female and 12.8% are 65 or more years old. 78.4% of participants connected their Fitbit device 

to the study-app, 31.2% connected the data from Apple Health Kit while 8.1% connected data 

from Google Fit (note that one individual can connect to multiple platforms). In addition, 3,811 
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reported at least one symptom (12.5%), and of those 54 also reported testing positive for 

COVID-19, and 279 reported testing negative for COVID-19. The number of days per different 

data types and data aggregator system is presented in Table 1, while the symptoms distribution 

for symptomatic individuals tested for COVID-19, or not tested is shown in Figure 1.  

Ethical Considerations 

The protocol for this study was reviewed and approved by the Scripps Office for the Protection 

of Research Subjects. All individuals participating in the study provided informed consent 

electronically.  

Statistical Analysis 

Only participants with self-reported symptoms and COVID-19 test results were considered in 

this analysis. For each participant, two sets of data were extracted: the baseline data, which 

included signals spanning from 21 to 7 days before the reported start date of symptoms, and the 

test data, which included signals beginning the first date of symptoms to 7 days after symptoms. 

Three types of data were considered from personal sensors: daily resting heart rate (DailyRHR), 

sleep duration in minutes (DailySleep) and activity based on daily total step count 

(DailyActivity). The daily resting heart rate is calculated by the specific device.35 The total 

amount of sleep for a given day was based on the total period of sleep between 12 noon of the 

current day to 12 noon of the next day. When multiple devices from the same individual provide 

the same information, Fitbit device data was prioritized for consistency.  Overlapping data were 

combined minute by minute, before aggregating for the whole day.  

A single baseline value per individual was extracted for each data type by considering the  

median value over the individual’s baseline data. This value is representative of a participant’s 
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“normal” before the reported symptoms. The baseline value was compared to the test data as 

follows: 

!"!#$%&'( = *+,(.+'/0!"![%$2%	4+%+]) − *$4'+8(.+'/0!"![9+2$/'8$	4+%+])
4.00  

=/$$>#$%&'( = 	*$+8(.+'/0=/$$>[%$2%	4+%+]) − *$4'+8(.+'/0=/$$>[9+2$/'8$	4+%+])56.06  

A(%'B'%0#$%&'( = 	*$+8(.+'/0A(%'B'%0[%$2%	4+%+]) − *$4'+8(.+'/0A(%'B'%0[9+2$/'8$	4+%+])2489.85  

Values were normalized to have a unitary interquartile range using normalization parameters 

calculated on all data recorded. For all these metrics, values close to zero indicate small 

variations from baseline values. 

For the metric based on symptoms only, we adapted the results from the study by Menni et al.2 to 

our available data: 

=0*>%F*#$%&'(

= 	−1.32 − (0.01 ∗ +J$) + L0.44 ∗ J$84$&	(*+/$ = 1; N$*+/$ = 0)O

+ (1.75 ∗ .$(&$+2$Q8R+2%$=*$//) + (0.31 ∗ SFTJℎ) + (0.49 ∗ V+%'JT$) 

A simple manual metric aggregation strategy without optimization was used to enable a clear 

understanding of the benefits provided when data from multiple sources were considered 

together. The aggregated metrics were: 

=$82F&#$%&'( = !"!#$%&'(	/	10 + =/$$>#$%&'( − A(%'B'%0#$%&'(	 
XB$&+//#$%&'( = =$82F&#$%&'( + 	=0*>%F*#$%&'(	 

The main outcomes are receiver operating characteristic (ROC) curves for each of the proposed 

metrics. The curves are obtained by considering a binary classification task between participants 

self-reported as COVID-19 positive and negative. Confidence intervals, reported with a 

confidence level of 95%, are estimated using bootstrap method by repeatedly sampling the 
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dataset with replacement. The sampling is performed in a stratified manner, i.e., the balance of 

the classes is maintained over all experiments. Values for sensitivity (SE), specificity (SP), 

positive predictive value (PPV) and negative predictive value (NPV) were also calculated 

(Figure 2). These values are based on the point in the ROC with the optimal trade-off between 

sensitivity and specificity, which may vary depending on the shape of the curve. For each metric 

analyzed, we applied the Mann-Whitney U test to investigate the statistical difference among 

positive and negative class values and we reported the p-value. The comparison metric to assess 

the overall performance was the area under curve (AUC) of the ROC. 

 

RESULTS 

The symptoms distribution for symptomatic individuals tested for COVID-19, or not tested is 

shown in Figure 1. 

Sensor Data 

A minority of symptomatic participants (30.3%) who tested for COVID-19 had an RHR greater 

than 2 standard deviations above the average baseline value during symptoms. Change in RHR 

on its own (Table 1) did not allow for significant discrimination between COVID-19 positive and 

negative subjects using the RHRMetric (AUC of 0.52 [0.41 – 0.64]). (Figure 2a) 

Sleep and activity did show a significant difference among the two groups, (Table 1) with an 

AUC of 0.68 [0.57 – 0.79] for the SleepMetric (Figure 2.b) and 0.69 [0.61 – 0.77] for the 

ActivityMetric (Figure 2.c), supporting that the sleep and activity of COVID-19 positive 

participants were impacted significantly more than COVID-19 negative participants. Sleep and 

activity are slightly correlated, with a negative correlation coefficient of -0.28, p-value < 0.01.  
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To evaluate the contribution of all the data type commonly available through personal devices, 

we combined the RHR, sleep, and activity metrics in a single metric (SensorMetric, Figure 2.d). 

This improved the overall performance from the three sensor metrics to an AUC of 0.72 [0.64 – 

0.80].  

Symptom Data 

We also considered a model only based on self-reported symptoms (SymptomMetric, Figure 

2.e), along with age and sex. With respect to the previously published model,2 we measure a 

slightly lower AUC of 0.71 [0.63 – 0.79].  

Combined Symptoms & Sensor Data 

When participant-reported symptoms and sensor metrics are jointly considered in the analysis 

(OverallMetric, Figure 2.f), the achieved performance was significantly improved (p < 0.01), 

relative to either alone, with an AUC of 0.80 [0.73 – 0.86]. 

 

DISCUSSION 

Our results show that individual changes in physiologic measures captured by most 

smartwatches and activity trackers are able to significantly improve the distinction between 

symptomatic individuals with and without a diagnosis of COVID-19 beyond just symptoms 

alone.  While encouraging, these results are based on a relatively small sample of participants.  

This work builds on our earlier retrospective analysis demonstrating the potential for consumer 

sensors to identify individuals with influenza-like illness, which has subsequently been replicated 

in a similar analysis of over 1.3 million wearable users in China for predicting COVID-19.8,9 In 

response to the COVID-19 pandemic a number of prospective studies, led by device 
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manufacturers and/or academic institutions, including DETECT, accelerated deployment to 

allow interested individuals to voluntarily share their sensor and clinical data to help address the 

global crisis.10-14 The largest of these efforts, Corona-Datenspende, was developed by the Robert 

Koch Institut in Germany and has enrolled over 500,000 volunteers.15   

As different individuals experience a wide range of symptomatic and biologic responses to 

infection with SARS-CoV-2, it is likely that their measurable physiologic changes will also 

vary.16-18  For that reason, it is possible that biometric changes may be more valuable in 

identifying those at highest risk for decompensation rather than just a dichotomous distinction in 

infection status.  Due to limited testing in the United States, especially early in the spread of the 

COVID-19 pandemic, individuals with more severe symptoms may have been more likely to be 

tested. Consequently, the ability to differentiate between COVID-19 positive and negative cases 

based on symptoms and sensor data may change over time as testing increases, and as other 

upper respiratory illnesses such as seasonal influenza increase this fall.   

The early identification of symptomatic and pre-symptomatic infected individuals would be 

especially valuable as transmission is common and people may potentially be even more 

infectious during this period.19-21  Even when individuals have no symptoms, there is evidence 

that the majority have lung injury by CT scan, and a large number have abnormalities in 

inflammatory markers, blood cell counts and liver enzymes.18,22-24 As the depth and diversity of 

data types from personal sensors continues to expand—such as heart rate variability (HRV), 

respiratory rate, temperature, oxygen saturation, and even continuous blood pressure, cardiac 

output and systemic vascular resistance—the ability to detect subtle individual changes in 

response to early infectious insults will potentially improve and enable the identification of 

individuals without symptoms.  
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In the past, the normality of a specific biometric parameter, such as resting heart rate, duration of 

nightly sleep, and daily activity, was based on population norms.  For example, a normal RHR is 

generally considered anything between ~60-100 BPM. However, recent work looking at 

individual daily RHRs over two years found that each person has a relatively consistent RHR, for 

them, that fluctuates by a median of only 3 BPM weekly.6 On the other hand, what would be 

considered normal RHR for an individual can vary by as much as 70 BPM (between 40 and 109 

BPM) between individuals.  The potential value in identifying important changes in an 

individual’s RHR as an early marker for COVID-19 infection is suggested by the description of 

5,700 hospitalized COVID-19 patients.4 At the time of admission, a greater percentage of 

individuals had a heart rate of >100 BPM (43.1%) than had a fever (30.7%). Similarly, work in 

primate models of other viral and bacterial infections found that a significant increase in heart 

rate can be detected ~2 days prior to a fever. 25 

Just as individuals have heart rate patterns that are unique to them, the same is true for sleep 

patterns. While population norms for sleep duration have been defined by one-time survey 

data,26 longitudinal analysis of daily sleep over several years support much greater variation in 

what is normal for a specific individual.7 Recognizing what is normal for an individual enables 

much earlier detection of deviations from that normal.   

A strategy of test, trace and isolate has played a central role in helping control the spread of 

COVID-19.  However, testing comes with many challenges including the enormous logistical 

and cost hurdles of recurrently testing asymptomatic individuals. In addition, testing in a 

population with very low prevalence can lead to a high proportion of false positive cases. A 

refined predictive model, based on personal sensors, could potentially enable an early, 

individualized testing strategy to improve performance and lower costs. Early testing may make 
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the use of a contact tracing app more effective by identifying positive cases in advance and 

allowing for early isolation.  

DETECT, and similar studies, also represents the transitioning of research from  a dependence 

on brick and mortar research centers to a remote, direct-to-participant approach now possible 

through a range of digital technologies, including an ever-expanding collection of sensors, 

applications of machine learning to massive data sets, and the ubiquitous connectivity that 

enables rapid 2-way communications 24/7.27,28 The promise of digital technologies is that their 

evolution will continue to bring us closer to identifying the best combination of measures and 

associated algorithms that identify infection with SARS-CoV-2 or other pathogens. However, it 

is equally critical to develop and continuously improve on an engaging digital platform that 

provides value to participants and researchers. This has proven to be extremely challenging with 

a recent analysis of 8 different digital research programs involving 100,000 participants have a 

median duration of retention of only 5.5 days.29  Digital trials such as DETECT also do come 

with unique challenges to assure privacy and security, which can only be dealt with by 

effectively informing participants before consent, storing the data with the needed level of 

security and providing access to the data only for research purposes.30  App-based contact 

tracing, which is not part of DETECT, is an especially sensitive and ethically complicated use of 

digital technology that can be used to address the pandemic.31 

Limitations 

Our analyses are dependent entirely on participant-reported symptoms and testing results, as well 

as the biometric data from their personal devices. Although this is not consistent with the 

historically more common direct collection of information in a controlled lab setting or via 

electronic health records, previous work has confirmed their value and their accuracy beyond 
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data routinely captured during routine care.32-34 Additionally, individuals owning a smartwatch 

or activity tracker and having access to COVID-19 diagnostic testing may not be fully 

representative of the general population. Finally, in the early version of the DETECT app we 

were not able to track the duration or trajectory of individual symptoms, care received and 

eventual outcomes.  

Conclusion 

These preliminary results suggest that sensor data can incrementally improve symptom-only 

based models to differentiate between COVID-19 positive and negative symptomatic 

individuals, which has the potential to enhance our ability to identify a cluster before more 

spread occurs.  Such orthogonal, continuous, passively captured data may be complementary to 

virus testing that is generally a one-off, or infrequent, sampling assay. 
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 Total Any symptom COVID-19 

positive 
COVID-19 

negative P-value 

Demographic Data 

Number of 
participants 30529 3811 54 279 - 

Female [%] 62.0% 74.2% 79.6% 71.3% 0.65 

Over 65 [%] 12.8% 5.7% 1.9% 7.5% 0.22 

Fitbit Users [%] 78.4% 86.7% 85.2% 84.9% 1.00 

Apple Users [%] 31.2% 32.0% 38.9% 33.7% 0.66 

Sensor Data 

Available days 
(IQR)      

 RHR  322 
(131-387) 

325 
(153-396) 

312 
(98-377) 

300 
(119-392) 

0.70 

 Sleep  249 
(48-373) 

273 
(105-383) 

283 
(52-362) 

246 
(70-375) 

0.56 

 Activity  394 
(370-412) 

407 
(379-415) 

404 
(375-410) 

401 
(374-413) 

0.57 

Mean Change (SD)      

 RHR (bpm) ~ 0  
(2.84 ) 

0.40  
(3.18 ) 

1.15  
(4.83 ) 

0.61  
(3.68 ) 

0.33 

 Sleep (min) ~ 0  
(54 ) 

3  
(59 ) 

57  
(92 ) 

4  
(68 ) 

< 0.01 

 Activity (steps) 52  
(2659 ) 

-323  
(2771 ) 

-3533  
(4418 ) 

-208  
(3086 ) 

< 0.01 

Table 1: Participants characteristics and device usage 

Summary of the collected data and demographic information about the cohort. Available days 

are specified for each data type, with median and interquartile range (IQR) values. Changes in 

RHR, Steps, and Sleep from baseline (-21 to 7 days) to symptomatic period (0-7 days) are 

reported, where for individuals with no symptoms we consider March 6, 2020 as the day 0. p-

values are evaluated comparing COVID-19 positive and negative groups. 
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Figure 1: Frequency of symptoms among participants. 

Participants who reported at least one symptom have been divided into 3 cohorts: participants 

negative and positive to a COVID-19 test, and participants who did not undergo a test for 

COVID-19. The frequency of each specific symptom is reported in the figures for the three 

cohorts. Symptoms with significant difference between COVID-19 positive and negative 

participants (p-value < 0.05 of Fisher’s exact test) are marked with an asterisk in the figure. 
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(a)               (b)  

(c)               (d)  

(e)               (f)  

Figure 2: Prediction of COVID-19 from self-reported symptoms and sensor data. 
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ROC for the discrimination between COVID-19 positive and COVID-19 negative based on the 

available data: resting heart rate data (a); sleep data (b); activity data (c); all available sensor data 

(d); symptoms only (e); and symptoms with sensor data (f). 
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