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We use a global metapopulation transmission model to study the establish-

ment of sustained and undetected community transmission of the COVID-19

epidemic in the United States. The model is calibrated on international case

importations from mainland China and takes into account travel restrictions

to and from international destinations. We estimate widespread community
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transmission of SARS-CoV-2 in February, 2020. Modeling results indicate in-

ternational travel as the key driver of the introduction of SARS-CoV-2 in the

West and East Coast metropolitan areas that could have been seeded as early

as late-December, 2019. For most of the continental states the largest contri-

bution of imported infections arrived through domestic travel flows.

The first confirmed case of COVID-19 in the United States (US) was diagnosed in Wash-

ington state on January 21, 2020 (1). In quick succession other cases were confirmed in Illinois,

California, and Arizona (2–4). All initial cases reported in the US had a known travel history to

mainland China, the epicenter of the pandemic. The first reported local transmission on US soil

was discovered on January 30 in Illinois (5). However, very few COVID-19 cases were detected

until the case definition for testing was updated on March 4, 2020 to include symptomatic in-

dividuals without travel history (6). On April 1, when the US federal government issued social

distancing guidelines, 26, 655 new reported cases and 1, 050 deaths were recorded in the United

States. In Fig. 1A we include a timeline of initial confirmed cases, testing policies, and early

containment and mitigation initiatives concerning the US COVID-19 outbreak.

Given the narrowness of the initial testing criteria, it is expected that the SARS-CoV-2 virus

causing COVID-19 was spreading through “cryptic transmission” in January and February, set-

ting the stage for the large epidemic wave experienced in March and April, 2020. In this study,

we model the arrival and cryptic phase of the COVID-19 epidemic in the US. We estimate the

time frame for the establishment of local transmission in the different states, and provide a

statistical analysis of the domestic spread of the COVID-19 epidemic.

To study the spatial and temporal spread of COVID-19, we use the Global Epidemic and

Mobility Model (GLEAM), an individual-based, stochastic, and spatial epidemic model (7–11).

The model was previously used to characterize the early stage of the COVID-19 epidemic in

mainland China and the effect of travel restrictions on infections exported to other global re-
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gions (12). GLEAM generates an ensemble of possible epidemics described by the number of

newly generated infections, the time of disease arrival in different regions of the world, and the

number of infected travelers. The model divides the global population into more than 3, 200

subpopulations in roughly 200 different countries and territories. The airline transportation data

encompass daily origin-destination traffic flows from the Official Aviation Guide (OAG) and

the International Air Transport Association (IATA) databases (13,14), whereas ground mobility

flows are derived from the analysis and modeling of data collected from the statistics offices of

30 countries on five continents (7,8). The transmission dynamics take place within each subpop-

ulation and assume a classic SLIR-like compartmentalization scheme for disease progression

similar to those used in several large scale models of SARS-CoV-2 transmission (15–20). Each

individual, at any given point in time, is assigned to a compartment corresponding to their par-

ticular disease-related state (being, e.g., susceptible, latent, infectious, removed) (12). This

state also controls the individual’s ability to travel (more detail in the supplementary material,

SM). Individuals transition between compartments through stochastic chain binomial processes.

Susceptible individuals can acquire the virus through contacts with individuals in the infectious

category and can subsequently become latent (i.e., infected but not yet able to transmit the in-

fection). The process of infection is modeled by using age-stratified contact patterns at the state

level (21). Latent individuals progress to the infectious stage at a rate inversely proportional

to the latent period, and infectious individuals progress to the removed stage at a rate inversely

proportional to the infectious period. The sum of the mean latent and infectious periods defines

the generation time. Removed individuals are those who can no longer infect others. To es-

timate the number of deaths, we use the age-stratified infection fatality ratios from (22). The

epidemiological model we adopted has a parsimonious structure with respect to others proposed

in the literature (42, 43). While such details are important in the evaluation of mitigation sce-

narios, we focused on the very initial phase of the spread where the epidemic was unchecked.
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At this stage, the transmission model does not account for heterogeneities due to age differ-

ences in susceptibility to the SARS-CoV-2 infection. This is an intense area of discussion at the

moment (44–46).

We assume a start date of the epidemic in Wuhan, China, that falls between November 15,

2019 and December 1, 2019, with 40 initial infections (12, 20, 23–25). The model generates

an ensemble of possible epidemic realizations, and is calibrated using approximate Bayesian

computation (ABC) methods (26) on observations of international importations from mainland

China through January 21, 2020 (12). Only a fraction of imported cases are detected at the

destination (27). According to the estimates proposed in (28), we stratify the detection ca-

pacity of countries into three groups: high, medium and low surveillance capacity according

to the Global Health Security Index (29) (see SM). The model calibration does not consider

correlations among importations (family travel) and assumes that travel probabilities are homo-

geneous across all individuals in each subpopulation. The ABC calibration using a generation

time Tg = 6.5 days yields 2, 000 individual realizations of the global evolution of the pandemic

that provide information on imported infections, locally generated infections, and deaths in all

subpopulations considered in the model (30). The model accounts for international travel re-

strictions according to available data on traffic reduction and government issued policies. The

ABC calibration gives a posterior distribution for the basic reproductive number R0 in the US

(median 2.9 [95% CI 2.6-3.1]). The median reproductive numbers for each state range from

2.8 − 3.0, with doubling times ranging from 3.1 − 3.7 days, due to the changes in the specific

age stratified contact patterns. In the SM we also consider an additional calibration based on

the deaths observed in the US. These results do not exhibit major differences and do not change

the overall picture presented here.
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Figure 1: Early picture of the COVID-19 outbreak in the United States. (A) A timeline
of the daily reported and confirmed cases of COVID-19 in the US including information on
the first 10 reported cases and other significant events related to the outbreak up to March 1,
2020. (B) Model-based estimates for the daily number of new infections in the continental US.
The inset plot compares the weekly incidence of reported cases with the weekly incidence of
infections estimated by the model for the week of March 8 − 14, 2020 for the 48 continental
states that reported at least 1 case. Circle size corresponds to the population size of each state.
(C) Model based estimates for the median number of daily infections in the continental US as
of March 1, 2020.
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Onset of local transmission

Stochastic simulations of the worldwide epidemic spread yield international/domestic infection

importations, incidence of infections, and deaths per subpopulation at a daily resolution in the

continental US. In Fig.1B we show the model estimates for the median daily incidence of new

infections up to March 1, 2020 in the continental US. There is a stark contrast between the

model output and the number of officially reported cases by the same date, highlighting the

significant number of potential transmission events that may have already occurred before many

states had implemented testing strategies independent of travel history. For a model validation

we compare our model projections of the number of infections during the week of March 8,

2020 to the number of cases reported during that week within each state that had at least 1

case (shown in Fig.1B inset). We see a strong correlation between the reported cases and our

model’s projected number of infections, (Pearson’s correlation coefficient on log-values 0.79,

p < 0.001), although many fewer cases had actually been reported by that time. If we assume

that the number of reported cases and simulated infections are related through a simple binomial

stochastic sampling process, we find that the mean ascertainment rate of detecting an infected

individual by March 8, 2020 is 1.3% (90%CI: [.19%-6.3%]). The ascertainment rate is growing

quickly as the testing is ramping up, and our estimate is more than doubled by March 15, 2020

(2.9% with 90%CI:[.39%-8.6%]). The Center for Disease Control estimates an ascertainment

rate of about 4% to 10% during March and April, 2020 at different locations in the US (33).

SARS-CoV-2 infections are also distributed heterogeneously across the US. In Fig.1C we show

the daily number of new infections on March 1, 2020.

In Fig. 2 we plot the posterior distribution for the earliest date within each state when at

least 10 new infections per day occurred in the community. California and New York are the

first states with a probability larger than 50% to have experienced local transmission by the
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end of January (California) or beginning of February (New York), 2020. However, the wide

distribution of dates suggests that SARS-CoV-2 cryptic transmission may have started as early

as December, 2019. The posterior distribution for the timing of the onset of local transmission

peaks by mid February in Washington, Florida, New Jersey, Texas, Illinois, Massachusetts,

Maryland, Nevada, Georgia, Virginia, Arizona, Colorado, Ohio, Pennsylvania, North Carolina,

and Michigan. From the posterior distribution of Fig. 2, all states have a median date of the

onset of local transmission by early March, with the large majority of them in February, 2020,

a critical month for the cryptic spread of SARS-CoV-2 in the continental US. However, during

that time, US testing was still focused on returning travelers from China.

International and domestic seeding

As the model allows the recording of the origin and destination of SARS-CoV-2 carriers at the

global scale, we can study the possible sources of infection importation for each state. In partic-

ular, we are able to record the flow of latent and infectious individuals through international and

domestic flight connections. However, the model also considers the effect of possible infections

through commuters that may only spend a few hours in a neighboring subpopulation (7). It

is important to stress that the model’s realizations explore the many possible paths of the epi-

demic. Thus, the analysis provided here must be considered as a statistical description of the

potential sources of SARS-CoV-2 importations, rather than providing a specific, single causal

chain of events.

In order to identify seeding events relevant to the onset of local transmission in each stochas-

tic realization of the model, we record the number of importations (of latent and infectious in-

dividuals) before the local transmission chains were established (defined as 10 daily local trans-

mission events). We visualize the origin of the seeding importations relevant for establishing

local transmission by aggregating the importation sources, considering some key geographical
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Figure 2: Timing of the onset of local transmission. Posterior distributions of the week when
each state first reached 10 locally generated SARS-CoV-2 transmission events per day.
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regions (e.g. Europe and Asia) while keeping the US and China separate and aggregating all the

other countries (i.e. Others), in Fig. 3. It is worth clarifying that seeding importations are differ-

ent from the actual number of times the virus has been introduced to each state with subsequent

onward transmission. Even after local transmission has started, future importation events may

give rise to additional onward transmission forming independently-introduced transmission lin-

eages of the virus as seen in the United Kingdom (31). Statistics for importations through March

1st, 2020 are reported in the SM file.

Importations from mainland China may be relevant in seeding the epidemic in January (no-

tice the width of the blue arrows from China for the first couple of states), but then play a small

role in the COVID-19 expansion in the US because of the travel restrictions imposed to/from

mainland China after January 23, 2020. About 42% and 15% of the virus introductions be-

fore the onset of local transmission in California and New York State, respectively, were from

mainland China. Noticeably, the share of infection importations originating from Europe in

California was four times smaller than those in New York State. Among the states for which

the model estimates an early onset of local transmission before the third week of February (con-

sidering median values), European sources are statistically contributing 18% of SARS-Cov-2

importations for New Jersey, 15% for Massachusetts, 14% for Florida, and only 5% for Wash-

ington. While importations from mainland China contribute to early introductions of the virus

in the US, our analysis highlights other potential sources of importations, such as Europe, where

additional travel advisories and restrictions were implemented a month later at the end Febru-

ary and early March. Interestingly, the domestic importations are, across the board, statistically

relevant in seeding the epidemic in many states. Among the states for which we estimated a

late onset of local transmission (second half of February), domestic sources account for 85% of

the virus introductions in Nebraska, 86% in New Mexico, 86% in Arkansas, and 95% in North

Dakota.
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Cryptic spreading phase

From late January to early March, SARS-CoV-2 had been spreading across the US mostly unde-

tected. Cities such as Los Angeles, New York, Chicago, Seattle, and San Francisco experienced

sustained local transmission beginning in the first half of February (Fig. 4A). In the time span

of one additional month, through March 15, 2020, most large cities in the US had sizeable on-

going outbreaks. It is worth noting that California most likely generated 100 local infections

by late January, around the same time as the adoption of draconian containment measures and

international travel restrictions in mainland China. The model also allows us to estimate the

possible occurrence of several COVID-19 deaths through March 1, 2020 (median 41 [90% CI

7− 352]). Although some states launched investigations in search of evidence that COVID-19

was the cause of death as far back as December 2019, it is likely that most deaths were missed

because COVID-19 testing guidelines were based on travel history (32).

To provide a model consistency check with respect to surveillance data concerning the epi-

demic, we compared the model-based estimates with observed surveillance data. Particularly,

early on in the epidemic, surveillance data were known to be highly unreliable because of under-

detection. For each state we compared the order in which they surpassed 100 infections in the

model and in the surveillance data gathered from the John Hopkins University Coronavirus Re-

source Centre (34). In Fig. 4B we plot the ordering for states and compute the Kendall rank

correlation coefficient τ (see SM for details). The correlation is positive (τ = 0.66, p < 0.001)

indicating that, despite the detection and testing issues, the expected patterns of epidemic dif-

fusion of the states is largely described by the model. As mentioned before, one possible major

driver of the diffusion pattern is air traffic. We compare the ordering of states according to

their air travel volume to their epidemic order as previously defined (Fig. 4C). We consider both

national and international traffic, and find a positive correlation (τ = 0.65 with p < 0.001)
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between the epidemic ordering derived from surveillance data and air traffic, suggesting the

passenger volume of both international and national traffic are key factors driving the early

phases of outbreak across the country. Similar observations have been reported in China, where

the initial spreading of the virus outside Hubei was strongly correlated with the traffic to/from

the province (35). The correlation between the air travel ordering and the simulations is high

(τ = 0.83, p < 0.001) as actual airline data are used in the model to simulate the mobility

of individuals (see SM). It is worth remarking that population size is also correlated with both

the traveling flows (τ = 0.7, p < 0.001) and the epidemic order of each state (τ = 0.66,

p < 0.001) as discussed in the SM. In our model it is not possible to exclude increased con-

tacts in highly populated places before social distancing interventions and disentangle this effect

from increased seeding due to the correlation between travel volume and population size. As

yet another independent test for the model, in Fig. 4D we show the positive correlation between

excess deaths, as estimated in (36), and the order in which the states reached the threshold of

10 daily transmissions (τ = 0.6, p < 0.001).

The model is consistent with the picture emerging from the genomic epidemiology (37–39)

of an early start of the COVID-19 epidemic in coastal states, followed by the propagation,

dominated by the domestic traveling patterns, to the less globally connected regions in the US.

The model suggests that COVID-19 spread across the US in about 7 weeks, and that by the

end of February many states were experiencing sustained SARS-CoV-2 local transmission. The

median time for the onset of local transmission in coastal states is as early as February 2020,

and it raises the question of what would the unfolding of the epidemic have looked like in

the case of an earlier warning and issuing of travel restrictions to/from China. For this reason

we have performed simulations of a counterfactual scenario in which the timeline of all the

travel restrictions to/from mainland China is shifted one week earlier compared to the actual

one. In Fig. 4E, we show the distribution of probability that the US experiences sustained
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generated transmissions per day by a given day for both a scenario using the real timelines of
travel restrictions and a counterfactual scenario where the travel restrictions to/from mainland
China are shifted one week before. The median dates for the real and counterfactual timelines
are February 5, 2020 and February 11, 2020 respectively.
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local transmission by a given date in both the counterfactual scenario and the real timeline of

interventions. We define sustained national transmission as 100 infections per day. Interventions

implemented one week earlier amount to a proportional delay of the onset of local transmission

in the continental US. In particular we find that in the real timeline intervention analysis a 50%

cumulative probability of reaching the 100 locally generated transmissions mark is reached by

February 5, 2020 compared to February 11, 2020 in the counterfactual scenario. This is in

agreement with the evidence provided by several studies (12,40,41) that a considerable number

of infections had already traveled from mainland China to international destinations before mid

January, thus potentially seeding multiple epidemic outbreaks across the world, and leading to

the international expansion of the COVID-19 epidemic, despite the mainland China travel ban.

Our analysis however does not consider spontaneous behavioral changes that people might have

adopted before the official national and local guidelines were annouced. While certainly some

individuals might have taken precautions as a result of the news from China, evidence from

surveys of public concern from several countries in Europe suggest that in late February only a

very limited fraction of people considered COVID-19 as a concrete threat (47). Our model also

does not contain any calibration or constraint on the trajectory of the outbreak in the months of

March and April. We provide this analysis in the SM showing the consistency of the results.

Discussion

Our study characterizes the cryptic transmission phase during which SARS-CoV-2 spread largely

undetected in the US. The results suggest that the first sustained local transmission chains took

place as early as the end of January, and by the end of February the infection was spreading

to many other national locations. This timeline is shifted several weeks ahead with respect to

the detection of cases in surveillance data. This is consistent with the fact that in January and

February no country had the capacity to do mass testing. Countries adopted a policy of test-
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ing symptomatic individuals with a travel history linked to China, thus, generally missing the

cryptic transmission occurring domestically. We find that the order in which the virus initially

progressed across states according to our model is highly correlated with the official record.

The model highlights that the geographical heterogenities in the observed spreading patterns

are explained by the features of the air transportation network and population distributions.

The results also indicate that the source of introduction of SARS-CoV-2 infections into the

US changed substantially and rapidly through time. While early importations were from in-

ternational sources, most introductions occurred during February and March 2020. Our results

indicate that many states were seeded from domestic sources rather than international. The

presented results could be of potential interest in combination with sequencing data of SARS-

CoV-2 genomes in order to reconstruct in greater detail the early epidemic history of the US

COVID-19 epidemic. The estimated SARS-Cov-2 importation pattern and the cryptic transmis-

sion phase dynamic are of potential use when planning and modelling public health policies in

the context of international travel.
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7. D. Balcan, V. Colizza, B. Gonçalves, H. Hu, J.J. Ramasco, A. Vespignani, Multiscale mo-

bility networks and the spatial spreading of infectious diseases. Proceedings of the National

Academy of Sciences. 106, 21484-21489 (2009).
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Expected impact of lockdown in Île-de-France and possible exit strate-

gies. medRxiv 10.1101/2020.04.13.20063933 [Preprint]. 17 April 2020.

doi:10.1101/2020.04.13.20063933

43. A. Aleta, D. Martin-Corral, A. Pastore y Piontti, M. Ajelli, M. Litvinova, M. Chi-

nazzi, N. E. Dean, M. E. Halloran, I. M. Longini, S. Merler, A. Pentland, A. Vespig-

nani, E. Moro, and Y. Moreno. Modeling the impact of social distancing, test-

ing, contact tracing and household quarantine on second-wave scenarios of the

COVID-19 epidemic. medArxiv 10.1101/2020.05.06.20092841 [Preprint]. 18 May 2020.

doi:10.1101/2020.05.06.20092841.

21

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.20140285doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.06.20140285
http://creativecommons.org/licenses/by-nc-nd/4.0/


44. J. Zhang, M. Litvinova, Y. Liang, Y. Wang, W. Wang, S. Zhao, Q. Wu, S. Merler, C. Viboud,

A. Vespignani, M. Ajelli, and H. Yu. Changes in contact patterns shape the dynamics of the

COVID-19 outbreak in China. Science (2020). doi:10.1126/science.abb8001.

45. N. G. Davies, P. Klepac, Y. Liu, K. Prem, M. Jit, CMMID COV ID-19 working group, R. M.

Eggo, Age-dependent effects in the transmission and control of COVID-19 epidemics. Na-

ture Medicine (2020). https://doi.org/10.1038/s41591-020-0962-9

46. Q. Bi, Y. Wu, S. Mei, C. Ye, X. Zou, Z. Zhang, X. Liu, L. Wei, S. A. Truelove, T. Zhang,

W. Gao, C. Cheng, X. Tang, X. Wu, Y. Wu, B. Sun, S. Huang, Y. Sun, J. Zhang, T. Ma,

J. Lessler, T. Feng, Epidemiology and transmission of COVID-19 in 391 cases and 1286 of

their close contacts in Shenzhen, China: a retrospective cohort study. The Lancet Infectious

Diseases (2020). https://doi.org/10.1016/S1473-3099(20)30287-5.

47. J. Raude, M. Debin, C. Souty, C. Guerrisi, C. Turbelin, A. Falchi, I. Bonmarin, D. Paolotti,

Y. Moreno, C. Obi, J. Duggan, A. Wisniak, A. Flahault, T. Blanchon, V. Colizza,

Are people excessively pessimistic about the risk of coronavirus infection? medArxiv.

10.31234/osf.io/364qj [Preprint]. 5 March 2020. doi:10.31234/osf.io/364qj

Acknowledgements

M.E.H. acknowledges the support of the MIDAS-U54GM111274. S.M. and M.A. acknowl-

edge support from the EU H2020 MOOD project. C.G. and L.R. acknowledge support from

the EU H2020 Icarus project. M.C. and A.V. acknowledge support from Google Cloud and

Google Cloud Research Credits program to fund this project. The findings and conclusions

in this study are those of the authors and do not necessarily represent the official position of

the funding agencies, the National Institutes of Health, or the U.S. Department of Health and

Human Services.

22

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.20140285doi: medRxiv preprint 

https://doi.org/10.1038/s41591-020-0962-9
https://doi.org/10.1016/S1473-3099(20)30287-5
https://doi.org/10.1101/2020.07.06.20140285
http://creativecommons.org/licenses/by-nc-nd/4.0/


Author Contributions

Author contributions: J.T.D., M.C., N.P. and A.V. designed research; M.C., J.T.D. ,N.P., M.A.,

C.G., M.L., S.M., A.P.P, K.M., L.R., K.S., C.V, X.X., M.E.H., I.M.L., and A.V. performed

research; M.C., J.T.D., N.P., A.P.P., K.M. and A.V. analyzed data; and M.C., J.T.D., N.P., M.A.,

C.G., M.L., S.M., A.P.P, K.M., L.R., K.S., C.V, X.X., M.E.H., I.M.L., and A.V. wrote and edited

the paper.

Competing Interests

M.E.H. reports grants from National Institute of General Medical Sciences, during the conduct

of the study; A.V. reports grants and personal fees from Metabiota inc., outside the submitted

work; M.C. and A.P.P. report grants from Metabiota inc., outside the submitted work. No other

relationships or activities that could appear to have influenced the submitted work.

Data and materials availability

Proprietary airline data are commercially available from Official Aviation Guide (OAG) and

IATA databases. The GLEAM model is publicly available at http://www.gleamviz.org/.

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.20140285doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.06.20140285
http://creativecommons.org/licenses/by-nc-nd/4.0/

