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Abstract

The Coronavirus disease 2019 (COVID-19) has resulted in an ongoing pandemic
worldwide. Countries have adopted Non-pharmaceutical Interventions (NPI) to
slow down the spread. This study proposes an Agent Based Model that sim-
ulates the spread of COVID-19 among the inhabitants of a city. The Agent
Based Model can be accommodated for any location by integrating parameters
specific to the city. The simulation gives the number of daily confirmed cases.
Considering each person as an agent susceptible to COVID-19, the model causes
infected individuals to transmit the disease via various actions performed every
hour. The model is validated by comparing the simulation to the real data of
Ford county, Kansas, USA. Different interventions including contact tracing are
applied on a scaled down version of New York city, USA and the parameters
that lead to a controlled epidemic are determined. Our experiments suggest that
contact tracing via smartphones with more than 60% of the population owning
a smartphone combined with a city-wide lock-down results in the effective re-
production number (Rt) to fall below 1 within three weeks of intervention. In
the case of 75% or more smartphone users, new infections are eliminated and
the spread is contained within three months of intervention. Contact tracing
accompanied with early lock-down can suppress the epidemic growth of COVID-
19 completely with sufficient smartphone owners. In places where it is difficult
to ensure a high percentage of smartphone ownership, tracing only emergency
service providers during a lock-down can go a long way to contain the spread.
No particular funding was available for this project.
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1 Introduction

COVID-19 is a highly transmissible disease that was declared to be a global
pandemic on March 11, 2020,1 by the World Health Organization (WHO). The
disease is caused by a strain of Coronavirus, namely, Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2),2 and is highly infectious, resulting in
a total of more than 8 million cases worldwide as of June 15, 2020.3 While
originating in Wuhan, China in December, 2019,4 the disease has spread to
more than 200 countries of the world by now.3 Countries have taken restric-
tive measures (i.e., lock-down) as the primary approach to contain the outbreak
of the virus since effective clinical measures are yet to be found.5,6 This dis-
ease has heavily affected the economies of most countries leading to the global
coronavirus recession or the Great Shutdown.7

The SARS-CoV-2 virus spreads through close contacts, i.e., when a susceptible
person inhales droplets coming from an infected individual through coughing or
sneezing.8 It can also infect people if they touch their eyes, nose, or mouth after
having physical contact with contaminated surfaces.8 This nature of infection
has given rise to various preventive practices that are Non-pharmaceutical inter-
ventions (NPI), such as, wearing masks, personal protective equipment (PPE),
washing hands frequently, staying home, and avoiding gatherings.9

Here, we present an Agent Based Model (ABM) in order to simulate the propa-
gation of COVID-19 among the inhabitants of a city. Our model can be adapted
for any realistic scenario by incorporating appropriate parameters specific to the
city under consideration. We also examine the impacts of protective measures
and city-wide lock-down on the infection spread and determine the suitable pa-
rameters that help to contain the spread. Our experiments further explore the
conditions under which the so called Digital Herd Immunity,10 can be achieved
by applying contact tracing approach via smartphones. Our results suggest
that, with lock-down in effect, if more than 60% of the population in a city are
traceable through smartphones, effective reproduction number (Rt) falls below
1 within three weeks of intervention. Moreover, 75% or more of the popula-
tion owning a smartphone results in Rt < 1 sooner and the new infections are
eliminated completely within three months of intervention.

2 Methodology

2.1 The Data and Assumptions

We use two categories of data in our model as follows (see supplementary Sec-
tions 3-5 for details).

1. Location-specific data

(a) We use the demographics of the inhabitants in a particular city (i.e.,
education, employment, life expectancy, percentage of individuals
having different professions, and the nature and timing of various
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tasks performed by the people) and the data related to the number
of transports and the average family size.

(b) We also use the data related to COVID-19 disease, its spread among
the population and the response of authorities. These include the
number of daily new infections in the city and the day of announce-
ment of restrictive policies or awareness measures.

To conduct our simulations, we have collected the above data for Ford
county, Kansas,11–20 and New York city,21–27 of United States of America.

2. Physiological data
The probability of a person coughing and sneezing, touching contaminated
objects, coming into physical contact of others, or washing hands are also
important parameters of our model which would differ based on whether
a person is at work, home, or is hospitalized.

As an abstraction, we ignore the changes in population of the city within the
period of our simulation, i.e., we ignore births, deaths, and migrations.

2.2 The Agents

In our ABM, each person is an agent and each agent is susceptible to COVID-19.
We consider five possible states for a person at any particular time as follows.

1. Not-Infected or healthy (H)

2. Infected, not contagious, asymptomatic (N)

3. Infected, contagious and asymptomatic (A)

4. Infected, contagious and symptomatic (S)

5. Dead or Recovered (D)

Figure 1a presents the time interval between different stages of infection,28,29

and Figure 1b demonstrates the state transitions.
Each agent is associated to a family and is assigned to one of four generic
professions, namely, doctors and nurses (healthcare workers), students, service
holders, and unemployed. The distribution and percentage of these professions
are derived from real statistics. Based on his profession, an agent performs
different actions throughout the day.
Each person has a protection level. Once awareness is increased in the city,
this value is improved with varying degrees. For doctors and healthcare profes-
sionals, a higher degree of protection is apportioned. The real-life significance
of protection level lies on the use of protective face shields, masks, maintaining
hygiene etc.
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Figure 1: Stages of COVID-19 infection (1a) and state transitions in our model
(1b).
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2.3 Interaction between Agents and Transmission

Agents/persons in our model are associated to groups for interaction at every
time unit (i.e., hour). Depending on whether the person’s task is to be at work,
home, on a transport, in an event, or at a hospital during a particular hour, (s)he
is assigned to a group. Every group, thus, involves a collection of people per-
forming the following actions - sneezing and coughing, touching contaminated
objects, coming into physical contact with each other, and washing hands. Only
the action of washing hands has a positive impact and the impact is on himself
whereas the rest take effect on others and the effect is negative. All these acts
are given minimum and maximum probabilities of occurrence in an hour.
Within a group, agents can remain in different proximity with one another.
Our model, at first, generates every possible pair of individuals in a group.
Each pair then receives a numerical value (i.e., representing the proximity) cho-
sen from one out of ten predefined ranges. Each range satisfies the relation
0 ≤ Blow < Bhigh ≤ 1 where Blow and Bhigh are lower and upper bounds of the
range respectively.
The actions that lead to infection of another person will only matter when those
are being executed by an infected person in the contagious stage of the disease.
Equation 1 calculates the infection value of a susceptible person due to negative
impacts of actions performed by an infected agent.

infection = (1 − protection level) ∗ E ∗ proximity (1)

Here, 0 ≤ Omin ≤ E ≤ Omax ≤ 1; Omin and Omax represent lower and upper
limits of the impacts of an infected person’s actions on others respectively.
On the other hand, equation 2 calculates the infection value due to positive
effects of actions, i.e., washing hands.

infection = (−1) ∗ (1 − protection level) ∗ E (2)

Here, −1 ≤ Smin ≤ E ≤ Smax ≤ 0; Smin and Smax are, respectively, the lower
and upper limits of the impacts of an action on oneself.
This infection is then compared with an action infect threshold. Exceeding
this threshold would cause the susceptible person’s infection level to be incre-
mented (or decremented in case of actions with positive impact) by an amount
equal to the infection value calculated above. By the end of the day, based
on an infection threshold, whether a person will be infected or not will be
determined by this infection level. For more details about the model, see Sup-
plementary Section 1.

2.4 Environment

2.4.1 Awareness and Lock-down

This ABM involves a dynamic environment where factors change with time. A
city may declare lock-down policies and awareness measures on the Xth and Y th

days of community transmission. For the latter, a person’s awareness level is
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incremented from day Y . For a realistic interpretation, we allow some indi-
viduals to continue working or leaving their homes for different necessary tasks
during lock-down.

2.4.2 Contact Tracing and Quarantine

Traditional contact tracing through interviewing infected patients is not fea-
sible.10 Leveraging smartphones through appropriate contact tracing apps,30

for tracking is a more reasonable option. Here we consider a scenario where
all smartphone users would have contact tracing apps installed and will, thus,
be brought under the umbrella of intervention. Our model traces (and subse-
quently quarantines for 14 days) someone who was in a group with an infected
patient for a number of days prior to the onset of symptoms.

2.5 Model calibration, validation and simulations

To validate our model we run simulations (for a period of 60 days) of the spread
of COVID-19 based on the data from Ford county as it has had a large number
of tests and its data is relatively more available. Although an initial case of
infection was identified on March 17, 2020 in Ford county, the infected individual
was effectively isolated.31 We, thus, run the simulation from April 8 with 2
initial cases with lock-down imposed from day 1.13

Subsequently, we examine the effects of lock-down, contact tracing, and a com-
bination thereof on a scaled down version of the New York City, United States
of America and infer the factors that lead to digital herd immunity (See Supple-
mentary Section 2). As for digital herd immunity, it has been found that there
is always a critical fraction 0 ≤ φc < 1 of app ownership, such that take-up
of contact-tracing apps by a fraction φ > φc of the population is sufficient to
prevent epidemic spread.10 Finally, we apply these parameters to the simulation
of Ford county. We further compute and assess the parameter called effective
reproduction number (Rt),

32 following the method described in.33 If Rt < 1
can be sustained, it would signify that the number of new cases will gradually
terminate among the population,34.32

2.6 Code and Availability

We have implemented our ABM and the experiments using Python3 program-
ming language.35 The experiments have been conducted in the following ma-
chines - (i) a desktop computer having intel core i7-7700 processor (3.6 GHz,
8 MB cache) CPU, 16 GB RAM, and NVIDIA TITAN XP (12 GB, 1582
MHz) GPU; (ii) a Virtual Private Server (16 core CPU), 64 GB RAM and 200
GB Storage; (iii) a cloud computing platform Galileo from Hypernet (https:
//galileoapp.io/). All code and data can be found at the following link:
https://github.com/s-shamil/agent-based-modeling-covid-19

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.05.20146977doi: medRxiv preprint 

https://galileoapp.io/
https://galileoapp.io/
https://github.com/s-shamil/agent-based-modeling-covid-19
https://doi.org/10.1101/2020.07.05.20146977
http://creativecommons.org/licenses/by-nc-nd/4.0/


Role of funding source:

N/A.

3 Results

3.1 Model Validation using Ford County data

We ran the simulation for the full population (size = 33,619) of Ford county
(Figure 2). The blue curve represents real data of daily confirmed cases. Our
simulation results, represented by the red one, have a root mean square error
(RMSE) of 50·2346 approximately (please see supplementary Table 5). The
resulting curve is obtained by applying varying degrees of protection level (de-
fined in section 2.2), action infect threshold, and infection threshold (defined
in section 2.3) for different segments, i.e., ranges of days (Table 1 and Table 2).

Day 0-15 Day 16-20 Day 21-38 Day 39-60
Healthcare workers 0·2 0·22 0·8 0·95

Others 0·1 0·12 0·75 0·9

Table 1: protection level on different days for inhabitants of Ford county. These
values have been obtained through extensive experiments. Healthcare workers
include all doctors, nurses, and people working in the health sector. Others
include students, service holders, and unemployed people.

Day 0-8 Day 9-20 Day 21-38 Day 39-45 Day 46-60
action infect threshold 0·5 0·65 0·665 0·675 0·7
infection threshold 0·5 0·65 0·65 0·65 0·65

Table 2: action infect threshold and infection threshold on different days for
inhabitants of Ford county. These values have been obtained through extensive
experiments.

3.2 Simulations on Ford County

3.2.1 Effect of lesser interventions

We simulated to check how the outcome would change with a lesser degree
of intervention. First, protection level of the last segment (Day 39-60) was
lowered by keeping it same as the previous segment (Day 21-38). This resulted
in a 26·13% increase of daily incidence, whereas lifting movement restrictions
from day 21 (as opposed to continuing the lock-down) results in an increase of
47·61% (Figure 3a). The variation of Rt for these changes are illustrated in
Figure 3b.
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Figure 2: Validation of the model. The blue (red) curve represents the real
(simulated) daily confirmed cases. The red curve nicely follows the blue curve
with an RMSE of around 50·2346.

(a) (b)

Figure 3: Effect of (i) removing lock-down from day 21 (red curve), (ii) allowing
the protection level of day 21-38 to continue until day 60 (yellow curve), and (iii)
the simulation of daily confirmed cases (blue curve) are shown in 3a. Contact
tracing from day 21 (green curve) with 75% smartphone users gives 3·51% less
infections by the end of day 60 compared to the blue curve. Corresponding Rt

curves are reported in 3b.
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(a) (b)

Figure 4: Figure 4a illustrates the effects of interventions imposed since day 27:
introducing added protection (blue curve), contact tracing (CT) alone (yellow
curve), lock-down (LD) alone (red curve), both contact tracing and lock-down
(CT+LD) in combination (green curve). CorrespondingRt curves are illustrated
in Figure 4b.

(a) (b)

Figure 5: Introducing contact tracing with different percentage of the population
being smartphone users from day 27. Figure 5a shows, with higher percentage
of smartphone owners, less portion of the population are infected by the end of
day 120. Variation of Rt is illustrated in Figure 5b.

(a) (b)

Figure 6: With contact tracing from day 27, Figure 6a shows effects of lock-
down from day 21 (blue), 27 (green), and 41 (red). Variation of Rt is illustrated
in Figure 6b.
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(a) (b)

Figure 7: With lock-down from day 27, Figure 7a shows effects of contact tracing
from day 21 (blue), 27 (green), and 41 (red). Variation of Rt is illustrated in
Figure 7b.

(a) (b)

Figure 8: Figure 8a shows effects of tracing 75% of entire population (blue) as
opposed to only the doctors, nurse, healthcare workers, and 50% service holders
(red) from day 27. Both of these curves result from tracing the contacts of the
previous two days. The yellow curve shows the effect of tracing 75% of the
population for the previous day only. Their Rt curves are given in 8b.
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3.2.2 Effect of the contract tracing

Figure 3a compares the impact of contact tracing implemented from day 21
(green curve) with the simulation of daily confirmed cases (blue curve). Ac-
cording to our simulation, the number of infections up to day 20 is 1·463% of
the total population. In this simulation, we consider 75% of the people to be
smartphone holders. However, not everyone in a group remains close enough (to
the infected person) to allow smartphone applications to record their data. Con-
sidering 30% people in a group within reachable range and 90% group records
being available, the simulation is continued till day 60 by tracing the contacts
for the previous two days. Although infections continue to rise extensively in
case of the blue curve, the green curve starts to flatten and the spread termi-
nates with only 1·915% people being infected. The difference between the total
infections for the two curves by the end of day 60 is about 3·51% of the entire
population. As for the variation of Rt (Figure 3b), both the blue and green
curves proceed to fall below 1 but the green one (i.e., involving contact tracing)
does so sooner.

3.3 Simulation on New York City: A scaled down version

Simulation on New York city for a period of 120 days is done considering a
population of 10000; parameters specific to New York City in the input are
accommodated for the smaller population to ensure the appropriate scaling (see
supplementary Table 11). As a basic validation of this scaled down version, the
Rt values for the full population using an SIR model,36 and the same for the
(scaled down) ABM model have been compared and the calculated RMSE was
found to be 0·4626 (see section 6 of supplementary file for more details).

3.3.1 Effect of Interventions

We have simulated four different scenarios with different intervention combina-
tions, namely, no intervention (NI; blue), only contract tracing (CT; yellow),
only lock-down (LD; red), and a combination of CT and LD (CT+LD; green).
For all scenarios the parameters are same as NI till day 27 up to which only 5%
people are infected.
We consider 75% of the agents to be traceable as smartphone owners.37 In a
realistic scenario, lock-down policies and movement restrictions do not ensure
that everyone will stay home. Thus, we consider that the lock-down will be
effective on all students and on 50% of the service holders; among them, to
simulate a practical lock-down, we keep 70% individuals strictly within their
homes and allow the rest 30% to go out for different reasons. Evidently, CT+LD
results in the least number of infections (Figure 4a). The relative trends of Rt

also support this (Figure 4b) as Rt drops below 1 much faster for CT+LD.
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3.3.2 Varying the percentage of smartphone users for contact trac-
ing

Figure 5a illustrates a comparison considering different percentages of the pop-
ulation to be smartphone owners. In all these cases, we consider 30% people
in a group associated with a person to be in close proximity and traceable only
if they own smartphones. Moreover, among all the groups that a person stays
in throughout the day, we take 90% of their records to be available. Figure 5b
illustrates the corresponding variation in Rt. As the percentage of smartphone
owners increases, Rt falls below 1 more rapidly. Furthermore, Figure 5a demon-
strates that the total percentage of population infected becomes much less with
more ‘traceability’, i.e., with more fraction of smartphone users. Evidently,
contact tracing with more than 60% smartphone users leads to Rt < 1 within
three weeks of intervention. Moreover, new infections are eliminated completely
among the population with more than 75% smartphone users as shown in Figure
5a within only three months of intervention.

3.3.3 Combined impact of lock-down and contact tracing

Simulations were run to observe the impact of lock-down being initiated on
different days while introducing contact tracing from day 27 in all cases (Figure
6a). By the end of 90 days, the curves having lock-down introduced on the 21st,
27th, and 41st days result in 3·36%, 12·87%, and 45·03% infections respectively.
Clearly, an early announcement of lock-down regulation causes Rt to fall below
1 more quickly (Figure 6b).
Also, simulations were run to comprehend the effects of introducing contact
tracing on different days with lock-down being declared on day 27 in all cases
(Figure 7a). By the end of 90 days, the curves having contact tracing introduced
on the 21st, 27th, and 41st days result in 8·72%, 12·87%, and 22·86% infections
respectively. The corresponding graph for Rt is given in Figure 7b that shows
similar results as in Figure 6b. However, compared to Figure 6b, the values of
Rt take slightly longer to become less than 1.

3.3.4 Some more variations

1. Tracing certain categories of people - Lock-down regulations only apply to
all students and 50% of service holders. The rest of the people, i.e., doc-
tors, nurses, healthcare workers, and a portion of service holders amount
to about 40% of the population. Figure 8a illustrates a simulation where
only the above-mentioned 40% population is traced (red curve) from day
27. Compared to the blue curve which illustrates tracing 75% of the en-
tire population, tracing 40% causes 4·58% less infections by the end of day
90. In both cases, contacts of the previous two days are traced for every
infected person.

2. Effect of tracing for different number of days - In Figure 8a we show
a comparison of our simulations conducted by allowing 75% smartphone

12
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users while tracing the contacts of the previous day only (shown in yellow).
The blue curve (tracing the contacts for previous 2 days) results in 3·45%
less infections by the end of day 90.

4 Discussion

We found that only lock-down regulations can result in less number of people
being infected in total compared to contact tracing approaches but it takes more
time to reach Rt < 1. However, the success of combining lock-down and contact
tracing surpasses all the other interventions significantly. This is evident from
Figure 4a which shows that although the red curve (lock-down alone) causes
17·23% less infections than the yellow one (contract tracing alone), the green
curve (both in combination) causes 42·62% less infections than the red one.
Implementing contact tracing early will only work best if lock-down regulations
follow shortly. With increasing delay in introducing these restrictions, the rate
of infection rises more rapidly. This can be seen from Figure 6: although con-
tact tracing has begun since day 27, the longer it takes to introduce lock-down
following it, the greater is the increase in new infections everyday.
Lock-down regulations are the most effective when implemented early. Even if
contact tracing measures are introduced late (red curve in Figure 7), they work
well when supplemented with early lock-down as opposed to early contact trac-
ing with delayed lock-down (red curve in Figure 6). This suggests that as long
as lock-down is initiated early, delayed contact tracing will still work reasonably
well. Ford county had issued movement restrictions from the beginning of com-
munity transmission;13 therefore, contact tracing works well in our simulation
of the county (Figure 3).
Tracing a certain category of people may have a more profound effect on the
overall disease spread. Effectively tracing individuals who go to their workplace,
avail transport facilities, and attend small gatherings after lock-down regulations
had already begun (i.e., doctors, nurses, healthcare workers, and about half of
the service holders in our simulation reported in Figure 8) contains the spread
with fewer total infections even if they represent a smaller fraction (only 40%
in our simulation) of the susceptible population.
Owning smartphones (at varying percentage of the susceptible population) and
thereby, ensuring (effective) contact tracing, ensures Rt < 1. Although not
immediately, it does stop the spread of COVID-19 gradually. This will be
quicker if lock-down is maintained. However, lock-down cannot be imposed for
an indefinite period of time as it comes with economic repercussions. Therefore,
it is important to know the fraction of smartphone owners in the susceptible
population necessary to eliminate new infections very quickly. While having
60% or more smartphone owners in the susceptible population can slow down
the spread, in order to completely contain it within a short period of time, this
percentage should be maintained at 75% or more.
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5 Conclusion

Our model can be adapted for simulating the spread of COVID-19 in any city
by supplying suitable parameters as input. This can be used to observe what
percentage of people in the city needs to remain traceable and for how many
days in order to flatten the curve. This can also help gain insight on the future
trend of the curve if current conditions persist for that city.
We have analyzed the effectiveness of digital herd immunity by exploring the im-
pact of contact tracing and finding the parameters that lead to the termination
of the epidemic within the city. Our results suggest that it is possible to reach
digital herd immunity soon and with few new infections by implementing con-
tact tracing as soon as possible if lock-down regulations had been implemented
already. We have found from our experiments that, ensuring 75% smartphone
owners in the population with at least 90% of the records being available in each
person’s phone can completely contain the spread in a city within three months
of intervention. Moreover, a more effective approach can be tracing all of the
emergency service providers (who go to their workplaces) during the lock-down.
Although they constitute only 40% of the population in our simulation, tracing
only this category of people can flatten the curve of daily cases of COVID-19
within a short amount of time.
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