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Abstract: The number of active cases in the UK Covid-19 epidemic, the case fatality rate, the 7 
susceptible proportion of the population, and how well the lockdown was maintained during 8 
April–May 2020 are unknown. These four have a relationship with the shape of the daily mortality 9 
curve once one considers the intervals from infection to death or recovery. Without an understanding 10 
of this relationship we cannot say that an earlier lockdown would have saved lives. Using a small 11 
stochastic model, the lockdown had to be weakened, in April and May, for simulated deaths to match 12 
ongoing actual daily deaths. Google mobility data was found to be consistent with the weakening 13 
required in the model with similar changes from baseline in time and magnitude. If in an earlier 14 
lockdown, mobility and interactions would have followed a similar course, then with a large 15 
epidemic curve an earlier lockdown might be associated with many more deaths than some currently 16 
believe. This was confirmed in the stochastic model and in two modified SIR models of epidemics of 17 
various sizes. The first SIR model had a fixed period to recovery and the second used random 18 
periods, both models had random periods to death. Weakening of the mitigations was required to 19 
tune the output in large but not in small epidemics. This gives weight to the epidemic having affected 20 
many more individuals than some reports currently suggest. In both one and two-week earlier 21 
lockdowns, total deaths were found to depend on the size of the epidemic and to vary from 22 
2,000–49,000 deaths. There was a linear relationship between the peak proportion of the population 23 
infected and the reciprocal of the case fatality rate. This work questions the low prevalence of < 0.1%, 24 
reported by the Office for National Statistics in May and June 2020, since to accommodate a 25 
weakening lockdown, the shape of the daily mortality curve, and an acceptable case fatality rate a 26 
much larger epidemic curve is required. 27 
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 29 

1. Introduction 30 

A plot of the time course of the proportion of the population who are currently infected—active 31 
cases—is known as the epidemic curve. During mitigated Covid-19 epidemics nations have counted 32 
deaths in different ways and the UK have altered its reporting. However, if a mortality data set has 33 
been consistently ascertained then the shape of that data maintains some fidelity with its antecedents 34 
and inferences may be generalisable. The principal antecedents are those elements that underly the 35 
mechanics generating the epidemic curve and the timing and effectiveness of the mitigations and 36 
importantly any unintended weakening of the mitigations. In the absence of a tight confidence interval 37 
on the case fatality rate the shape, but not the size, of the epidemic curve can be estimated from the 38 
mortality data. The size of the infected population may not be required to answer some questions. 39 
However, it is required if one asks ‘What might have happened if the mitigations had been introduced 40 
earlier?’ This requires an understanding of the size of the epidemic curve since the efficacy of any 41 
weakening in the mitigations will be sensitive to the susceptible proportion of the population. 42 
Importantly, the size of the epidemic curve and knowing the residual susceptible population are 43 
central to understanding the risks of a second-wave and planning relaxation of lockdown rules.  44 
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This author previously reported a stochastic model which simulated mainly UK in-hospital 45 
deaths [1]. That model was revised to include out-of-hospital deaths after Public Health England 46 
(PHE) changed its reporting system in late April 2020 [2]. Subsequent but modest revisions were 47 
issued [3]. In this work a first SIR model [A] used a fixed period to recovery of 12.8 days and PHE data 48 
up to a revision in late June whilst the second SIR model [B] which used a random period to recovery 49 
was tuned following a PHE revision accessed on 26 June [4]. 50 

A UK national newspaper, reported that 75% of UK Covid-19 deaths might have been avoided if 51 
the lockdown had begun one week earlier [5]. Dagpunar, using a case fatality rate of 1%, describes a 52 
SEIR (Susceptible, Exposed, Infected, Removed) model which generated 39,000 deaths for a mitigated 53 
epidemic, reducing to around 11,000 if mitigated one week earlier, see Table 1 [6].  54 

 55 

Table 1. Results from modeling by Dagpunar [6]. 56 

The UK introduced its lockdown when a total of 359 deaths had been reported, whilst Germany 57 
locked down after reporting a total of 86 deaths. On 17 March there had been a total of 81 deaths in the 58 
UK. It is an important question to ask; ‘What might have happened—if all else remained the 59 
same—but the lockdown was announced at a different time?’ This work simulated earlier and later 60 
lockdowns starting from 3–20 March 2020 using the previously described stochastic model. 61 

In this stochastic model, just as in a SIR model, the size of the susceptible proportion of the 62 
population at any one time influences the efficacy of an intervention, be it a mitigation or a weakening 63 
of a lockdown. For this reason, if a set of parameters influencing a model’s behaviour are allowed to 64 
act on a population with a substantially different susceptible proportion then their influence will also 65 
be quite different. Caution is therefore needed in moving parametric changes earlier or later in an 66 
epidemic if the true magnitude of the epidemic curve is not known. Early in an epidemic when 67 
exponential growth is seen then the size of the susceptible population may be ignored but this does not 68 
apply later on.  69 

Though we know something of the shape of the mortality data, and from this we can infer 70 
something of the shape of the epidemic curve, we cannot determine the magnitude of the epidemic 71 
curve without other information. The areas under the epidemic curve and the mortality curve give us 72 
the case fatality rate.  73 

In this author’s previous simulations around 20% of the population were infected at the peak, but 74 
this is higher than the consensus of current opinion. According to the Office for National Statistics 75 
(ONS) between 17–30 May 2020, an average of 0.10% of the population in households had Covid-19 76 
(95% CI: 0.05% to 0.18%) [9]. A second estimate between 25 May to 7 June found 0.06% (95% CI : 0.02% 77 
to 0.12%) of the population in England had Covid-19 [7]. This second estimate was based on 11 78 
individuals in 8 households from a total of 19,933 participants.  79 

In this work modelling is presented for different sized epidemics. The early parameters are the 80 
same, as the susceptible populations have not fallen sufficiently, but later parameters necessarily 81 
differ. 82 

A thought experiment 83 

Though it is unlikely that the UK epidemic was initiated with a single index case we will consider 84 
this in a simple thought experiment. If the rising phase is neither mitigated nor yet influenced by the 85 
falling susceptible population then it is exponential, and if the doubling was every 3 days then there 86 
would have been 25.5 days to get to 360 deaths at lockdown on 23 March placing the first death on 27 87 
February. PHE record the first UK death on 5 March. The antecedent infections (perhaps 20 days 88 

 Deaths Peak 

deaths 

Final Susceptible 

population 

Unmitigated 634,000 18,000 4.8% 

UK-like lockdown 39,000 930 94% 

One-week earlier lockdown 11,200 260 98% 
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before the 23 March) would, at 3 March, have been a magnitude larger related to the case fatality rate 89 
(CFR). If we imagine CFR’s of 1:1000 and 1:100 these place the hypothetical first cases on the 7 and 18 90 
January respectively, see Figure 1.  91 

 92 

Figure 1. A thought experiment is illustrated. Assuming a 3-day doubling in deaths (green) arising 93 
from antecedent infections 20 days previously (dashed green line) producing a total of 359 deaths on 23 94 
March the parent populations can be imagined for different case fatality rates. This crude 95 
approximation places the start of the epidemic curves in early January.   96 

2. Materials and Methods  97 

Two modified SIR epidemics [A] and [B] were given start dates from 2–23 January. In [A] there 98 
was a fixed period of 12.8 days to recovery for those becoming immune and in [B] a randomly chosen 99 
period from two lognormal distributions. In both [A] and [B] the period to mortality was randomly 100 
chosen. Each epidemic had its weakening tuned such that the daily mortality represented actual daily 101 
mortality with social distancing and lockdown taking place on 17 and 24 March. Tuning was a visual 102 
fit with one run of the model. Once tuned, each epidemic was re-run with social distancing taking 103 
place either one or two-weeks week earlier (10 or 3 March). Lockdown likewise was earlier on the 17 or 104 
10 March. 105 

The stochastic model 106 

The stochastic model has been previously described [1,2]. The model is written in Microsoft Excel 107 
VBA v7·1 operating in Windows 10. Individuals were assigned an age, sex, risk of mortality if infected, 108 
a measure of daily viral exposure, a susceptibility factor, an incubation period, and two contagious 109 
periods. One contagious period was for mild illness and the other for serious, critical or fatal illness. 110 
Each individual had a 2-dimensional location, a status for symptoms, immunity and a flag for 111 
alive/dead. Individuals had two clocks; one for an assigned contagious period and one for a virtual 112 
twin, 80% of whom were assigned a lognormal fatal illness contagious period to represent in-hospital 113 
deaths (meanlog 2.99, sdlog 0.223), and 20% a shorter, lognormally distributed period to represent 114 
out-of-hospital deaths (meanlog 2.639, sdlog 0.2). The 80:20 ratio matches the PHE ascertainment of 115 
deaths [2]. Incubation periods were based on Covid-19 data (meanlog 1.621, sdlog 0.418) [8]. Age and 116 
sex followed the 2011 UK census. Knowing the age and sex, an individual was designated to die, if 117 
infected, based on a probability taken from the Chinese Centre for Disease Control and Prevention [9]. 118 
The demographic details do not influence the outputs reported in this paper but were maintained in 119 
case they prove useful in later developments.  120 

A random 5% were assigned to be critically ill, and together with the dying individuals, this 121 
group had the longer contagious period (meanlog of 2.99, sdlog of 0.223). A random, normally 122 
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distributed (mean 1, sd 0.2) susceptibility factor s was chosen. Randomly located and randomly 123 
moving individuals become infected if they exceed a daily infectious dose based on their cumulative 124 
proximity to contagious near neighbours and their susceptibility factor. The exposure, consequent 125 
upon an interaction between a susceptible individual i and a contagious individual j, had a 126 
relationship with the inverse square distance separating the individuals di,j. All separations di,j less than 127 
0·2 metres were assumed to be at 0·2 metres. Separations exceeding 5 m were ignored. When social 128 
distancing was applied, separations less than 2 m were treated as if at 2 m, this rule was applied for a 129 
percentage x of interactions designated SDx. If for any susceptible i, on any day, s∑ di,j-2 > 1 then the 130 
individual acquired an infection. One day elapsed between infection and symptoms. A percentage x, 131 
of symptomatic individuals were confined, making no movements, and designated Cx, representing 132 
isolation. Mobile individuals could still come close to the confined. Individuals moved n times a day 133 
designated Mn, in a random walk (step-size 10 times the output of an inverse cumulative normal 134 
distribution with mean 0 m, sd 5 m). Individuals returned to their origins at the end of each day. 135 
Mobile individuals meeting boundaries were reflected to stay within the boundaries. In these 136 
simulations 2000 individuals were placed randomly in a 490 x 490 m square. Only small populations 137 
were needed since virtual twins were followed to death.  138 

The model was parameterised as follows; Mn with n a surrogate for movements, a larger n simply 139 
representing more movements, SDx with x being the percentage of interactions achieving social 140 
distancing, and Cx with x being the percentage of symptomatic individuals being confined. Before 141 
mitigation, the parameters were {M18, SD10, C90}, on 17 March these changed to {M14, SD50, C90} and on 142 
23-24 March they changed again to {M7, SD60, C100}. The term ‘tuning the model’ means adjusting one or 143 
more parameters on one or more days after the lockdown to bring the simulated daily deaths closer to 144 
the actual daily deaths. Five contagious individuals were introduced to start an epidemic on day 1. The 145 
first mitigation of 17 March was placed when the susceptible population fell to 91%.  146 

Two modified SIR models 147 

  UK Covid-19 mortality data was simulated using a modified classical ��� model [10]. For 148 
historical interest it is noted that Kermack and McKendrick used �, �, � with � and 	 where �, �, � 149 
with 
 and � are now more widely used. The rate of change in the susceptible proportion of the 150 
population �, was 

��

��

 �
�� and 
 was modified to represent the mitigations and any weakening, 151 

whilst � represented the proportion of the population currently infected. Classically 
��

��
 
 
�� � �� 152 

but in this model � fell following removal after individuals completed illness periods either after 12.8 153 
days [A] or following two randomly assigned probability distributions [B]. The two distributions were 154 
those used in the stochastic model above. Each individual was followed twice, once with a mixture of 155 
periods with a random 5% having a longer contagious period to build the epidemic curve, and the 156 
other with a random 80% having the longer period to build the mortality curve. 157 

To achieve this, each day had ten equal intervals, Δ� 
 0.1 ���� . With �, ���� � � , and 158 
����, ����, 
, � � � we start with ��0� 
 1, ��0� 
 1/� at � 
 0. The algorithm proceeds as � � � � ∆�: 159 
��� � Δ�� 
 ���� � 
��  and ��� � Δ�� 
 ���� � 
�� � ����/� . For Model [A] 

����

�

 ��� � 12.8�.  For 160 

model [B], two random numbers # and $, each with uniform distribution over the interval 0 to 1 were 161 
used to look up a time to recovery Φ�#� from a cumulative probability density function (CDF) for a 162 
lognormal distribution. If $ & 0.05  the CDF had meanlog 2.639 and sdlog 0.2, and if $ ( 0.05 163 
the CDF had meanlog 2.99 and sdlog 0.223. In like fashion for both [A] and [B], two random numbers # 164 
and $, were used to look up a time to death Ψ�#� from a CDF for a lognormal distribution. If $ & 0.8 165 
the CDF had a meanlog 2.639 and sdlog 0.2, and if $ ( 0.8 the CDF  had meanlog 2.99 and sdlog 0.223. 166 

For model [B] we let 0��� represent the number of new infections, and ���� the number of 167 
individuals being removed at time �. We let ���� be the number of people dying at time � if everyone 168 
infected dies. Using 1�2 to mean the nearest integer less than � we have 0�� � ∆�� 
 1���� � ∆��2 �169 
1�����2, then we increment ��� � ∆� � Φ� by 1 0 times with the times, Φ and Ψ, being assessed for 170 
each 0 as described. In like fashion we increment ��� � ∆� � Ψ� by 1 0 times which is the mortality 171 
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curve. The shape, but not the magnitude, of this mortality curve was then compared with the shape of 172 
the actual daily deaths. In this way a population of twins was followed in which one twin becomes 173 
immune and the other dies.    174 

3. Results 175 

The weakening of the lockdown 176 

From around 20 April 2020, actual UK daily deaths gradually rose above the range for simulated 177 
daily deaths in the stochastic model [2], (Figure 2, upper panel with arrow). To account for this, it was 178 
hypothesised that the lockdown had not been maintained as well as it was when it was first introduced 179 
with weakening starting around 7 April, (Figure 2, lower panel with arrow).  180 
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 181 
Figure 2. Ten simulations are shown. Actual daily mortality (red, mean blue) and simulated daily 182 
deaths (grey, mean black) and percentage of population currently infected (green, with mean black) 183 
against time. After 20 April (arrow), mean actual deaths start to exceed mean simulated deaths 184 
suggesting a breach of the lockdown, starting perhaps on 7 April (arrow), 13 days previously. 185 

An alternative explanation is that the modelled epidemic curve was too large. This work aimed to 186 
(1) tune the stochastic model by making small changes to the parameters defining the lockdown at one 187 
or more intervals after 7 April, and (2) model smaller epidemics.  188 

Tuning the stochastic model 189 

No single change of any one parameter, on a single date following the lockdown was sufficient to 190 
tune the stochastic model. With two changes in the same direction on two separate days tuning was 191 
improved. A small number of sets of parameters were then tested on three days. When applied 192 
following the lockdown (24 March) on days 16, 23, and 33 respectively, the sets A={M8, SD60, C90}, 193 
B={M9, SD60, C90} and C={M10, SD60, C90} produced a promising realignment of simulated and actual 194 
daily mortality which was then followed to 27 May, see Figure 3. Only the number of movements per 195 
day were increased 7→8→9→10, with all other parameters maintained. 196 
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 197 
Figure 3. Above: The mean of six simulations with weakening (black) with actual daily deaths (red, 198 
smoothed mean blue). Below: The mean mitigated epidemic curve with social distancing 17 March, 199 
lockdown 23 March and three step wise weakening changes A, B C.  200 

The parametric changes used to tune the model represent a gradual but progressive weakening of 201 
the lockdown in real life. Google mobility data [11] was examined and changes in mobility at the time 202 
of the mitigations of 17 and 23–24 March were found. After the lockdown the percentage change from 203 
baseline of all relevant activities was similar to the changes required for tuning the model, see Figure 4.  204 

205 
 206 

Figure 4. Google mobility data plotted as % change from baseline (left axis) and the movement 207 
parameter {Mn} (blue with circles), which changed in a stepwise fashion (right axis n).     208 

In Figure 4, the percentage change from baseline for UK mobility activity, for 5 domains [11], is 209 
shown for the period of the mitigated epidemic, plotted against the left-hand axis as smoothed data. In 210 
the Google mobility data, there is evidence of activity gradually, and progressively rising through a 211 
few percentage points. On the right-hand axis, the parameter {Mn} is plotted such that a fall from 18 to 212 
9 movements a day equates to a 50% fall in baseline activity on the left-hand axis.  213 

Interestingly, the weakening of the lockdown which was modelled to tune the mortality output to 214 
fit the actual daily deaths, is similar to the weakening evident in the Google mobility data.  215 
  216 
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Locking down earlier or later  217 

A series of epidemics were simulated in the stochastic model with lockdowns starting on different 218 
days between 10 March and 1 April. Social distancing was initiated 7 days before each lockdown and 219 
the lockdown was weakened in three steps as described above. The total mortality is plotted against 220 
the day of the lockdown (not the introduction of social distancing) and appears in Figure 5. 221 

 222 
Figure 5. Simulated total deaths from 40 epidemics for lockdowns starting on different days, each with 223 
social distancing introduced 1 week earlier and weakening of the lockdown as described. This was 224 
output from the stochastic model with social distancing starting with S=91%. The peak in infections 225 
was about 20%.   226 

In Figure 5 the distribution of data points suggests that an earlier lockdown may not have been 227 
associated with fewer deaths, but this is in the context of a significant epidemic curve .  228 

The two modified SIR models 229 

Model [A] 230 

In the modified SIR model [A], a population of 66 million was studied. The value of 
 for an 231 
unmitigated epidemic was 0.023 to give a doubling every 3 days, see Error! Reference source not 232 
found.. 233 

,S I

 234 
Figure 6. In this unmitigated epidemic 94% of the population became infected: � is the susceptible 235 
proportion (black), � the infected proportion (green) and in red the daily mortality. The area under the 236 
curve representing 62,000 deaths with a case fatality rate of 1:1000, and 620,000 with a case fatality rate 237 
of 1:100.  238 
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In Model [A], for the doubling to fall appropriately on the introduction of social distancing 239 

 
 0.01, falling further for the lockdown with 
 
 0.0064. The magnitude of the epidemic curve was 240 
altered by changing the start date of the epidemic whilst keeping the two principal mitigations fixed in 241 
time. The modelled daily deaths were compared with actual deaths and 
 was altered sequentially 242 
with 
	, 

 and 
� applied 14, 21 and 28 days after the lockdown to tune mortality.  243 

With a late start and a small epidemic curve, the mortality was a good fit without any weakening 244 
of the mitigations. As the epidemic start time was brought earlier and the magnitude of the epidemic 245 
curve increased then weakening of the mitigations was required to tune the mortality data. 246 
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0.010

0.015

17 30
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 247 

Figure 7. Six epidemic curves for Model [A] showing active cases as a percentage of the population 248 
with social distancing 17 March and lockdown 24 March. The percentage infected between 17-30 May 249 
appears in the right-hand panel. The ONS data would be consistent with the red epidemic.     250 

The largest epidemic in Model [A], with a 19% peak in infections (which does not appear in 251 
Figure 7) has its mortality output shown in Figure 8. Earlier lockdowns have significant numbers of 252 
deaths.  253 

  254 

Figure 8. An epidemic in Model [A] starting 2/1/20 with 19% at the peak of infections. Deaths with 255 
mitigations starting 17 March (grey), 10 March (green), and 3 March (blue).  256 

The salient features of 10 epidemics with 
� 
 0.023, 
�
 
 0.01 on the 17 March and 
� 
257 
0.0064 for the 24 March (except for Epidemic A23 where 
� 
 0.0063) appear in Table 2. The 258 
designation of an epidemic includes the date in January for the first case: A6 had its first case on 6 259 
January.  260 
  261 
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Table 2. Data from 10 epidemics in Model [A], each initiated with the same � changing at the 262 
mitigations on 17 and 24 March in the same way. The highlighted cells have the % of active cases 263 
found by the Office for National Statistics and Epidemic A14 has a CFR of about 1:100. 264 

Epidemics starting earlier had more infections and a lower � when mitigations were introduced. 265 
Epidemics starting earlier required greater weakening of the mitigations to tune their mortality curves. 266 

Model [B] 267 

The salient features for 6 epidemics from Model [B], appear in Table 2: �� � 0.023, ��� � 0.01 on 268 
the 17 March with the value for �� for the 24 March varying. 269 

Table 3. Data from 5 Model [B] epidemics, each initiated with the same �, changing at the 270 
mitigation on 17 March to 0.01 but requiring different strengths of lockdown. 271 

Epidemic [A]  A2  A5  A6  A7  A8  A11  A14  A17  A20  A23  

��  7 April 0.0113 0.008 0.0076 0.0071 0.007 0.0066 0.00645 0.0064 0.0064 0.00635 

��  14 April 0.0114 0.0087 0.00815 0.0076 0.0075 0.0068 0.00650 0.0064 0.0064 0.00635 

��  21 April 0.0115 0.0095 0.0085 0.0081 0.008 0.0071 0.00655 0.0064 0.0064 0.00635 

Case Fatality Rate  1:762 1:505 1:423 1:361 1:309 1:177 1:97 1:48 1:26 1:14 

Peak Infection  19% 12% 10.0% 8.4% 7.0% 3.9% 2.1% 1.1% 0.61% 0.32% 

       17–30 May  2.93 

1.78 

2.23 

1.58 

1.62 

1.06 

1.4 

0.98 

1.34 

0.93 

0.72 

0.48 

0.38 

0.24 

0.22 

0.14 

0.13 

0.09 

0.07 

0.04 

    25 May-7 June 2.17 

1.27 

1.81 

1.25 

1.25 

0.81 

1.1 

0.76 

1.07 

0.7 

0.56 

0.38 

0.29 

0.18 

0.16 

0.11 

0.10 

0.07 

0.05 

0.03 

S on 1 July 2020 49% 65% 71% 75% 78% 88% 93% 96% 98% 98.9% 

Lockdown 1 week earlier 

��� 10 March 

47,100 

(106%) 

43,900 

(93%) 

31,700  

(70%) 

28,400  

(62%) 

25,800 

(54%) 

15,000  

(32%) 

12,100 

(26.3%) 

11,300 

(24.5%) 

11,100 

(23.6%) 

10,800 

(23.1%) 

Lockdown 2 weeks earlier 

��� 3 March 

48,900 

(110%) 

44,500 

(95%) 

27,800  

(61%) 

21,700 

(47%) 

13,200 

(28%) 

3,900  

(8.4%) 

2,800 

(6.2%) 

2,600 

(5.6%) 

2,500 

(5.4%) 

2,200 

(5.2%) 

Epidemic [B] B2  B5  B7 B8 B11 B14 

Lockdown ��  ���� 24 	
��� 0.0067 0.0064 0.0064 0.0064 0.0062 0.0058 

Weakening ��  7 April 0.0098 0.007 0.0066 0.00645 0.0062 0.0058 

��   14 April 0.0105 0.0076 0.007 0.0066 0.0062 0.0058 

��   21 April 0.0115 0.0083 0.0075 0.007 0.0062 0.0058 

Case Fatality Rate  1:888 1:569 1:437 1:357 1:208 1:97 

Peak in infections 22.1% 13.5% 9.7% 7.7% 4.3% 2.1% 

       17–30 May  4.0–2.4 2.6–1.7 2.3–1.5 1.9–1.2 1.1–0.72 0.5–0.33 

    25 May-7 June 2.9–1.6 2.0–1.3 1.8–1.2 1.5–0.96 0.84–0.55 0.39–0.26 

S on 1 July 2020 40% 65% 70% 78% 86% 93% 

Lockdown 1 week earlier ��� 10 March 47,600 

(106%) 

37,000 

(81%) 

29,300  

(63%) 

25,800 

(54%) 

15,500  

(33%) 

17,000 

(37%) 

Lockdown 2 weeks earlier ��� 3 March 49,200 

(110%) 

35,000 

(77%) 

20,700 

(44%) 

13,200 

(28%) 

3,900  

(8.4%) 

2,850 

(6.2%) 
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Epidemics starting earlier had more infections and a lower � when mitigations were introduced. 272 
The mortality curves for 4 Model [B] epidemics appear in Figure 9.  273 

D
e
a
th
s

 274 

 275 

Figure 9. Actual daily UK mortality with smoothed average (black). Four Model [B] epidemics starting 276 
on 2–11 January with ever smaller epidemic curves (not shown). Tuned simulated mortality with social 277 
distancing 17 March and lockdown 24 March (grey), untuned mortality (red), earlier introduction of 278 
social distancing 10 March and lockdown 17 March (green), social distancing 3 March and lockdown 10 279 
March (blue).   280 

There was a linear relationship between the peak % of the population infected and the reciprocal 281 
of the case fatality rate; this is shown in two ways in Figure 10. 282 

  283 

Figure 10. The peak % in � is proportional to the reciprocal of the Case Fatality Rate. Model [A] black, 284 
Model [B] red. 285 

286 
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Weakening of the mitigations compared with Google mobility data 287 

The parameters required to weaken each of the epidemics were compared with Google mobility 288 
data. The comparison is a challenge as we are comparing different phenomena. In Figure 11, Google 289 
mobility data is shown with smoothed data as % change from baseline on the left-hand axis for a 290 
number of domains. We cannot combine these curves, but together, they give an indication of the 291 
depth and timing of changes in activity. On the right-hand axis, with � = 0.023 being the base line and 292 
the scale logarithmic, the values for weakening of the mitigations are plotted for epidemics A2–A11 in 293 
Model [A].      294 

β

 295 
Figure 11. Weakening of the mitigations shown as changes in � (left axis) for 4 Model [A] epidemics 296 
shown with Google mobility data as % change from baseline (right axis).  297 

In Figure 11 epidemics A5 and A8 are perhaps the most attractive suggesting a CFR between 500 and 298 
300 and peak infections between 12% and 7%. For Model [B] a similar comparison appears in is made 299 
in Figure 12. 300 

β

 301 
Figure 12. Weakening of the mitigations shown as changes in � (left axis) for 5 Model [B] epidemics 302 
shown with Google mobility data as % change from baseline (right axis). 303 

In Figure 12, Epidemic B8 and B7 appear to have some consistency with the Google data.  304 
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4. Discussion and conclusions 305 

A simple stochastic model of the mitigated UK Covid-19 epidemic was developed to simulate 306 
daily mortality data and test assumptions about the mechanics of the epidemic and its mitigations. 307 
Actual daily deaths started to exceed the mean of simulations and a weakening of the lockdown was 308 
hypothesised. With modest but progressive changes in parameters, the model was successfully tuned. 309 
The timing and percentage change in the model’s baseline movement parameter was similar to 310 
changes published by Google for UK mobility data over the same period. 311 

The principal reason for modelling is to test one’s assumptions about how the real-world works. 312 
One may learn more from a failing model than from a model that, by good fortune, produces output 313 
that happens to simulate the real world. Models can be criticised if they become over-elaborate or 314 
over-parametised or if they are tweaked, simply to produce a desired output. The stochastic model, 315 
with its large epidemic curve was tuned to bring its simulated deaths into line with actual deaths by 316 
weakening earlier mitigating parameters as the epidemic curve progressed. The impact of the 317 
parametric changes on the epidemic curve were necessarily sensitive to the proportion of the 318 
population who were susceptible at the time of the change and thereafter. For this reason, advancing 319 
or delaying parametric changes had a marked impact on the epidemic curves. Furthermore, it is clear 320 
that a small epidemic that is swiftly mitigated, and which barely reduces the susceptible proportion, 321 
will be less sensitive to later changes in those parameters compared to larger epidemics which 322 
dramatically reduce the susceptible population. If one is to ask about the impact of moving the 323 
lockdown on a mitigated epidemic that has weakened, it is crucial to understand the size of the 324 
epidemic curve and something about the weakening.  325 

The stochastic model might be considered to have naive parameters making it a poor 326 
approximation for human behaviour but the step-wise changes that were introduced to reshape the 327 
mortality data have some similarity to real-world changes seen in Google mobility data. If the 328 
stochastic model’s parameters are considered naïve then modelling with � and particularly 	 are 329 
clearly far more abstract. In the SIR model �, has some statistical mechanical elegance in that it relates 330 
to a reasonable real-word understanding of the probability of spread of a contagious disease but 	 is 331 
for the same reasons far less attractive. It is for this reason that the fall in �, in Model [B], was modelled 332 
by Ψ
��.  333 

The modified SIR model that generated an epidemic curve with an average of 0.1% of the 334 
population infected between 17-30 May, in line with the ONS figures, was so small that the CFR was 335 
1:26 which seems far too low a figure. The largest modified SIR epidemics had peaks around 20%, 336 
close to the stochastic model, and required a significant weakening of the mitigation. For the SIR 337 
models this weakening was considered to be more marked than that found in the Google mobility 338 
data. Though there is no simple way of determining a relationship between � and mobility, except in 339 
direction and time, it was felt that epidemics with peak infections between 8–14% and CFR’s 1:300–500 340 
were most likely to share the weakening found in Google’s data.  341 

If the susceptible proportion of the population in early July is as high as this work requires for 342 
consistency with the ONS data, or for consistency with a CFR of around 100, then the risks of a 343 
second-wave are very high. If the susceptible proportion of the population in early July is lower and 344 
consistent with a larger epidemic curve and a lower CFR then the risks of a second-wave are lower. 345 
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