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Abstract  

Mathematical models have been widely used to understand the dynamics of the ongoing 

coronavirus disease 2019 (COVID-19) pandemic as well as to predict future trends and assess 

intervention strategies. The asynchronicity of infection patterns during this pandemic illustrates 

the need for models that can capture dynamics beyond a single-peak trajectory to forecast the 5 

worldwide spread and for the spread within nations and within other sub-regions at various 

geographic scales. Here, we demonstrate a five-parameter sub-epidemic wave modeling 

framework that provides a simple characterization of unfolding trajectories of COVID-19 

epidemics that are progressing across the world at different spatial scales. We calibrate the model 

to daily reported COVID-19 incidence data to generate six sequential weekly forecasts for five 10 

European countries and five hotspot states within the United States. The sub-epidemic approach 

captures the rise to an initial peak followed by a wide range of post-peak behavior, ranging from 

a typical decline to a steady incidence level to repeated small waves for sub-epidemic outbreaks. 

We show that the sub-epidemic model outperforms a three-parameter Richards model, in terms 

of calibration and forecasting performance, and yields excellent short- and intermediate-term 15 

forecasts that are not attainable with other single-peak transmission models of similar 

complexity. Overall, this approach predicts that a relaxation of social distancing measures would 

result in continuing sub-epidemics and ongoing endemic transmission. We illustrate how this 

view of the epidemic could help data scientists and policymakers better understand and predict 

the underlying transmission dynamics of COVID-19, as early detection of potential sub-20 

epidemics can inform model-based decisions for tighter distancing controls. 
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Introduction 

The asynchronicity of the infection patterns of the current coronavirus disease 2019 

(COVID-19) pandemic illustrates the need for models that can capture complex dynamics 

beyond a single-peak trajectory to forecast the worldwide spread. This is also true for the spread 

within nations and within other sub-regions at various geographic scales. The infections in these 5 

asynchronous transmission networks underlie the reported infection data and need to be 

accounted for in forecasting models.  

We analyze the COVID-19 pandemic assuming that the total number of new infections is 

the sum of all the infections created in multiple asynchronous outbreaks at differing spatial 

scales. We assume there are weak ties across sub-populations, so we represent the overall 10 

epidemic as an aggregation of sub-epidemics, rather than a single, universally connected 

outbreak. The sub-epidemics can start at different time points and affect different segments of 

the population in different geographic areas. Thus, we model sub-epidemics associated with 

transmission chains that are asynchronously triggered and that progress somewhat independently 

from the other sub-epidemics.  15 

Jewell et al. (1) review the difficulties associated with long-term forecasting of the 

ongoing COVID-19 pandemic using statistical models that are not based on transmission 

dynamics. They also describe the limitations of models that use established mortality curves to 

calculate the pace of growth, the most likely inflection point, and subsequent diminution of the 

epidemic. The review analyzes the need for broad uncertainty bands, particularly for sub-national 20 

estimates. It also addresses the unavoidable volatility of both reporting and estimates based on 

reports. The analysis, delivered in the spirit of caution rather than remonstration, implies the 

need for other approaches that depend on overall transmission dynamics or large-scale agent-
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based simulations. Our sub-epidemic approach addresses this need in both the emerging and 

endemic stages of an epidemic. 

This approach is analogous to the model used by Blower et al. (2) to demonstrate how the 

rise and endemic leveling of tuberculosis outbreaks could be explained by dynamical changes in 

the transmission parameters. A related multi-stage approach was used by Garnett (3) to explain 5 

the pattern of spread for sexually transmitted diseases and changes in the reproductive number 

during the course of an epidemic. Rothenberg et al. (4) demonstrated that the national curve of 

Penicillinase-Producing Neisseria gonorrhoeae occurrence resulted from multiple asynchronous 

outbreaks.  

As with HIV/AIDS, which has now entered a phase of intractable endemic transmission 10 

in some areas (5), COVID-19 is likely to become endemic. New vaccines and pharmacotherapy 

might mitigate the transmission, but the disease will not be eradicated in the foreseeable future. 

Some earlier predictions based on mathematical models predicted that COVID-19 would soon 

disappear or approach a very low-level endemic equilibrium determined by herd immunity. To 

avoid unrealistic medium-range projections, some investigators artificially truncate the model 15 

projections before the model reaches these unrealistic forecasts.  

Here, we demonstrate a five-parameter sub-epidemic wave modeling framework that 

provides a simple characterization of unfolding trajectories of COVID-19 epidemics that are 

progressing across the world at different spatial scales (6). We systematically assess calibration 

and forecasting performance for the ongoing COVID-19 pandemic in hotspots located in the 20 

USA and Europe using the sub-epidemic wave model, and we compare results with those 

obtained using the Richards model, a well-known three-parameter single-peak growth model (7). 

The sub-epidemic approach captures the rise to an initial peak followed by a wide range of post-
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peak behavior, ranging from a typical decline to a steady incidence level to repeated small waves 

for sub-epidemic outbreaks. This framework yields excellent short- and intermediate-term 

forecasts that are not attainable with other single-peak transmission models of similar 

complexity, whether mechanistic or phenomenological. We illustrate how this view of the 

epidemic could help data scientists and policymakers better understand and predict the 5 

underlying transmission dynamics of COVID-19.  

 

Methods 

Country-level data 

We retrieved daily reported cumulative case data of the COVID-19 pandemic for France, 10 

the United Kingdom (UK), and the United States of America (USA) from the World Health 

Organization (WHO) website (8) and for Spain and Italy from the corresponding governmental 

websites (9, 10) from early February to May 24, 2020. We calculated the daily incidence from 

the cumulative trajectory and analyzed the incidence trajectory for the 5 countries. 

 15 

State-level US data  

We also retrieved daily cumulative case count data from The COVID Tracking Project 

(11) from February 27, 2020 to May 24, 2020 for five representative COVID-19 hotspot states in 

the USA, namely New York, Louisiana, Georgia, Arizona and Washington. 

 20 

Sub-epidemic wave modeling motivation  

The concept of weak ties was originally proposed by Granovetter in 1973 (12) to form a 

connection between microevents and macro events. We use this idea to link the person-to-person 
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viral transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to the 

trajectory of the COVID-19 epidemic. The transient connection between two people with 

different personal networks that results in the transference of the virus between the networks 

would be viewed as a weak tie. This event can cause asynchronous epidemic curves within the 

overall network. The events can spread the infection between sub-populations defined by 5 

neighborhoods, zip codes, counties, states, or countries. The resulting epidemic curve can be 

modeled as the sum of asynchronous sub-epidemics that reflect the movement of the virus into 

new populations. 

 In the absence of native immunity, specific viricidal treatment, or a working vaccine, our 

non-pharmacological preventive tools—testing, contact tracing, social separation, isolation, 10 

lockdown—are the key influences on sub-epidemic spread. The continued importation of new 

cases will result in low-level endemic transmission. A model based on sub-epidemic events can 

forecast the level of endemic spread at a steady state. This can then be used to guide intervention 

efforts accounting for the continued seeding of new infections.  

 15 

Sub-epidemic modeling approach  

We use a five-parameter epidemic wave model that aggregates linked overlapping sub-

epidemics (6). The strength (e.g., weak vs. strong) of the overlap determines when the next sub-

epidemic is triggered and is controlled by the onset threshold parameter, �����. The incidence 

defines a generalized-logistic growth model (GLM) differential equation for the cumulative 20 

number of cases, ��, at time �: 

�����

��
� ��	��� �1 	 ����


�

. 
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Here, r is the fixed growth rate, and � 
� the scaling of growth parameter, and �� is the final size 

of the initial sub-epidemic. The growth rate depends on the parameter . If p=0, then the early 

incidence is constant over time, while if p=1 then the early incidence grows exponentially. 

Intermediate values of (0<p<1) describe early sub-exponential (e.g. polynomial) growth patterns. 

 5 

Model calibration and forecasting approach 

For each of the ten regions, we analyzed six weekly sequential forecasts, conducted on 

March 30, April 6, April 13, April 20, April 27, and May 4, 2020, and assessed the calibration 

and forecasting performances at increasing time horizons of 2, 4, 6, …, and 20 days ahead. The 

models were sequentially re-calibrated each week using the most up-to-date daily curve of 10 

COVID-19 reported cases. That is, each sequential forecast included one additional week of data 

than the previous forecast. For comparison, we also generated forecasts using the Richards 

model, a well-known single-peak growth model with three parameters (7, 13). 

 

Results 15 

Model parameters and calibration performance  

A five-parameter dynamic model, postulating sub-exponential growth in linked sub-

epidemics, captures the aggregated growth curve in diverse settings (Figures 1-3 and Figures S3-

S9). Using national-level data from five countries, we estimate the initial sub-exponential growth 

parameter (p) with a mean ranging from 0.7 to 0.9. Our analysis of five representative hotspot 20 

states in the USA indicates that early growth was sub-exponential in New York, Arizona, 

Georgia, and Washington (mean p ~ 0.5-0.9) and exponential in Louisiana (Table 1). Moreover, 

the rate of sub-epidemic decline that captures the effects of interventions and population 
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behavior changes is shown in Figure S10. The decay rate was fastest for Italy, followed by 

France, with the lowest decline rate in the USA (Table 1). Within the USA, the decline rate was 

the fastest for New York and Louisiana and more gradual for Georgia and Washington (Figure 

S10).  

The calibration performance across all regions presented in Figures S1-S2 is substantially 5 

better for the overlapping sub-epidemic model compared to the Richards model based on each of 

the performance metrics (for MAE, MSE, and MIS, smaller is better; for 95% PI coverage, larger 

is better). An informative example of the model fit to the trajectory of the COVID-19 epidemic 

in Spain (Figure 1) shows the early growth of the epidemic in a single large sub-epidemic 

followed by a smaller sub-epidemic (blue in row 2, column 2 of Figure 1), which is then 10 

followed by a much smaller sub-epidemic (green). In row 1 (Figure 1), the parameter 

distributions demonstrate relatively small confidence intervals. Thus, the model captures a 

common phenomenon in epidemic situations: an initial steep rise, followed by a leveling or 

decline, then a second rise, and a subsequent repeat of the same pattern. A somewhat different 

pattern is observed in the USA, which experienced sustained transmission with high mortality for 15 

a long period (Figure 2). A single epidemic wave failed to capture the early growth phase and the 

later leveling off; whereas, the aggregation of multiple sub-epidemics produces a better fit to the 

observed dynamics. In comparison, New York, the early epicenter of the pandemic in the USA, 

displays a similar sub-epidemic profile, while the sub-epidemic sizes decline at a much faster 

rate (Figure 3).  20 

Similar composite figures for the remaining regions (Figures S3-S9) demonstrate diverse 

patterns of underlying sub-epidemic waves. For example, Italy experienced a single peak, largely 

the result of an initial sub-epidemic (in red), that was quickly followed by several rapidly 
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declining sub-epidemics that slowed the downward progression (Figure S3). The UK’s sub-

epidemic profile resembles that of the USA, but the sub-epidemics decline at a faster rate (Figure 

S5; Table 1). 

 

Forecasting performance 5 

 The sub-epidemic wave model outperformed the simpler Richards model in most of the 

2-20 day ahead forecasts (see Figure 4 and Figures S11-S19). We observe that the sub-epidemic 

model forecasting accuracy increases as evidence for the second sub-epidemic appears in the 

data. For instance, the initial forecasts for the USA using the sub-epidemic model (Figures 5 & 

S20) underestimate reported incidence for the 20 days after April 7th, which is likely attributable 10 

to the unexpected leveling off of the epidemic wave. However, this model provided more 

accurate forecasts in subsequent 20-day forecasts.  

 Similarly, sub-national models of the USA state trajectories confirm the general findings 

of fit and 20-day forecasting (see supplementary materials). Among the most striking of these is 

the sub-epidemic structure modeled for New York state (Figure S25). When the sub-epidemic 15 

model is calibrated by April 7, 2020, a single sub-epidemic is observed; however, subsequent 

weeks of data helped infer an underlying overlapping sub-epidemic structure and correctly 

forecasted the subsequent downward trend. With variation, other states shown in the 

supplementary materials provided similar confirmation of the method.  

 20 

Discussion 

Our sub-epidemic modeling framework is based on the premise that the aggregation of 

regular sub-epidemic dynamics can determine the shape of the trajectory of epidemic waves 
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observed at larger spatial scales. This framework has been particularly suitable for forecasting 

the spatial wave dynamics of the COVID-19 pandemic, where the trajectory of the epidemic at 

different spatial scales does not display a single peak followed by a “burnout” period, but instead 

follows more complex transmission patterns including leveling off, plateaus, and long-tail 

decline periods. The model overwhelmingly outperformed a standard growth model that only 5 

allows for single-peak transmission dynamics. Model parameters also inform the effect of 

interventions and population behavior changes in terms of the sub-epidemic decay rate. 

 Overall, this approach predicts that a relaxation of the tools currently at our disposal—

primarily aimed at preventing person-to-person and person-to-surface contact—would result in 

continuing sub-epidemics and ongoing endemic transmission. If we add widespread availability 10 

of testing, contact tracing, and cluster investigation (e.g. nursing homes, meatpacking plants, and 

other sites of unavoidable congregation), early suppression of sub-epidemics may be possible. 

The United States leads in the total number of tests performed, but it is currently ranked 25th 

among all nations in testing per capita (14). The sub-epidemic description of COVID-19 

transmission provides a rationale for substantial increases in testing. 15 

 Parsimony in model construction is not an absolute requirement, but it has several 

advantages. With fewer parameters to estimate, the joint simulations are more efficient and more 

understandable. Degenerate results are more easily avoided, and, when properly constructed, 

confidence intervals for the key parameters are more constrained. In our projections, we fit five 

parameters to the data:   20 

1. The onset threshold parameter, C
thr

, that triggers the onset of a new sub-epidemic and 

determines if the overlap is weak or strong,    

2. The new epidemic starting size, ��,   
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3. The size of consecutive sub-epidemics decline rates �,    

4. The positive parameter r denoting the growth rate of a sub-epidemic, and  

5. The “scaling of growth” parameter 
  p ∈[0,1] (exponential or sub-exponential).   

As shown in Figure 1, the confidence limits for these parameters are narrow, and the scaling of 

growth parameter is constantly in the 0.8 to 0.9 range (Table 1). 5 

 Short-term forecasting is an important attribute of the model. Though long-term forecasts 

are of value, their dependability varies inversely with the time horizon. The 20-day forecasts are 

most valuable for the monitoring, management, and relaxation of the social distancing 

requirements. The early detection of potential sub-epidemics can signal the need for strict 

distancing controls, and the reports of cases can identify the geographic location of incubating 10 

sub-epidemics. No single model or method can provide an unerring approach to epidemic 

control. The multiplicity of models now available can be viewed as a source of confusion, but it 

is better thought of as a strength that provides multiple perspectives. The sub-epidemic approach 

adds to the current armamentarium for guiding us through the COVID-19 pandemic. 

 15 
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Figure 1. The best fit of the sub-epidemic model to the COVID-19 epidemic in Spain. The sub-
epidemic wave model successfully captures the multimodal pattern of the COVID-19 epidemic. 
Further, parameter estimates are well identified, as indicated by their relatively narrow 
confidence intervals. The top panels display the empirical distribution of  Bottom panels show 
the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black circles 5 
correspond to the data points. The best model fit (solid red line) and 95% prediction interval 
(dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual 
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using 
different colors. 
 10 
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Figure 2. The best fit of the sub-epidemic model to the COVID-19 epidemic in the USA. The 
sub-epidemic wave model successfully captures the multimodal pattern of the COVID-19 
epidemic. Further, parameter estimates are well identified, as indicated by their relatively narrow 
confidence intervals. The top panels display the empirical distribution of  Bottom panels show 
the model fit (left), the sub-epidemic profile (center), and the residuals (right). Black circles 5 
correspond to the data points. The best model fit (solid red line) and 95% prediction interval 
(dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual 
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using 
different colors. 

 10 
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Figure 3. The best fit of the sub-epidemic model to the COVID-19 epidemic in New York State. 
The sub-epidemic wave model successfully captures the overlapping sub-epidemic growth 
pattern of the COVID-19 epidemic. Further, parameter estimates are well identified, as indicated 
by their relatively narrow confidence intervals. The top panels display the empirical distribution 
of  Bottom panels show the model fit (left), the sub-epidemic profile (center), and the residuals 5 
(right). Black circles correspond to the data points. The best model fit (solid red line) and 95% 
prediction interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty 
from individual bootstrapped curves. Three hundred realizations of the sub-epidemic waves are 
plotted using different colors. 
 10 
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Figure 4.  Mean performance of the sub-epidemic wave (red) and the Richards (blue) models in 
2-20 day ahead forecasts conducted during the epidemic in the USA. The sub-epidemic model 
outperformed the Richards model across all metrics and forecasting horizons. 
 

 5 
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Figure 5. Sub-epidemic profiles of the sequential 20-day ahead forecasts for the COVID-19 
epidemic in the USA.  Different colors represent different sub-epidemics of the epidemic wave 
profile. The aggregated trajectories are shown in gray, and black circles correspond to the data 
points. The vertical line separates the calibration period (left) from the forecasting period (right). 
The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and 5 
May 4, 2020.  
 
 

 
 10 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.20146159doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.03.20146159
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

 
Table 1. Mean and corresponding 95% confidence intervals of estimated parameters for each 
COVID-19 hotspot using data up to May 24, 2020.  

Region growth rate 
(r) 

Scaling of 
growth (p) 

Initial sub-
epidemic size 

(K0) 
decline rate (q) 

Decline 
function 

Italy 2.5 (2.2, 
2.3) 

0.69 
(0.66,0.71) 

162000 
(134000,182000) 2.1 (1.61, 2.51) Power law 

Spain 0.82 
(0.73,0.91) 

0.87 
(0.86,0.89) 

162000 
(152000,172000) 

0.71 (0.64,0.79) 
Exponential 

France 0.72 
(0.43,1.4) 

0.87 (0.79, 
0.92) 

101000 
(83000,120000) 

1.91 (1.42,2.47) 
Power law 

UK 0.74 
(0.64,0.88) 

0.84 (0.82, 
0.86) 

166000 (152000, 
179000) 

0.53 (0.38,0.68) 
Exponential 

USA 1.2  
(1.0,1.3) 

0.84 
(0.83,0.85) 

777000 
(743000,810000) 

0.26 (0.21,0.31) 
Exponential 

New York 3  
(2.4,3.4) 

0.76 
(0.74,0.79) 

173000 
(160000,185000) 

0.56 (0.49,0.60) 
Exponential 

Louisiana 0.37 
(0.35,0.40) 

0.99 
(0.97,1.0) 

18400 
(15900,21300) 

1.20 (0.96,1.47) 
Power law 

Georgia 0.56 
(0.43,0.96) 

0.88 
(0.77,0.93) 

13900 
(11100,17300) 

0.20 
(0.00003,0.60) 

Power law 

Arizona 
3.3 (1.9,5.1) 

0.54 (0.47, 
0.63) 

16900 
(13300,25000) 

0.26 (0.0004,1.2) 
Exponential 

Washington 0.93 
(0.76,1.2) 

0.79 
(0.74,0.85) 

4330 
(3360,5390) 

0.46 (0.21,0.64) 
Power law 
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Sub-epidemic modeling approach  

We use a five-parameter epidemic wave model that aggregates linked overlapping sub-epidemics (1). The 

strength (e.g., weak vs. strong) of the overlap determines when the next sub-epidemic is triggered and is controlled 

by the onset threshold parameter, �����. The incidence defines a generalized-logistic growth model (GLM) 

differential equation for the cumulative number of cases, ��, at time �: 5 

����	

��
� ��
��� �1 	 ���	

��

. 

Here, r is the fixed growth rate, and � 
� the scaling of growth parameter, and �� is the final size of the initial sub-

epidemic. The growth rate depends on the parameter . If p=0, then the early incidence is constant over time, while if 

p=1 then the early incidence grows exponentially. Intermediate values of (0<p<1) describe early sub-exponential 

(e.g. polynomial) growth patterns. 10 

The sub-epidemics are modeled by a system of coupled differential equations: 

�����	

��
� ��
������
���
 �1 	 ����	

��


, 

Here �
��� is the cumulative number of infections for sub-epidemic 
, and �
 is the size of the ith  sub-epidemic 

where i = 1, …, n.  Starting from an initial sub-epidemic size ��, the size of consecutive sub-epidemics �
 decline at 

the rate � following an exponential or power-law function. 15 

The onset timing of the (i +1)
th  sub-epidemic is determined by the indicator variable A

i
(t) . This results 

in a coupled system of sub-epidemics where the (i +1)
th  sub-epidemic is triggered when the cumulative number of 

cases for the ith  sub-epidemic exceeds a total of Cthr  cases. The sub-epidemics are overlapping because the 

(i +1)
th sub-epidemic takes off before the ith sub-epidemic completes its course. That is, 

�
��� � �1     �
��� � ����
0       ������
��� ,   
 � 1, 2, … , � 	 1 

The threshold parameters are defined so 1 ≤ C
thr

< K0 and ����� � 1 for the first sub-epdemic.  20 

This framework allows the size of the ith  sub-epidemic ( ) to remain steady or decline based on the 

factors underlying the transmission dynamics. These factors could include a gradually increasing effect of public 

K
i
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health interventions or population behavior changes that mitigate transmission. We consider both exponential and 

inverse decline functions to model the size of consecutive sub-epidemics.  

 

Exponential decline of sub-epidemic sizes  

If consecutive sub-epidemics decline exponentially, then K
i  is given by:  5 

K
i
= K0e

− q( i−1)
 

Where K0 is the size of the initial sub-epidemic ( K1 = K0 ). If q = 0 , then the model predicts an epidemic wave 

comprising sub-epidemics of the same size. When q > 0, then the total number of sub-epidemics n
tot  is finite and 

depends on Cthr
,  q,  and, K0 . The sub-epidemic is only triggered if Cthr ≤ Ki, resulting in a finite number of sub-

epidemics, 10 

���� � �	 1
� �ln !����

��

" # 1$� 

 

The brackets %&' denote the largest integer that is smaller than or equal to *. The total size of the epidemic 

wave composed of ntot  overlapping sub-epidemics has a closed-form solution: 

���� � ( ������	�
�

����

	



� ���1 	 ��������
1 	 ���

 

 

Inverse decline of sub-epidemic sizes  15 

The consecutive sub-epidemics decline according to the inverse function given by: 

K
i
= K

0

1

i

⎛

⎝⎜
⎞

⎠⎟

q

. 

When q > 0 , then the total number of sub-epidemics ntot  is finite and is given by: 
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n
tot

=
C

thr

K
0

⎛

⎝
⎜

⎞

⎠
⎟

− 1
q

⎢

⎣

⎢
⎢
⎢

⎥

⎦

⎥
⎥
⎥

 . 

 

The total size of an epidemic wave is the sum of n  overlapping sub-epidemics,  

K
tot

=
i=1

ntot

∑K
0

1

i

⎛

⎝⎜
⎞

⎠⎟

q

. 

 In the absence of control interventions or behavior change ( q = 0  ), the total epidemic size depends on a given 5 

number n  of sub-epidemics,  

K
tot

= nK0  . 

The initial number of cases is given by C1(0) = I0  where I0 is the initial number of cases in the 

observed case data. The cumulative cases, ����, is the sum of all cumulative infections over the n  overlapping sub-

epidemics waves: 10 

C
tot

(t) = C
i

i=1

n

∑ (t)  

Parameter estimation  

Fitting the model to the time series of case incidence requires estimating up to five model parameters 

Θ = (C
thr

,q,r , p, K ) . If a single sub-epidemic is sufficient to fit the data, then the model is simplified to the 

three-parameter generalized-logistic growth model. The model parameters were estimated by a nonlinear least 15 

square fit of the model solution to the observed incidence data (2). This is achieved by searching for the set of 

parameters Θ̂ = θ̂1,θ̂2 ,� ,θ̂m( )  that minimizes the sum of squared differences between the observed incidence 

data ��� � ��� , ��� , … , ��� and the corresponding mean incidence curve denoted by f (ti ,Θ) . That is, the 

parameters are estimated by 

	
 � argmin ������ , 	� � �����
�

���
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where ti  are the time points at which the time-series data are observed, and N is the number of data points available 

for inference. Hence, the model solution f (ti ,Θ̂)  yields the best fit to the time series data yti
, where Θ̂ is the 

vector of parameter estimates.  

We solve the nonlinear least squares problem using the trust-region reflective algorithm. We used 

parametric bootstrap, assuming an error structure described in the next section, to quantify the uncertainty in the 5 

parameters obtained by a non-linear least squares fit of the data, as described in refs. (3, 4). Our best-fit model 

solution is given by f (t,Θ̂) where Θ̂ is the vector of parameter estimates. Our MATLAB (The MathWorks, Inc) 

code for model fitting along with outbreak datasets is publicly available (5). 

The confidence interval for each estimated parameter and 95% prediction intervals of the model fits were 

obtained using parametric bootstrap (4). Let S  denote the number of bootstrap realizations and   Θ̂i  denote the re-10 

estimation of parameter set Θ from the ith bootstrap sample. The variance and confidence interval for Θ̂ are 

estimated from Θ��, … , Θ��. Similarly, the uncertainty of the model forecasts,  f (t,Θ̂) , is estimated using the variance 

of the parametric bootstrap samples 

f (t,Θ̂1), f (t,Θ̂2 ),…, f (t,Θ̂
S
) . 

where   Θ̂i  denotes the estimation of parameter set Θ from the ith bootstrap sample. The 95% prediction intervals of 15 

the forecasts in the examples are calculated from the 2.5% and 97.5% percentiles of the bootstrap forecasts. 

 

Error structure 

We model a negative binomial distribution for the error structure and assume a constant variance/mean 

ratio over time (i.e., the overdispersion parameter). To estimate this constant ratio, we group every four daily 20 

observations into a bin across time, calculate the mean and variance for each bin, and then estimate a constant 

variance/mean ratio by calculating the average of the variance/mean ratios over these bins. Exploratory analyses 

indicate that this ratio is frequently stable across bins, except for 1-2 extremely large values, which could result from 

a sudden increase or decrease in the number of reported cases. These sudden changes could result from changes in 

case definition or a weekend effect whereby the number of reported cases decreases systematically during 25 
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weekends. Hence, these extreme large values of variance/mean ratio are excluded when estimating the constant 

variance/mean ratio. 

 

Model performance 

To assess both the quality of the model fit and the short-term forecasts, we used four performance metrics: 5 

the mean absolute error (MAE), the mean squared error (MSE), the coverage of the 95% prediction intervals, and 

the mean interval score (MIS) (6). The mean absolute error (MAE) is given by: 

MAE= 
1
� ������ , 	
� � ����

�

���

 

Here yti
is the time series of incident cases describing the epidemic wave where  are the time points of the time 

series data (7). Similarly, the mean squared error (MSE) is given by: 

MSE= 
1
� ������ , 	
� � �����

�

���

 

In addition, we assessed the coverage of the 95% prediction interval, e.g., the proportion of the 10 

observations that fell within the 95% prediction interval as well as a metric that addresses the width of the 95% 

prediction interval as well as coverage via the mean interval score (MIS) (6, 8) which is given by: 

 

MIS=
1
� �����

� ����
�

���

� 2
0.05 ���� � ����"#��� $ ���% � 2

0.05 ���� � ���
�"#��� & ���

% 

 

where L
t  and Ut  are the lower and upper bounds of the 95% prediction interval and Ι{} is an indicator function. 15 

Thus, this metric rewards for narrow 95% prediction intervals and penalizes at the points where the observations are 

outside the bounds specified by the 95% prediction interval where the width of the prediction interval adds up to the 

penalty (if any) (6).  

The mean interval score (MIS) and the coverage of the 95% prediction intervals take into account the 

uncertainty of the predictions whereas the mean absolute error (MAE) and mean squared error (MSE) only assess 20 

ti
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the closeness of the mean trajectory of the epidemic to the observations (9). These performance metrics have also 

been adopted in international forecasting competitions (8). 

For comparison purposes, we compare the performance of the sub-epidemic wave model with that obtained 

from the 3-parameter Richards model (10), a well-known single-peak growth model given by: 

�'��� � (���� )1 � �	
��
�

�
*, 5 

where θ determines the deviation from symmetry, and again r is the growth rate, and K is the final epidemic size.  
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Figure S1.  The calibration performance metrics across five countries are uniformly better for the overlapping sub-
epidemic models (for MAE, MSE, and MIS, smaller is better; for % covered, larger is better).  

 
 
 5 
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Figure S2. The calibration performance metrics across five hotspots in the USA are uniformly better for the 
overlapping sub-epidemic models (for MAE, MSE, and MIS, smaller is better; for % covered, larger is better). 
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Figure S3. The best fit of the sub-epidemic model to the COVID-19 epidemic in Italy. The sub-epidemic wave 
model successfully captures the multimodal pattern of the COVID-19 epidemic. Further, parameter estimates are 
well identified, as indicated by their relatively narrow confidence intervals. The top panels display the empirical 
distribution of r, p, K ,and q.  Bottom panels show the model fit (left), the sub-epidemic profile (center), and the 
residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and 95% prediction 5 
interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual bootstrapped 
curves. Three hundred realizations of the sub-epidemic waves are plotted using different colors. 
 

 
 10 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.20146159doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.03.20146159
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 
 

Figure S4. The best fit of the sub-epidemic model to the COVID-19 epidemic in France. The sub-epidemic wave 
model successfully captures the multimodal pattern of the COVID-19 epidemic. Further, parameter estimates are 
well identified, as indicated by their relatively narrow confidence intervals. The top panels display the empirical 
distribution of r, p, K ,and q.  Bottom panels show the model fit (left), the sub-epidemic profile (center), and the 
residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and 95% prediction 5 
interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual bootstrapped 
curves. Three hundred realizations of the sub-epidemic waves are plotted using different colors. 
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Figure S5. The best fit of the sub-epidemic model to the COVID-19 epidemic in the United Kingdom. The sub-
epidemic wave model successfully captures the multimodal pattern of the COVID-19 epidemic. Further, parameter 
estimates are well identified, as indicated by their relatively narrow confidence intervals. The top panels display the 
empirical distribution of r, p, K ,and q.  Bottom panels show the model fit (left), the sub-epidemic profile (center), 
and the residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and 95% 5 
prediction interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual 
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using different colors. 
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Figure S6.  The best fit of the sub-epidemic model to the COVID-19 epidemic in Louisiana, USA. The sub-
epidemic wave model successfully captures the multimodal pattern of the COVID-19 epidemic. Further, parameter 
estimates are well identified, as indicated by their relatively narrow confidence intervals. The top panels display the 
empirical distribution of r, p, K ,and q.  Bottom panels show the model fit (left), the sub-epidemic profile (center), 
and the residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and 95% 5 
prediction interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual 
bootstrapped curves. Three hundred realizations of the sub-epidemic waves are plotted using different colors. 
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Figure S7. The best fit of the sub-epidemic model to the COVID-19 epidemic in Georgia, USA. The sub-epidemic 
wave model successfully captures the multimodal pattern of the COVID-19 epidemic. Further, parameter estimates 
are well identified, as indicated by their relatively narrow confidence intervals. The top panels display the empirical 
distribution of r, p, K ,and q.  Bottom panels show the model fit (left), the sub-epidemic profile (center), and the 
residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and 95% prediction 5 
interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual bootstrapped 
curves. Three hundred realizations of the sub-epidemic waves are plotted using different colors. 
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Figure S8. The best fit of the sub-epidemic model to the COVID-19 epidemic in Arizona, USA. The sub-epidemic 
wave model successfully captures the multimodal pattern of the COVID-19 epidemic. Further, parameter estimates 
are well identified, as indicated by their relatively narrow confidence intervals. The top panels display the empirical 
distribution of r, p, K ,and q.  Bottom panels show the model fit (left), the sub-epidemic profile (center), and the 
residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and 95% prediction 5 
interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual bootstrapped 
curves. Three hundred realizations of the sub-epidemic waves are plotted using different colors. 
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Figure S9. The best fit of the sub-epidemic model to the COVID-19 epidemic in Washington. The sub-epidemic 
wave model successfully captures the multimodal pattern of the COVID-19 epidemic. Further, parameter estimates 
are well identified, as indicated by their relatively narrow confidence intervals. The top panels display the empirical 
distribution of r, p, K ,and q.  Bottom panels show the model fit (left), the sub-epidemic profile (center), and the 
residuals (right). Black circles correspond to the data points. The best model fit (solid red line) and 95% prediction 5 
interval (dashed red lines) are also shown. Cyan curves are the associated uncertainty from individual bootstrapped 
curves. Three hundred realizations of the sub-epidemic waves are plotted using different colors. 
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Figure S10.  The sub-epidemic decline function across countries and USA states based on results presented in Table 
1. 
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Figure S11.  Mean performance of the sub-epidemic wave and the Richards models in 2-20 day ahead forecasts 
conducted during the epidemic in Italy. The sub-epidemic model outperformed the Richards model across all 
metrics and forecasting horizons except for 2-day ahead forecasts based on the MAE and the MSE.  
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Figure S12. Mean performance of the sub-epidemic wave and the Richards models in 2-20 day ahead forecasts 
conducted during the epidemic in Spain. The sub-epidemic model outperformed the Richards model across all 
metrics and forecasting horizons, but the MSE and MAE reached similar values at longer forecasting horizons. 
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Figure S13.  Mean performance of the sub-epidemic wave and the Richards models in 2-20 day ahead forecasts 
conducted during the epidemic in France. The sub-epidemic model outperformed the Richards model across all 
metrics and forecasting horizons. 
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Figure S14. Mean performance of the sub-epidemic wave and the Richards models in 2-20 day ahead forecasts 
conducted during the epidemic in the UK. The sub-epidemic model outperformed the Richards model across all 
metrics and forecasting horizons except for 2-day ahead forecasts for which the Richards model reached somewhat 
better performance. 
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Figure S15.  Mean performance of the sub-epidemic wave and the Richards models in 2-20 day ahead forecasts 
conducted during the epidemic in New York. The sub-epidemic model outperformed the Richards model across all 
forecasting horizons based on the PI Coverage and the MIS except for 2-day ahead forecasts. However, the Richards 
model more frequently outperformed the sub-epidemic wave model based on the MAE and MSE. 
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Figure S16.  Mean performance of the sub-epidemic wave and the Richards models in 2-20 day ahead forecasts 
conducted during the epidemic in Louisiana. The sub-epidemic model outperformed the Richards model across all 
metrics and forecasting horizons. 
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Figure S17. Mean performance of the sub-epidemic wave and the Richards models in 2-20 day ahead forecasts 
conducted during the epidemic in Georgia. The sub-epidemic model outperformed the Richards model across all 
metrics and forecasting horizons. 
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Figure S18.  Mean performance of the sub-epidemic wave and the Richards models in 2-20 day ahead forecasts 
conducted during the epidemic in Arizona. The sub-epidemic model outperformed the Richards model across all 
metrics and forecasting horizons. 
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Figure S19. Mean performance of the sub-epidemic wave and the Richards models in 2-20 day ahead forecasts 
conducted during the epidemic in Washington. The sub-epidemic model outperformed the Richards model across all 
metrics and forecasting horizons. 
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Figure S20.  Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in the 
USA.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval (dashed 
red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period (right). 
The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 2020. 
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Figure S21.  Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in 
Italy.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval (dashed 
red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period (right). 15 
The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 2020. 
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Figure S22. Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in 
France.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval 
(dashed red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period 
(right). The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 
2020. 5 
 
 

 
 
  10 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 4, 2020. ; https://doi.org/10.1101/2020.07.03.20146159doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.03.20146159
http://creativecommons.org/licenses/by-nc-nd/4.0/


49 
 

Figure S23. Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in 
Spain.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval 
(dashed red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period 
(right). The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 
2020. 5 
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Figure S24. Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in the 
UK.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval (dashed 
red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period (right). 
The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 2020. 
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Figure S25. Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in New 
York State.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval 
(dashed red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period 
(right). The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 
2020. 5 
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Figure S26. Sub-epidemic profiles of the sequential 20-day ahead forecasts for the COVID-19 epidemic in New 
York.  Different colors represent different sub-epidemics of the epidemic wave profile. The aggregated trajectories 
are shown in gray and black circles correspond to the data points. The vertical line separates the calibration period 
(left) from the forecasting period (right). The sequential forecasts were conducted on March 30, April 6, April 13, 
April 20, April 27, and May 4, 2020. 5 
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Figure S27. Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in 
Louisiana.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval 
(dashed red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period 
(right). The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 
2020. 5 
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Figure S28. Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in 
Georgia.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval 
(dashed red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period 
(right). The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 
2020. 5 
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Figure S29. Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in 
Arizona.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval 
(dashed red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period 
(right). The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 
2020. 5 
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Figure S30. Sequential 20-day ahead forecasts of the sub-epidemic wave model for the COVID-19 epidemic in 
Washington.  Black circles correspond to the data points. The model fit (solid red line) and 95% prediction interval 
(dashed red lines) are also shown. The vertical line separates the calibration period (left) from the forecasting period 
(right). The sequential forecasts were conducted on March 30, April 6, April 13, April 20, April 27, and May 4, 
2020. 5 
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